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Abstract 

Introduction 

Predicting checkpoint inhibitors treatment outcomes in melanoma is a relevant task, due to the 

unpredictable and potentially fatal toxicity and high costs for society. However, accurate 

biomarkers for treatment outcomes are lacking. Radiomics are a technique to quantitatively 

capture tumor characteristics on readily available computed tomography (CT) imaging. The 

purpose of this study was to investigate the added value of radiomics for predicting durable 

clinical benefit from checkpoint inhibitors in melanoma in a large, multicenter cohort.  

Methods 

Patients who received first-line anti-PD1 ± anti-CTLA4 treatment for advanced cutaneous 

melanoma were retrospectively identified from nine participating hospitals. For every patient, 

up to five representative lesions were segmented on baseline CT and radiomics features were 

extracted. A machine learning pipeline was trained on the radiomics features to predict durable 

clinical benefit, defined as stable disease for more than six months or response per RECIST 

1.1 criteria. This approach was evaluated using a leave-one-center-out cross validation and 

compared to a model based on previously discovered clinical predictors. Lastly, a combination 

model was built on the radiomics and clinical model. 

Results 

A total of 620 patients were included, of which 59.2% experienced durable clinical benefit. The 

radiomics model achieved an area under the receiver operator characteristic curve (AUROC) 

of 0.607 [95%CI 0.562-0.652], lower than that of the clinical model (AUROC=0.646 [95%CI 

0.600-0.692]). The combination model yielded no improvement over the clinical model in terms 

of discrimination (AUROC=0.636 [95%CI 0.592-0.680]) or calibration. The output of the 

radiomics model was significantly correlated with three out of five input variables of the clinical 

model (p < 0.001). 

Discussion 

The radiomics model achieved a moderate predictive value of durable clinical benefit, which 

was statistically significant. However, a radiomics approach was unable to add value to a 

simpler clinical model, most likely due to the overlap in predictive information learned by both 

models. Future research should focus on the application of deep learning, spectral CT derived 

radiomics and a multimodal approach for accurately predicting benefit to checkpoint inhibitor 

treatment in advanced melanoma.  

 

Introduction 
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Survival of patients with advanced melanoma has improved dramatically after the 

introduction of immunotherapy. The survival of patients with unresectable stage IIIC and 

stage IV melanoma has historically been very poor with a 1-year overall survival of 25% in 

phase II trials up to 2007 [1]. This changed with the introduction of anti-CTLA4 therapy in 2011 

[2] and anti-PD1 therapy in 2015 [3,4]. In patients treated with anti-PD1 antibodies, real-world 

1-year overall survival is now 67%, with 40% of patients achieving durable remissions of 

several years [5]. For patients treated with anti-PD1 plus anti-CTLA4 therapy, 5-year overall 

survival is reported to be as high as 52% [6].  

However, not all patients benefit from checkpoint inhibitors. At 6 months after start of anti-

PD1 treatment, 43% of patients experience progression or death. Furthermore, overall survival 

of patients with progression at 6 months was shown to be only 16% at 30 months. This is in 

contrast to a 30-month overall survival of 60%, 79% and 96% for patients with stable disease, 

partial response and complete response at 6 months of follow-up, respectively, in real-world 

data [5]. Similar results were reported in patients treated with anti-PD1 plus anti-CTLA4 therapy 

[7].  

Accurate prediction of treatment benefit is an important topic for several reasons. First, 

treatment with checkpoint inhibitors is associated with severe and potentially fatal or 

irreversible toxicity. Severe toxicity occurs in 10-15% of patients treated with anti-PD1 

monotherapy [5,8–10], and in as much as 60% of patients treated with anti-PD1 plus anti-

CTLA4 combination therapy [11]. Second, checkpoint inhibition therapy is very costly. 

Depending on country and setting, estimates of additional costs per gained quality adjusted 

life year range from 25,000 to 81,000 United States Dollars [12,13]. Lastly, if patients who will 

not benefit are identified before start of treatment, alternative or experimental therapies can be 

started without delay. 

Previously identified predictors for treatment outcomes are not yet sufficient to guide 

clinical decisions. Known clinical predictors of poor outcome include high tumor load, 

presence of liver metastases and symptomatic brain metastases, increased lactate 

dehydrogenase (LDH) and worse Eastern Cooperative Oncology Group (ECOG) performance 

status [14]. In addition, other biomarkers have been explored, such as PD-L1 expression, 

tumor mutational burden and histopathology features. Thus far, however, these predictors are 

not strong enough to predict treatment outcomes with high certainty [15], or the results remain 

to be validated in future studies [16].   

Radiomics are by now an established modality for diagnosis, prognosis and prediction. 

Radiomics capture information about shape, intensity and texture of lesions in imaging and 

thereby form a reflection of tumor characteristics, such as necrosis or vascularization. These 

extracted features can subsequently be correlated to a clinical outcome [17]. This makes 

radiomics a cheap and non-invasive modality to, for example, discern benign from malignant 

lung nodules [18], estimate prognosis in non-small cell lung cancer (NSCLC) patients [19] and 

assess mutation status in glioblastoma [20]. Regarding prediction of checkpoint inhibitor 

treatment outcomes, promising findings have been published, particularly in NSCLC patients 

[21]. 

The added value of CT radiomics for predicting durable clinical benefit to checkpoint 

inhibitors in melanoma remains to be determined in large multicenter studies. Three 

previous smaller studies have investigated radiomics for this purpose, with conflicting findings. 

The studies by Trebeschi et al. [22] and Peisen et al. [23] report a significant discriminative 

value of radiomics for treatment outcomes (AUROC=0.78 on a dataset of 80 patients, and 

AUROC=0.64 on a dataset of 262 patients, respectively). In contrast, Brendlin et al. [24] 

reported a non-discriminative performance, despite using a very similar methodology 
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(AUROC=0.50 in 140 patients). These differences in results highlight the importance of a large 

dataset to determine the value of radiomics. Furthermore, only the study by Peisen et al. 

investigated the added value over a simpler clinical model, with varying results across different 

outcomes. Lastly, none of the previous studies evaluated their model on data from other 

centers, although variability in scanner protocol may add significant noise [25]. In this study, 

we aimed to address these limitations and determine the added value of radiomics for 

predicting checkpoint inhibitor outcomes in a multicenter study in advanced melanoma. 

 

Methods 

Patient selection 

Eligible patients were retrospectively identified from high-quality registry data [26] from nine 

participating centers in The Netherlands (Amphia Ziekenhuis, Isala Zwolle, Leids Universitair 

Medisch Centrum, Máxima MC, Medisch Spectrum Twente, Radboudumc, UMC Utrecht, 

Amsterdam UMC, Zuyderland MC). Patients over the age of 18 were included if they received 

first-line treatment with anti-PD1 ± anti-CTLA4 checkpoint inhibition for irresectable stage IIIC 

or stage IV cutaneous melanoma after 01-01-2016. Exclusion criteria were (i) unavailability of 

baseline contrast enhanced CT imaging (CE-CT), (ii) lack of eligible target lesions, and (iii) 

missing follow-up data. Clinical characteristics were collected for the included patients and 

compared to those of the excluded patients. CT acquisition characteristics were extracted for 

included patients. 

Lesion selection and segmentation 

For every patient, one to five lesions were selected on baseline CT imaging and segmented. 

We aimed to make this selection of lesions as informative and representative as possible by 

using the following protocol: first, the five largest lesions were selected with a maximum of two 

per organ. If more lesions remained after segmenting a maximum of two per organ, the largest 

remaining lesions were segmented up to a total of five. Lesion selections were made without 

knowledge of the outcome. Lesions were excluded if they were not well-demarcated, affected 

by imaging artifacts or if the maximum diameter was less than 5mm. Segmentations were 

performed in 3D Slicer [27] on the series with the lowest slice thickness by authors LSM and 

IAJD, under supervision of board-certified radiologists with 17 and 18 years of experience (PJ 

and TL, respectively).   

Feature extraction 

Features were extracted from the segmented volumes using PyRadiomics [28]. For every 

volume, 1874 features were extracted at five different levels of detail, resulting in a total of 

9370 features. An overview of the extracted features is given in the Supplementary Methods. 

Interobserver agreement of segmentations and features was calculated using Dice scores and 

intraclass correlation coefficient (ICC), respectively, based on 16 scans segmented by both 

observers (LSM, IAJD).  

Outcome definition 

The primary outcome was durable clinical benefit, defined as a best overall response of partial 

or complete response, or stable disease per RECIST 1.1 [29] for a minimum of six months 

after start of treatment. The secondary outcome was objective response, defined as a best 

overall response of partial or complete response. Durable clinical benefit was used as the 

primary outcome, as the intended use of the model was to identify patients who would quickly 

progress despite treatment and therefore not derive any benefit from treatment. Individual 
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lesion response was assessed using maximum diameter recordings at baseline and at three, 

six and nine months, or until treatment was changed. Given the possibility of pseudo-

progression, the last available follow-up was used to determine lesion outcomes. If the 

maximum diameter at the last follow-up was less than 120% of the baseline diameter, the 

lesion was labeled as ‘does benefit’, and ‘does not benefit’ otherwise. In parallel, the lesion 

was labeled as ‘responsive’ if the maximum diameter was less than 70% of the baseline 

diameter at the last follow-up, and ‘non-responsive’ otherwise. These lesion-level cut-offs were 

chosen in correspondence with the patient-level cut-offs used in RECIST 1.1 [29].  

Evaluated models 

Three predictive models were compared: a model based on radiomics, a model based on 

baseline clinical characteristics and an ensemble model that combined the predictions of these 

models. The radiomics model consisted of a machine learning pipeline that automatically 

selected optimal components and hyperparameters for feature selection, dimensionality 

reduction and classification (Figure 1). This pipeline was trained to predict outcomes per lesion; 

these outputs per lesion were then aggregated to a patient level prediction. The clinical model 

used the same machine learning pipeline, which was fitted on five clinical variables that were 

consistently shown to be predictive of checkpoint inhibitor treatment outcomes in previous 

literature [5,14,30,31]. These predictors were (i) ECOG performances status, (ii) LDH level, 

presence of (iii) brain and (iv) liver metastases, and (v) number of affected organs. All variables 

were one-hot encoded; missing values were encoded as a separate label. The ensemble 

model consisted of a logistic regression fitted on the output of the radiomics and clinical model. 

All three models were evaluated using a nested cross validation. The inner loop was used for 

optimal model selection and hyperparameter tuning; the outer loop was used to evaluate 

predictive performance on unseen data and was conducted in a leave-one-center-out manner. 

Further details are supplied in the Supplementary Methods. 

Statistical analysis  

The discriminative performance of the models was evaluated using the area under the receiver 

operator characteristic curve (AUROC) and corresponding 95% confidence interval. The cross 

validated AUROC and confidence interval were calculated using the cvAUC R package [32]. 

Methods for comparing cross validated AUROCs between models are detailed in the 

Supplementary Methods. Subgroup analyses were conducted for patients treated with anti-

PD1 therapy and anti-PD1 plus anti-CTLA4 therapy by evaluating the fitted model only on 

patients from the respective groups. The output of the radiomics model for predicting durable 

clinical benefit was correlated to the input variables of the clinical model to determine if the 

radiomics model learned features that were already represented in the baseline clinical model.  

Adherence to quality standards 

The TRIPOD checklist [33] was completed and is available in Supplementary Table 1. The 

study design was reviewed by the Medical Ethics Committee and not considered subject to the 

Medical Research Involving Human Subjects Act in compliance with Dutch regulations; 

informed consent was waived.  

 

Results 

Patient characteristics 

Out of 1191 eligible patients, 620 patients with a total of 2352 lesions were included. A 

flowchart of the selection process is shown in Figure 2. The rate of durable clinical benefit was 
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59.2% (367 patients); the objective response rate was 51.3% (318 patients); Lesion level 

outcomes were available for 74.4% of lesions; lesion level outcomes could not be recorded for 

patients from the Radboudumc (327 lesions, 13.9%). Rate of benefit was 79.4% among lesions 

with available labels, whereas response rate was 54.8% (Supplementary Table 5). Of all 

eligible patients, 490 patients were excluded because of the unavailability of contrast-

enhanced pre-treatment CT. In most of these cases, an 18-fluorodeoxyglucose positron 

emission tomography (FDG-PET) with low-dose CT was made. Characteristics for the included 

patients are shown in Table 1 and compared to those of excluded patients in Supplementary 

Table 2. The subgroups of patient treated with anti-PD1 and combination therapy consisted of 

370 and 250 patients, respectively. Supplementary Tables 3 and 4 show patient characteristics 

per center, and for the subgroups treated with monotherapy and combination therapy, 

respectively. CT acquisition characteristics per center are displayed in Supplementary Table 

6. 

Interobserver variability 

52 lesions in 16 scans were segmented by two observers. Segmentations corresponded with 

a median Dice score of 0.88 (IQI 0.82-0.92). For the extracted features, the median intraclass 

correlation coefficient was 0.97 (IQI 0.92-0.99).  

Treatment outcome prediction 

For predicting durable clinical benefit, the radiomics model achieved an AUROC of 0.607 [95% 

CI 0.562-0.652], the clinical model an AUROC of 0.646 [95% CI 0.600-0.692], and the 

ensemble model an AUROC of 0.636 [95% CI 0.592-0.680]. The difference in AUROC 

between the ensemble and clinical model was not statistically significant (Supplementary 

Figure 1). Calibration curves showed adequate calibration of the three models with no evidence 

of poor fit (Hosmer-Lemeshow p > 0.07). The range of predicted probabilities was comparable 

between models (IQI 0.56-0.65, 0.53-0.67 and 0.52-0.69 for the radiomics, clinical and 

ensemble model, respectively). Results were similar for predicting objective response 

(Supplementary Figure 2-3). Predictive performance for both outcomes was comparable in 

subgroups of patients treated with monotherapy and combination therapy, with a trend of better 

discrimination in the subgroup of patients treated with combination therapy (Supplementary 

Figures 4-7). Details of the selected models and hyperparameters per fold are shown in 

Supplementary Table 7. 

Comparison of radiomics and clinical model 

The predicted probability of durable clinical benefit by the radiomics model was significantly 

lower in patients in whom liver metastases were absent (Mann-Whitney U, p < 0.001, Figure 

4A), in patients with higher LDH (Kruskal-Wallis p < 0.001, Figure 4D) and who had more 

affected organs (Mann-Whitney U p < 0.001, Figure 4E). The output of radiomics model was 

not significantly different in patients with and without brain metastases), and for different 

categories of ECOG performance status (Figure 4B-C). The output of radiomics and clinical 

models were significantly and positively correlated (Spearman’s correlation coefficient = 0.369, 

p < 0.001, Figure 4F). 

 

Discussion 

Overview 

The present work shows that radiomics are moderately predictive of checkpoint 

inhibitor treatment outcomes in patients with advanced melanoma. The results were 
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consistent for both durable clinical benefit and objective response rate, and are most in line 

with the findings of the earlier study by Peisen et al. A recent work by Dercle et al. allows for 

comparison to a model that also incorporates radiomics from on-treatment CT scans [34]. This 

model reached an AUROC of 0.92 for predicting overall survival at six months, indicating that 

on-treatment radiomics are strongly predictive. However, most toxicity occurs in the first three 

months and long-term outcomes can already be accurately predicted using on-treatment 

information without the use of radiomics [6,35]. Predicting response using the 3-month on-

treatment scan therefore appears to be of limited clinical relevance. 

Addition of radiomics to known clinical predictors, however, did not yield improvement 

in predictive value. The combination model was not superior to the clinical model in either 

discrimination or calibration. This lack of improvement can be explained due to an overlap in 

the information learned by the radiomics model, and the information that is already represented 

in clinical variables. As demonstrated, the radiomics model indirectly learns to detect the 

presence of liver metastases and the amount of tumor burden, as reflected in LDH and number 

of affected organs. The fact that this information is indeed learned as expected is a strong 

argument for the validity of the present work. Furthermore, this indicates that such overlap is 

likely to be present in any radiomics model which is investigated for clinical purposes.  

 

Future research 

Studies on radiomics should assess the added value over simpler predictors. Many 

smaller exploratory studies have been conducted into the predictive value of radiomics for 

checkpoint inhibitor outcomes across different malignancies [21]. Their findings are almost 

exclusively positive, but the added value over clinical predictors was seldomly assessed. The 

present work demonstrates that clinical predictors can be captured by radiomics, and that the 

added value of radiomics should therefore always be investigated, even in exploratory studies.  

Future works should aim to improve on radiomics through deep learning or spectral CT 

derived radiomics. Deep learning has a significant advantage over handcrafted radiomics, as 

this method is not limited by predefined features in what information can be captured. Instead, 

a deep learning approach is given the raw data as input and learns informative features on the 

fly [36]. Furthermore, spectral CT derived radiomics were shown to be superior over single 

energy radiomics for predicting response to checkpoint inhibition in patients with melanoma by 

Brendlin et al. [24]. As spectral CT scanners become increasingly available, this approach may 

be tested more thoroughly in future research.   

Lastly, the multimodal approach should be extended with other data sources. Accurately 

predicting checkpoint inhibitor treatment outcomes in melanoma remains challenging. It is 

possible that individual biomarkers are insufficient to guide clinical decisions. An approach that 

combines different data sources may therefore prove to be superior. A possible modalities that 

may be explored for this purpose is histopathology imaging [16], which will be investigated in 

this cohort in a future work.  

 

Strengths and limitations 

The strengths of this work are the large sample size, the multicenter design and 

extensive hyperparameter optimization. This is the largest work published on radiomics for 

prediction of checkpoint inhibitor treatment outcomes in any malignancy [21]. This large size 

adds to the weight of the presented conclusion. Furthermore, the dataset in this work includes 

patients from nine different centers. As stability of radiomics features across scanner types 
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and protocols is far from certain, external validation is essential for determining the practical 

value of a radiomics approach. Lastly, the proposed pipeline systematically explores design 

choices, from the extraction of radiomics to the final prediction. This approach should maximize 

potential performance by avoiding arbitrary and therefore possibly suboptimal design choices.  

A potential limitation is the exclusion of a large fraction of patients due to unavailability 

of CE-CT imaging. Comparison of patient characteristics between the included and excluded 

groups showed minor differences overall, with a trend towards more progressed disease in the 

included patients. Our hypothesis for this is that patients with more progressed disease are 

more likely to directly present to medical oncology, instead of being referred after having 

undergone imaging by a different specialty where FDG-PET is the preferred modality. Although 

this selection may theoretically have influenced the presented results, this risk is arguably 

limited as the characteristics of in- and excluded patients are overall very comparable.   

 

Conclusion 

In conclusion, radiomics are predictive of checkpoint inhibition treatment outcomes in 

patients with advanced melanoma, but offer limited added value over a simpler clinical 

model. A radiomics model can predict both durable clinical benefit and response from 

checkpoint inhibitor therapy with moderate discriminative performance. However, the 

predictive value of this radiomics model overlaps with that of a clinical model, which is evident 

from the lack of improvement of a combined model. The added value of a radiomics approach 

therefore appears to be limited. Future research should focus on related techniques, such as 

deep learning or radiomics on dual energy CT images. In addition, an approach that combines 

radiomics and clinical data with other modalities may provide a next step towards accurate 

prediction of checkpoint inhibitor treatment outcomes in melanoma. 
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Figure 1 – Overview of methodology 
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Table 1 - Characteristics of included patients 
  

Missing Overall 

n 
  

620 

Age, median [Q1, Q3] 
 

0 67.5 [58.0,75.0] 

Sex, n (%) Female 0 239 (38.5) 

Male 
 

381 (61.5) 

Stage, n (%) IIIC 4 25 (4.1) 

M1a 
 

49 (8.0) 

M1b 
 

94 (15.3) 

M1c 
 

296 (48.1) 

M1d 
 

152 (24.7) 

ECOG performance status, n 
(%) 

0 26 287 (48.3) 

1 
 

247 (41.6) 

2-4 
 

60 (10.1) 

Primary tumor location, n (%) Acral 10 15 (2.5) 

Extremity 
 

167 (27.4) 

Head, neck 
 

66 (10.8) 

Trunk 
 

247 (40.5) 

Unknown 
 

115 (18.9) 

Brain metastases, n (%) Absent 45 423 (73.6) 

Asymptomatic 
 

76 (13.2) 

Symptomatic 
 

76 (13.2) 

Liver metastases, n (%) Absent 30 398 (67.5) 

Present 
 

192 (32.5) 

No. of affected organs, n (%) <3 0 338 (54.5) 

>2 
 

282 (45.5) 

LDH, n (%) Normal 9 381 (62.4) 

1-2x upper limit 
of normal 

 
177 (29.0) 

>2x upper limit 
of normal 

 
53 (8.7) 

Durable clinical benefit, n (%) No benefit 0 253 (40.8) 

Benefit 
 

367 (59.2) 

Objective response, n (%) No response 0 302 (48.7) 

Response 
 

318 (51.3) 

Therapy, n (%) Anti-PD1 0 370 (59.7) 

Ipilimumab & 
Nivolumab 

 250 (40.3) 
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Figure 2 – Flowchart of patient selection

Eligible patients 

N = 1191, 100% 

N = 701, 59% 

N = 638, 54% 

Included patients 

N = 620, 52% 

Patients without available CE-CT 

N = 490, 41% 

Patients without eligible lesions 

N = 63, 5% 

Patients without therapy outcome 

N = 18, 2% 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.12.19.22283574doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.19.22283574


14 
 

Figure 3 – Receiver operator characteristic curves and calibration curves for predicting durable clinical benefit 

 

Figure 3 – (A-C) Receiver operator characteristic (ROC) curves for predicting durable clinical benefit in patients with melanoma treated with anti-PD1 ± anti-CTLA4 checkpoint inhibition for the 
radiomics model (A), clinical model (B) and combination model (C). Gray curves correspond to results per fold; blue curves are the weighted average of the results per fold. The area under the 
curve (AUC) with corresponding 95% confidence intervals are displayed. (D-F) LOESS fitted calibration curves for predicting durable clinical benefit in the radiomics model (D), clinical model (E) 
and combination model (F); the shaded area corresponds to ±1 standard deviation. Histograms of the predictions for positive (blue) and negative (orange) samples are provided below the curves, 
the x-axis displays the predicted values for these histograms. P-values of the Hosmer-Lemeshow goodness-of-fit test are shown in the plot titles. 
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Figure 4 – Correspondence between the output of the clinical and radiomics models for predicting durable clinical benefit 

 

Figure 4– Graphical overview of correspondence between the output of the radiomics and clinical models. (A-E) Boxenplots of the output of the radiomics model, compared across different values for clinical 
predictors. (A) The output of the radiomics model is significantly lower in patients with liver metastases than in patients without (Mann-Whitney U p < 0.001). (B) No statistical difference was found in the output 
of the radiomics model between patients without or with asymptomatic or symptomatic brain metastases (Kruskal-Wallis p = 0.074) and ECOG performance status (Kruskal-Wallis p = 0.201). D) The output of the 
radiomics model is significantly lower in patients with higher levels of LDH (Kruskal-Wallis p < 0.001) and with more affected organs (Mann-Whitney U p < 0.001). (F) The outputs of the clinical and radiomics models 
(predicted probability of response) are positively correlated (Spearman’s rank correlation coefficient = 0.369, p < 0.001). 
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