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Abstract 

Background and aims  

Observational studies have suggested a complex relationship between obesity and multiple 

sclerosis (MS).  However, the role of genetic factors in the comorbidity and whether obesity exist 

consistent shared genetic relationships with MS, remains unclear. Our study aims to investigate 

the extent of shared genetic architecture underlying obesity and MS. 

 

Methods  

Based on genome-wide association studies (GWAS) summary statistics, we investigate the genetic 

correlation by the linkage disequilibrium score regression (LDSC) and genetic covariance 

analyzer (GNOVA). The casualty was identified by using bidirectional Mendelian randomization. 

Linkage disequilibrium score regression in specifically expressed genes (LDSC-SEG) and 

multi-marker analysis of GenoMic annotation (MAGMA) were utilized to investigate 

single-nucleotide polymorphisms (SNP) enrichment in the tissue and cell-type levels. We then 

identified shared risk SNPs using cross-trait meta-analyses and Heritability Estimation from 

Summary Statistics (ρ-HESS). We further explore the potential functional genes for BMI and MS 

using summary-data-based Mendelian randomization (SMR). 

 

Result 

We found significantly positive genetic correlation and 18 novel shared genetic SNPs were 

identified in cross-trait meta-analyses. We found the causality of BMI on MS using Mendelian 

randomization, but slight inconsistent evidence for the causality of MS on BMI. We observed 

tissue-specific level SNP heritability enrichment for BMI in 9 tissues and MS in 4 tissues, and in 

cell-type-specific level SNP heritability enrichment 12 consistent cell types were identified for 

BMI and MS in brain, spleen, lung and whole blood. 

 

Conclusion 

Our study identifies the genetical correlation and shared risk SNPs between BMI and MS. These 

findings could provide new insights into the etiology of comorbidity and have implications for 

future therapeutic trials. 
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Introduction 

Obesity described by body mass index(BMI) is an increasing metabolic disorders in a 

large-scale age around the world1,2.  The recent study has identified that obesity is the 

number one lifestyle related risk factor for premature death3. Observational studies have 

provided evidence that obesity is a significantly long-term risk4of suffering from multiple 

sclerosis (MS) in recent years5,6. Multiple sclerosis is a debilitating chronic demyelinating and 

neurodegenerative disease of the central nervous system (CNS)7. The acute and chronic 

disruption of white matter tracts and gray matter structure are contributing in the neurologic 

symptoms which may be incapacitating for patients and reducing patients quality of life and even 

leading disability7–9.  

 

The epidemiological studies have revealed the intricate association between obesity and 

MS10,11. The BMI of MS patients were found have clear difference with healthy people and 

higher BMI in adolescence and childhood was considered as an environmental risk factor for 

MS 12,but whether MS patient have higher BMI was controversial 13,14. Mokry et al performed 

the first Mendelian randomization (MR) between elevated BMI and MS, providing positive 

evidence for a causal role for obesity in MS etiology15. A similar result was obtained by 

another MR analysis of a cohort involving 14,802 MS cases and 26,703 controls16. However, 

a large scale meta-analysis with 6,228 participants found that MS patients had lower BMI 

than healthy controls17. And a recent meta-analysis including 31 studies published between 

1997 and 2020 indicated BMI does not present significant differences between patients with 

MS and healthy controls18. As a consequence, what roles of BMI play during the development 

of MS need further study 19,20.  

 

In recent years, researchers have identified the common pathophysiological and immune 

elements for obesity and multiple sclerosis including inflammatory reaction21,22, the hormonal 

changes23,24 the interaction of the intestinal microbiome25,26 and the nutrition27,28, which are not 

mutually exclusive but may overlap29. In addition, during the clinical course, there are some 

drug interactions in patients with both MS and obesity30. According to an observational trail, 

obesity was proved to have an negative impact on IFNβ-treatment response in multiple 

sclerosis31. These findings suggest that the shared genetic background may exist between MS 

and BMI, whereas the magnitude of the genetic overlap required deep exploration32,33. 

Resolving these problems is benefit for making a clear understanding of the biological 

mechanisms and identify novel pharmacological targets for a precision medicine.  

 

In this study, we conducted five complementary studies (Fig. 1) to investigate: (1) genetic 

correlation between BMI and MS using genome-wide association study (GWAS) summary 

statistics; (2) risk SNPs from Heritability Estimation from Summary Statistics(ρ-HESS) and 
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cross-trait GWAS meta-analysis; (3) causality relationship between BMI and MS based on 

five Mendelian randomization methods; (4) SNP heritability enrichment in tissue levels and 

cell-type levels using GWAS data, Genotype-Tissue Expression (GTEx) dataset, and 

scRNA-seq dataset; and (5) putative functional genes for obesity and MS using 

Summary-data-based Mendelian Randomization(SMR). 

 

Methods 

Data samples 

GWAS summary statistics 

Effect estimates for SNPs associated with BMI were obtained from the Genetic Investigation 

of Anthropometric Traits (GIANT) consortium, which is  a meta-analysis involving 2.4 

million HapMap 2 (HM2) SNPs with available summary statistics in GIANT, 681 275 

participants on average for BMI35. GWAS summary results for MS were derived from the 

International MS Genetics Consortium (IMSGC) meta-analysis of 15 datasets concluding 

26,703 controls and 14,802 MS cases of European ancestry34. The publication described the 

collection of samples, quality control procedures, and imputation methods for each of the 

GWAS summary statistics34,35. GWAS protocols were approved by the appropriate ethics 

committees or institutional review boards, and all participants signed informed consent forms. 

The description of the studies is provided in Supplementary Table S1. 

 

Bulk-tissue RNA sequencing gene expression data 

In the subsequent LDSC-SEG and SMR analysis, we obtained bulk-tissue RNA-seq gene 

expression data from the Genotype-Tissue Expression (GTEx) project, which is a public data 

resource of gene expression in 53 non-diseased human primary tissues36. We download the 

GTEx v6p dataset which have been fixed39. We then choose the lite version of the GTEx V8 

expression quantitative trait locus (eQTL) summary data (only SNPs with P < 1×10-5 are 

included). cis-eQTL summary statistics for whole blood were download for the downstream 

analysis from eQTLGen, a meta-analysis of 14,115 individuls40, 

 

Single-cell RNA sequencing gene expression data 

We obtained four single-cell RNA sequencing (scRNA-seq) resources from human lung41 

(N�=�57,020 cells), spleen41 (N�=�94,257 cells) and whole blood from 10X Genomics 

Chromium and mouse brain42 (N= 133,509,876 cells).  The “EWCE” R package43 were 

utilized to process the scRNA-seq data and convert mouse genes to human gene symbols. 

 

Statistical analyses 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 9, 2022. ; https://doi.org/10.1101/2022.12.07.22283195doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.07.22283195


 

Heritability and Genetic Correlation 

LD score regression (LDSC)44 (Python 2.7)  is a useful method to estimate the genetic 

correlation for multiple traits or diseases. Based on the pre-computed LD scores of the 1000 

Genomes projects which were calculated for SNPs in the HapMap 3 SNP set, we removed 

SNPs which did not match the reference panel (MAF ≤ 0.01 or INFO score ≤ 0.9) and 

reformatted new GWAS summary statistic45. We estimate single trait SNP heritability for BMI 

and MS using stratified linkage disequilibrium score regression (SLDSC) with the 

baseline-LD model2. According to recommendation, we set the parameter that the population 

prevalence and observed sample prevalence as 0.0003 and 0.63 separately to convert 

observed scale heritability to the liability-scale46. Then we performed bivariate LDSC47 

without constraining the intercept to estimate rg value, representing genetic correlations 

between MS and BMI and selected the suggestive (P < 0.05) genetic associations as the 

significant correlation48. Sensitivity analysis were conducted based on LDSC with the 

single-trait heritability intercept constrained. Because there was no sample overlap in our two 

traits, so we set all single-trait intercepts to 1 and all cross-trait intercepts to 0. 

Genetic covariance analyzer (GNOVA)49 was supplemented to estimate the SNP-based 

heritability and genetic correlation between BMI and MS. GNOVA estimates genetic 

covariance based on all genetic variants shared between two GWAS summary statistics. 

Genetic correlation was then calculated relied on variant heritability and genetic covariance. 

Calculations were based on the 1000 Genomes Project European population-derived reference 

data using default parameters. In addition, sample overlap correction between two different 

sets of GWAS summary statistics was statistically calculated. Compared to LDSC, GNOVA 

provides higher estimation accuracy for genetic correlations and more powerful statistical 

inference49. 

 

Identification of local genetic correlations using ρ-HESS 

Heritability Estimation from Summary Statistics (ρ-HESS)50 is a method to estimate local 

SNP-heritability and genetic correlation from GWAS summary data. We estimated the local 

genetic correlations to examine whether BMI shared genetic correlation with MS at the local 

independent region in the genome using ρ-HESS (Python 2.7). There were 1699 potentially 

regions that were approximately LD-independent loci with average size of nearly 1.5Mb51. 

Then we calculated the local SNP heritability for two traits and genetic correlation between 

two traits using the 1000 Genomes project as reference provided on the HESS webpage52.  

 

Cross-trait meta-analysis 

To detect the shared risk SNPs in BMI and MS, we performed two cross-trait meta-analysis, 
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including multi-trait analysis of GWAS (MTAG)53and cross-phenotype association test 

(CPASSOC)54,55. MTAG is a generalized meta-analysis method that enhances statistical power 

to estimates the genotypic and phenotypic variance-covariance matrices to generate 

trait-specific estimates for each SNP. SNPs were restricted with a minor allele frequency 

(MAF)�≥ 0.01 and sample size N ≥ (2/3) × 90th percentile. MTAG adjusts for possible errors 

by bivariate LD score regression when sample overlap is present. MTAG is suitable when all 

variants have the same effect sizes on traits and generatestrait-specific association statistics. 

We calculated the upper bound for the false discovery rate (‘maxFDR’) to examine the 

assumptions on the equal variance-covariance. In addition, as a sensitivity analysis, 

CPASSOC integrates association evidence from multiple traits GWAS summary statistics, 

when variant is correlated to at least one trait. We utilized the SHet version to assume 

heterogeneous effects across traits. The SNP set is obtained from applying pairwise LD 

pruning with r2 = 0.2 using the software “PLINK”. We prioritize independent SNPs that were 

genome-wide significant (P < 5 × 10−8) in the cross-trait meta-analyses using both MTAG and 

CPASSOC and were in significant regions identified by ρ-HESS. 

 

MR analyses 

To explore putative causal relationships between BMI and MS, using the R packages 

“TwoSample” and “GSMR” for the suggestive associations (P < 0.05). We undertook 

Mendelian Randomization analysis including main five MR methods, MR-Egger56, inverse 

variance weighting (IVW)57, weighted median58 ,weighted mode59 and Generalized 

Summary-data-based Mendelian Randomization (GSMR)60 with different assumptions about 

horizontal pleiotropy. Briefly, when there is one single genetic variant, the Wald ratio is a 

way to calculate the causative effect between the exposure and the outcome48. Using the 

meta-analysis approach, IVW analysis can estimate causal effects of two phenotype. It is a 

weighted average of the causal effects of genetic variants57.MR-Egger method further added a 

weighted linear regression of the gene–outcome coefficients for non-measured horizontal 

pleiotropy which allows for the presence of directional uncorrelated pleiotropy56. Pleiotropy 

test and Heterogeneity test were conducted by the MR-Egger intercept test61and Cochran’s Q 

statistic62,63 , respectively, based on the “TwoSample” R package64. P < 0.05 is the level of 

statistical significance. For pleiotropy and outlier instrument detection, we choose the single 

SNP effect analysis 65,66 and MR-PRESSO analysis61.As for GSMR analysis, it assumes no 

correlation in pleiotropy but implements the HEIDI-outlier approach to test and exclude 

significant uncorrelated pleiotropy SNPs. For these five methods, we selected SNPs with 

genome-wide significance (P ≤ 5 × 10-8) of the ‘exposure’ trait as instrumental variables. 

Finally, all five methods were implemented bi-directional MR analyses.  

 

Linkage Disequilibrium Score Regression in specifically expressed genes (LDSC-SEG) 
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analysis 

We performed LDSC applied to specifically expressed genes (LDSC-SEG)67 to investigate 

whether SNP heritability for BMI and MS as evidence for trait-tissue relevance inference. The 

1000 Genomes Phase 3 of European ancestry was utilized as a reference panel to calculate LD 

scores and SNPs only in HapMap 3 with MAF > 0.05 were included as input. Based on the 

baseline model and all gene sets, we ranked genes from the GTEx project by computed 

t-statistics reflecting critical tissue types and their specific expression in 53 tissues. We 

obtained the top 10% specifically expressed candidate genes with the highest t-statistic to 

estimate the significance of tissue type-specific SNP heritability enrichment. The coefficient 

P-values were calculated based on the regression coefficient Z-score, and 

Benjamini-Hochberg FDR-corrected P-value of <�5 × 10−3 was determined significance for 

enrichment tissues across the two traits.  

 

Cell type enrichment analyses using scRNA-seq datasets  

We conducted Multi-marker Analysis of GenoMic Annotation (MAGMA)68 celltyping to 

evaluate whether gene-level genetic correlation between BMI and MS GWAS traits and cell 

type expression specificity. We using four scRNA-seq resources from human lung 

(N�=�57,020 cells), spleen (N�=�94,257 cells) and whole blood from 10X Genomics 

Chromium and mouse brain (N= 133,509,876 cells). Cell types across the four tissues were 

considered significant in MAGMA with P-value <0.05 after BH correction. The cell type 

specificity matrix for scRNA seq used in the MAGMA was calculated using Expression 

Weighted Cell type Enrichment, “EWCE” and “MAGMA_Celltyping” R package69.  

 

Summary-data-based Mendelian randomization 

We conducted a SMR analysis70 to identify candidate risk genes of possibly causal effect and 

SNPs significant in cross-trait meta-analyses of BMI and MS. We used GWAS and eQTL data 

to detect the association between trait-associated SNPs and gene expression. The 

heterogeneity in dependent instrument (HEIDI) test was applied to distinguish linkage in the 

casual association. Genomic expression data from GTEx V871 and cis-eQTL summary data 

from eQTLGen40 were used for the eQTL expression data of whole blood. As a default, we 

removed SNPs in strong LD with a r2 > 0.9 and with top associated eQTLs if MAF > 0.01. 

Expression probes with eQTL P�≤�5 × 10−8 were selected as top associated variants. All the 

SNPs were extracted by the genome-wide complex trait analysis (GCTA) software72, ensuring 

their independence. SMR significant probes were selected using Bonferroni-corrected 

thresholds for SMR P-values (0.05/number of probes) and HEIDI test P-value thresholds > 

0.05 to indicate heterogeneity. 

 

Results 
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Estimation of Genetic correlations between obesity and MS 

We firstly calculate the liability-scale SNP heritability for BMI and MS through SLDSC44 

with the baseline-LD model73. Consistent with the literature33,74, the liability-scale SNP 

heritability (without constrained intercept) was 4.6% for MS and 21% for BMI.  We then 

used bivariate LDSC to estimate the genetic correlation (without constrained intercept) 

between BMI and MS (rg = 0.0796, P = 0.0002). The intercept of genetic covariance was 

calculated at around 0.0021, indicating mild sample overlap between BMI and MS. After 

constraining the LDSC intercept on the assumption of no sample overlap, genetic correlation 

was slightly weaker (Fig. 2). Moreover, all these estimates remained significant (P < 0.05, 

Supplemental Table S1).  To examine the robustness of our results, we performed GNOVA 

and identified a positive and consistent genetic association between BMI and MS with sample 

overlap corrected (rg = 0.0647, P�= 3.36 ×�10-5), and the heritability estimates were 18.8% 

and 13.7% for the BMI and MS traits respectively. 

 

Local genetic correlations between BMI and MS 

Local genetic correlation was estimated for 1699 genomic partitions and 57 significant 

regions was identified (P < 0.05, Supplemental Table S3). There was close agrrement in the 

average local genetic correlation in regions harbouring BMI-specific loci or MS-specific loci 

(Fig. 3, Supplemental Fig.1). We estimated the local single-trait SNP heritability for BMI 

(h2= 22.4%) and MS (h2= 23.4%) (Supplemental Table S1). Compared with bivariate LDSC, 

genome-wide local genetic correlations calculated by HESS between MS and BMI (rg = 

0.0428) were all largely consistent (Supplemental Table S1). These results suggest that 

across the whole genome, BMI and MS have potential correlation for sharing of genetic 

variation but not in specific genomic regions. 

 

Identification of Genomic risk SNPs for BMI and MS  

Given the strong genetic relationships between BMI and MS, we conducted two cross-trait 

meta-analyses, MTAG and CPASSOC, to improve our power to identify genetic SNPs shared 

between traits. A total of 39 genome-wide significant SNPs (P < 5 × 10−8) were revealed in 

both MTAG and CPASSOC (Supplemental Table S4), 18 of them (rs11647753 rs11649612, 

rs12716972, rs12716974, rs2289292, rs3889624, rs4487979, rs4689871, rs2386589, 

rs2386593, rs8879260, rs8882, rs9986189, rs1944821, rs11667487, rs2382299, rs4888762, 

rs8112975) were not previously reported. The maxFDR values for MTAG analyses of BMI 

and MS were 1.4 × 10−6 and 1.8× 10−2 respectively. Furthermore, the MTAG results were 

highly consistent with those generated by CPASSOC, indicating that the MTAG results are 

reliable and that any bias in MTAG assumptions is likely to be negligible. Eventually, 22 risk 

SNPs are consistent significant in local genetic correlation examined by ρ-HESS. 
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Evidence for causality between BMI and MS 

We conducted bi-directional MR to explore the potentially causal effect and whether shared 

genetic background between BMI and MS was consistent with pleiotropy. We conducted 

various (N = 5) bi-directional MR methods to test the stability of relationships for a more 

stable result. We found evidence to support the causality of BMI on MS in five methods (P < 

0.05) (Fig. 4 Supplemental Fig.2). In the reverse analyses, all these methods but GSMR 

identified negative causal effect of BMI on MS GSMR (Supplemental Table S2). 

 

Tissue-level SNP heritability enrichment in BMI and MS 

We conducted LDSC-SEG method to identify specific tissues in which genes with increased 

expression are enriched in SNPs, using publicly available GWAS data and genotype tissue 

expression data from GTEx. After adjusting for the baseline model, we identified 

FDR-significant (P�<�5 × 10−3) SNP heritability enrichment for BMI across 9 tissues (Fig. 

5A, Supplementary TableS5), including frontal cortex, anterior cingulate cortex, nucleus 

accumbens, putamen, caudate, hypothalamus, cerebellar hemisphere, cerebellum and cortex, 

particularly for central nervous system (CNS)-related tisWsues. For MS, a total of 4 tissues 

were significant enrichment, including spleen, Epstein-Barr virus (EBV)-transformed 

lymphoblastoid cell lines (LCLs), lung and whole blood, particularly for blood and 

immune-related tissues (Fig. 5B, Supplementary TableS5). 

 

Cell-level SNP heritability enrichment in BMI and MS 

We utilized publicly available scRNA-seq datasets of four tissues enriched in LDSC-SEG, 

including brain, spleen, lung and whole blood to evaluated the gene-level genetic association 

with cell type expression specificity for BMI and MS. In the lung dataset, we found both 

significant enrichment at P < 0.05 for BMI and MS in mature B cells, naive B cells, mast cells, 

natural killer cells (NK), dividing NK cells, CD4+ T cells, CD8+cytotoxic T lymphocytes, 

dividing T cells, regulatory T cells, activated dendritic (DC) cells, plasmacytoid DC cells and 

Monocytes. We observed a significant enrichment across NK_FCGR3Apos in spleen tissue. 

Cells in brain and in peripheral blood mononuclear cells (PBMC) tissues are not co-enriched 

in BMI and MS traits. The enriched cells in four tissues for BMI and MS were listed 

separately (Supplemental Fig.3-6). 

 

Identification of shared functional genes for BMI and MS 

We applied SMR to infer causality and identify the putative functional genes for BMI and MS, 

by jointly analyzing GWAS summary data and whole blood eQTL summary data from 

eQTLGen and GTEx. We identified 10 genome-wide significant associations (P�<�5.28 × 

10−7), of which only one gene, the Gametogenetin-binding protein (GGNBP2), shared 
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between BMI (PSMR�=�3.69 × 10−19, PHEIDI�=�0.11, topSNP: rs11263770) and MS 

(PSMR��=�2.41 × 10−7, PHEIDI�=�0.98, topSNP: rs11650008) and passed the HEIDI-outlier 

test in cis_eQTL data (Supplementary TableS6). More importantly, the GGNBP2 was also 

identified as one of the genetically shared variants in previous cross-trait meta-analysis 

phenotypes between BMI and MS.  

 

Discussion 
We present the first assessment (to our knowledge) of overlapping polygenic architecture of 

BMI with MS by combining large-scale GWAS summary data, GTEx datasets and 

scRNA-seq datasets. Our results provide new insights into the molecular genetic mechanism 

for comorbidity and may contribute to the disease prediction and clinical treatment.   

 

Our findings provided the evidence that there existed a significantly strong genetic correlation 

between BMI and MS, suggesting that genetic factors play an important role in comorbidity 

of obesity and MS. Analyzing local genetic correlation using ρ-HESS, the regional rg 

estimates were close to global rg estimates based on LDSC and GNOVA, suggesting 

pleiotropic effects on the two traits exist in numerous genetic variants across the genome34. 

Notwithstanding that multiple factors may lead to disease comorbidity11,75, our results support 

the risk of genetic factors.  

 

From the cross-trait meta-analysis, 39 genetic SNPs identified in both MTAG and CPASSOC 

analysis, in which 22 SNPs located in the ρ-HESS estimated significant genomic regions. The 

novel SNPs we identified may be involved in regulating a common pathway shared between 

BMI and MS, advancing the understanding of the causes of risk for both traits. We used 

MTAG and CPASSOC, two completely independent statistical analysis methods, not only to 

avoid the possible bias caused by potential sample overlap but also to verify the risk SNPS 

obtained from MTAG with CPASSOC. Results showed that the SNPs identified by MTAG 

were all consistently significant in the CPASSOC analysis results, which adequately improved 

the reliability of our results.  

 

We conducted Mendelian randomization studies using the latest GWAS summary data. A 

consistent causality of BMI on MS was inferred in all MR methods, showing no difference on 

previous study15,76. We performed several sensitivity analyses which provided little evidence 

of genetic pleiotropy, adding further robustness to the findings. It may owing to the different 

criteria for outliers so that bi-directional GSMR analysis inferred a causalty of MS on BMI 

but other methods inferred no effect of MS on BMI, which suggesting the significance of 

utilizing different methods in MR analyses34. The establishment of more accurately causal 

relationship requires larger and more powerful GWAS for BMI and MS. 
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In this study, we comprehensively investigated functional enrichment for gene expression in 

multiple tissues and cells by applying LDSC-SEG using the GTEx gene expression datasets. 

We identified 9 tissues, mainly brain, with significant SNP heritability enrichment for BMI. 

Growing evidence also suggests that susceptibility to obesity is distributed across multiple 

brain regions and strongly associated with structural abnormalities77–81. The enrichment 

results we obtained in MS were mainly reflected in immune tissues, including spleen and 

LCLs, suggesting the involvement of local immune responses in the process of MS. This is 

consistent with previous literature demonstrating a strong relationship between MS and 

immune dysregulation82. EBV-infected B cells and plasma cells accumulate in meningeal 

immune cell collections that may contribute to the progressive development of MS83. In the 

center of the immune response in MS is the CD4+ T cell84. The lung could contribute to 

activate and transform autoreactive T cells to a migratory mode to enter the CNS and induce 

autoimmune disease including MS85. Different immune pathways drive MS disease relapse 

and progression, and our approach may more specifically understand MS as a disease of 

certain key tissue and cellular processes. Further experimental validation of the enriched 

tissues and cells for diseases is still required. 

 

Notably, we identified enrichments in mature B cells, naive B cells, mast cells, natural killer 

cells (NK), dividing NK cells, CD4+ T cells, CD8+cytotoxic T lymphocytes, dividing T cells, 

regulatory T cells, activated dendritic (DC) cells, plasmacytoid DC cells and Monocytes in 

lung and NK cells in spleen for both BMI and MS. Several cells-related genes. the heritability 

enrichment in CD8 cytotoxic T cells in lung and spleen for both BMI and MS, suggesting a 

possible role for these cell types in the comorbidity of obesity and MS. MS is an 

immunologically heterogeneous disorder, and CD8 + T cells predominate in MS lesions. B 

cell depletion may reduce the proinflammatory cytokines produced by B cells, CD4+ and 

CD8 + T cells which can effectively reduce MS relapses86,87. NK and DC cells control T cell 

activation in CNS autoimmunity, and reduced the risk of MS88,89. Mast cells participate in the 

pathogenesis of MS by promoting angiogenesis90. Our results may gain insights into the 

pathogenesis of comorbid MS or IBD and will be instrumental for further studies to develop 

new targeted therapies in specific tissues and cell types.  

 

In addition to cross-trait meta-analysis, we also used large-scale cis_eQTL and whole-blood 

GTEx data to test whether BMI-MS association can be mediated by shared risk genes. Using 

SMR and HEIDI, we discovered one functional gene, GGNBP2, which might serve as a 

potential links between the two traits. Prior studies have documented the biological 

relationship between GGNBP2 and BMI. GGNBP2 is a tumor suppressor gene involved in 

several kinds of cancers, such as glioma91, breast cancer92 and prostate cancer93. Previous 
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study has identified that GGNBP2 is a shared genetic loci for ALS and obesity related traits, 

and associated with BMI and waist-hip ratio94. We first discovered the biological relationship 

between GGNBP2 and the two traits. Further functional and other researches need to be 

undertaken to systematically investigate the biological mechanisms of the novel gene 

GGNBP2 on obesity and MS risk. 

 

Our study also has limitations. Firstly, we choose the GWAS data from GIANT and IMSGC 

which both used samples from the WTCCC cohort. Therefore, we were not sure if there exists 

the possibility of sample overlap, which might bias our results. However, given the sample 

size employed, this effect would likely be small since the WTCCC comprised ~2.5% of the 

overall GIANT consortium15. Secondly, this study was restricted to individuals of European 

descent to prevent population stratification and therefore our findings have limited 

generalizability to other ancestral populations. Thirdly, although enrichment analysis revealed 

the potential overlapping genetic components but how the shared biological pathways work 

warrants further research. 

 

Conclusion 

In summary, we found significant genetic correlation and identified novel shared risk SNPs 

between BMI and MS. We confirmed the causality of BMI on MS but reverse causality was 

inconclusive. We further explored SNP heritability enrichment for BMI and MS and found a 

putative functional gene GGNBP2.  

These findings could provide novel insights into the genetic overlap between obesity and MS 

and contribute to better understand the etiology of comorbidity and may keep instrumental in 

the disease prediction and clinical treatment.   

 

Data source 

GWAS summary statistics for MS are available by application from: 

https://imsgc.net/? page_id=31.  

GWAS summary statistics for MS are available by application from:  

http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files. 

The eQTL summary data for eQTLGen and GTEx : 

https://www.eqtlgen.org/cis-eqtls.html 

http://yanglab.westlake.edu.cn/software/smr/#eQTLsummarydata. 

scRNA-seq data:  

Whole blood: https://www.10xgenomics.com/resources/datasets; 

Lung and Spleen: https://doi.org/10.1186/s13059-019-1906-x; 

Brain: https://doi.org/10.1016/j.cell.2018.06.021; 

Small Intestinal Epithelium: 
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https://singlecell.broadinstitute.org/single_cell/study/SCP44/small-intestinal-epithelium    

 

Code availability  

LDSC: https://github.com/bulik/ldsc. 

PLINK: https://www.cog-genomics.org/plink/1.9. 

MTAG: https://github.com/JonJala/mtag. 

CPASSOC: http://hal.case.edu/~xxz10/zhuweb/.  

GSMR: http:// cnsgenomics.com/software/gsmr/. 

TwoSampleMR:https://mrcieu.github.io/TwoSampleMR/. 

SMR:https:// cnsgenomics.com/software/smr/#Overview. 

LDSC-SEG: https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses  

MAGMA Celltyping: https://neurogenomics.github.io/MAGMA_Celltyping  
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Figure legends 

Figure1. Overview of statistical analyses performed in the study. LD: linkage 

disequilibrium. GNOVA: Genetic covariance analyzer; ρ-HESS: Heritability Estimation from 

Summary Statistics. MTAG: Multi-Trait Analysis of GWAS. CPASSOC (Cross Phenotype 

Association). GSMR: Summary-data-based Mendelian Randomization. MR: Mendelian 

Randomization. GWAS: Genome-wide Association Study. scRNA-seq: single-cell RNA 

sequencing. MAGMA: Multi-marker Analysis of GenoMic Annotation. SMR: 

Summary-databased Mendelian randomisation. 

 

Figure2. Summary of pairwise genetic correlations estimated using LDSC with and 

without constrained intercept. LDSC, Linkage disequilibrium score regression. 

 

Figure3. Summary of bi-directional MR analyses between BMI and MS. Purple: 

Generalized Summary-data-based Mendelian Randomization (GSMR); Pink: MR-Egger; 

Orange: inverse variance weighting (IVW); Sea blue: weighted median; Wathet: weighted 

mode. Error bars represent the 95% confidence intervals (CIs) for the associated MR point 

estimates; BMI, body mass index; MS, multiple sclerosis; 

 

Figure4. Local genetic correlations (rg) between BMI and MS. (A) Average local rg 

estimates for two traits in regions harbouring disease-specific risk variants (P < 5 ×10-6), 

regions harbouring shared risk variants (“intersection”) and all other regions (“neither”). 

Local genetic correlations with estimates less than −1 or greater than 1 were forced to −1 or 1, 

respectively. Error bars represent the 95% confidence intervals (CIs), calculated using a 

jackknife method. (B) density distribution of local rg estimates for two traits in 

disease-specific regions (red, green), intersection regions (blue) and other (purple) regions. 

BMI, body mass index; MS, multiple sclerosis; 

 

Figure5. Tissue type-specific enrichment of SNP heritability for BMI and MS estimated 

using LDSC-SEG. (A) The heritability enrichment of tissues in BMI; (B) The heritability 

enrichment of tissues in MS; The x axis displays negative log10 P-values of coefficient 

Z-scores for each individual test. SNP, single nucleotide polymorphism; BMI, body mass 

index; MS, multiple sclerosis; LDSC-SEG: linkage disequilibrium score regression applied to 

specifically expressed genes.  
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