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Abstract. Electronic health records (EHRs) provide a rich source of observational patient data that
can be explored to infer underlying causal relationships. These causal relationships can be applied
to augment medical decision-making or suggest hypotheses for healthcare research. In this study, we
explored a large-scale EHR dataset on patients with asthma or related conditions (N = 14,937). The
dataset included integrated data on features representing demographic factors, clinical measures, and
environmental exposures. The data were accessed via a service named the Integrated Clinical and
Environmental Service (ICEES). We estimated underlying causal relationships from the data to identify
significant predictors of asthma attacks. We also performed simulated interventions on the inferred
causal network to detect the causal effects, in terms of shifts in probability distribution for asthma
attacks.
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1 Introduction

Causal inference [1] is re-emerging as an important tool in the domain of health sciences for informatics
work such as finding effects of a drug or risk factors for a disease. Causality has traditionally been a core
concept across all branches of medical science and considered when diagnosing patients based on their
symptoms, effects of treatment, and years of historical evidence [2]. Electronic health records (EHRs) present
a potential data source to analyze digital patient information like medical history, diagnoses, medications, and
laboratory results. Inferring causal relationships from these data is useful for important tasks like prediction
and explanation. For prediction, we want to measure the likelihood of occurrence of an event as a result of
another event, for example, the occurrence of lung cancer based on exposure to smoke in the environment.
However, such predictions are susceptible to fallacies if made only based on associations for instance, an
increase in the sales of matches (e.g., in a blackout-prone area) can also be associated with lung cancer.
Most black-box prediction models, unlike causal inference, are not able to identify confounding variables and
hence cannot differentiate causal versus spurious associations.

Another aspect of causal inference is the ability to provide an explanation for the relationship between
two events. For instance, causal inference helps us to unearth why a patient is sick and diagnose them based
on the underlying cause of their symptoms and other aspects of their disease. Access to EHR data is thus
critical for the advancement of clinical research and practice. However, due to the many regulations that
surround clinical data, while necessary to ensure patient privacy and protection of sensitive data, access to
the data for research is often challenging.

In this research, we analyzed a patient-level dataset extracted from a regulatory-compliant open service
called the Integrated Clinical and Environmental Exposures Service (ICEES). ICEES supports several use
cases including asthma. The ICEES data are constructed by integrating clinical data elements derived from
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patient EHRs and environmental exposures data derived from a variety of public sources of environmental
exposures data before binning or recoding the data and stripping all protected health information.

The ICEES data are then exposed via an open application programming interface (OpenAPI). For our
principal application use case, we asked if there is a causal relationship between asthma attacks and the
following features: sex, race, prescriptions for prednisone, diagnoses of obesity, residential proximity to a
major roadway or highway, residential density, and exposure to high levels of airborne pollutants. These
features were selected because published studies, including our prior work [3,4], have recognized them to be
associated to asthma attacks. We focused on an existing ICEES cohort of patients with asthma or related
conditions (see [3] for details), and we considered the number of annual emergency department (ED) or
inpatient visits for respiratory issues as the primary outcome measure and indicator of asthma attacks.
We used the ICEES OpenAPI to extract features that might be causally related to each other and used
the resultant multivariate table for causal inference modeling. Because EHR data are purely observational,
we also demonstrate a way to perform simulated external intervention, given a known causal network, to
help answer important questions about the effects of clinical interventions. We use subject matter expert
knowledge and publication support as our ground truth to measure the correctness of our causal inference
modeling. Finally, we discuss our findings, including the benefits and limitations of our causal inference
model and approach.

Feature Variable Variable Definition and Enumeration

Sex Male (0), Female (1)

Race Caucasian, African American, Asian, Native Hawaiian/Pacific Islander,
American/Alaskan Native, Other

Prednisone Common medication for asthma-like conditions (1=Yes, 0=No)

Obesity Diagnostic code for obesity anytime over ‘study’ period (1=Yes, 0=No)

Airborne Particulate Exposure Abbreviated herein as ”PM2.5Exposure”. US Environmental Protection Agency
estimated maximum daily exposure to particulate matter ≤2.5-microns in diameter
over ‘study’ period, binned using pandas.cut

Roadway Exposure Abbreviated herein as ”RoadwayExposure”. US Department of Transportation
distance in meters from household to nearest roadway (1 = 0-49, 2 = 50-99, 3 =
100-149, 4 = 150-199, 5 = 200-249, 6 = ≥ 250 meters)

Residential Density Abbreviated herein as ”EstResidentialDensity”. US Census Bureau American
Community Survey 2007–2011 estimated total population [block group], binned
according to US Census Bureau definitions

Emergency Department Visits Abbreviated herein as ”TotalEDInpatientVisits”. Total number ED or inpatient
visits for respiratory issue(s) over the ‘study’ period (0, 1, 2, 3, . . . )

Table 1: Feature variables used to generate multivariate table.

2 Analysis of the Multivariate ICEES Table

We queried the ICEES OpenAPI to generate an eight-feature multivariate table. The multivariate table anal-
ysed in this work comprised data on 14,937 patients (rows represent individual patients in the asthma cohort)
and eight ICEES feature variables, per patient, namely, TotalEDInpatientVisits, Sex, Race, Prednisone, Obe-
sity, PM2.5Exposure, RoadwayExposure, and EstResidentialDensity, where TotalEDInpatientVisits is our
primary outcome variable (Table 1). In Fig. 1, we plot bar charts to show comparisons of the number of
TotalEDInpatientVisits among the discrete categories of each feature. We can see that the count for zero
TotalEDInpatientVisits is the largest among all categories. Upon further analysis, we found that the mul-
tivariate data table extracted from the openAPI largely consisted of patients who were inactive in the year

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 21, 2022. ; https://doi.org/10.1101/2022.12.20.22283734doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.20.22283734
http://creativecommons.org/licenses/by/4.0/


Causal Analysis for Open Multivariate Integrated Clinical and Environmental Exposures Data 3

2010. Hence, to avoid bias and reduce noise in our analysis, we removed patients who were not active in the
year of interest, meaning their EHR did not indicate any healthcare usage, by applying the “Active In Year”
feature as a filter to extract a multivariate table, with Active In Year = 1 to select only patients who were
active in 2010. We show the bar charts for the number of ED/inpatient visits for each feature in Fig. 1. We
can observe that most of patients who were active in year 2010 only visited the ED or an inpatient clinic
once. We also can see there is an imbalance among the levels in some features like Prednisone, Obesity, Race,
RoadwayExposure, and Pm2.5exposure.
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Fig. 1: Stacked bar chart representing the number of TotalEDInpatientVisits across each level of the feature
variables. See Table 1 for feature variable definitions.

2.1 Feature importance

We evaluated the importance of each feature and its contribution towards the model performance using a
tree-based machine learning model: random forest. We leveraged the caret R package [5] to evaluate the
feature importance. We controlled the parameters for training by using the repeatedcv method to divide our
dataset into ten-folds cross-validation and repeated three times. We found Prednisone, Race, ObesityDx as
the highest contributing factors, as shown in Fig 2.

2.2 Modeling causal networks

Most of the naturally occurring trends that we come across are simply passive observations of events occurring
in the world that are either coincidental or unexplained associations. For example, statements like “Drinking
beer everyday increase chance of prostate cancer” are common in the news and scientific reporting and in our
day-to-day personal beliefs. These associations can be easily mistaken as causation, making us susceptible to
logical fallacies without knowing the real underlying cause. Causal inference is the science of learning cause
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Fig. 2: Relative feature importance for all feature with respect to TotalEDInpatientVisits. See Table 1 for
feature variable definitions.

from effect [1]. It is an important field of research because it helps us eradicate spurious correlation [6,6–8].
The primary aim of inferring causal relations from data is to discover interactions between different entities in
the form of Vi → Vj , where Vi and Vj are observable features in domain and the arrow indicates that the state
of Vi influences the state of Vj . Causal inference can be either discovered through observational measurements
(seeing) or from measurements after performing some external manipulation/intervention (doing). A causal
network [1, 9] can be represented with a directed acyclic graph (DAG) G = (V,E), where V = Vi, . . . .., Vn

denotes the set of features and E ∈ (V × V ) denotes the set of edges that are causal in nature. For a causal
edge (Vi, Vj), we say that Vi is a cause (parent) of Vj , and Vj is the resulting effect (child) of Vi. Let pa(Vi)
denote the set of parents of Vi. The conditional probability distribution Pi defines the probability of Vi given
the state of its parents pa(Vi). A causal network represents a joint distribution P over variables V as long
as it satisfies two main assumptions:

(a) Causal Markov assumption: Any given variable Vi is independent of its non-descendants, conditioned
on all of its direct causes (parents). This implies that the joint distribution P (V ) can be factored as:
p(V ) =

∏n
i=1 pi(Vi | Pa(Vi)).

(b) Faithfulness assumption: The joint distribution p(V1, . . . , Vn) is faithful to G if every conditional inde-
pendence relation in the probability distribution P is entailed by the Markov assumption applied to
G [10].

To reconstruct a causal graph from data, we generally start by finding an approximation of the graph,
given V , and then optimize based on conditions on data. The two main approaches used for causal network
inference are:

1. Score-based: This is based on a Bayesian scoring function S(G | D), which estimates the goodness-of-fit
of graph G to the data D [11], as objective functions to maximize, while favoring simpler structures. The
score function is usually combined with a search heuristic that explores the space of all possible graphs.
Score-based methods are robust and can be extended to include interventional studies (if available), but
they are not scalable as network or data size increases.

2. Constraint-based: This method is based on estimating some of the conditional (in)dependencies in the
distribution P from the data D by performing hypothesis tests of conditional independence. Constraint-
based methods usually start with a fully connected, undirected graph and progressively remove edges
whenever a new conditional independence relation is discovered, while satisfying the corresponding d-
separation statements. In this work, we will use a constraint-based approach called the PC algorithm,
given that the dataset is observational. To infer the causal graph from data, we learn the equivalence
class of a directed acyclic graph (DAG) from data with the traditional constraint-based PC algorithm
proposed by [9]. Given a dataset D having n features Vi, . . . .., Vn, we conduct the following steps. We
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start with a complete undirected graph given n features. We then eliminate edges between variables that
are unconditionally independent. For each pair of variables (Vi, Vj) with an edge between them, and for
each variable Vk with an edge connected to either of them, we eliminate the edge between Vi and Vj

if Vi ⊥⊥ Vj | Vk. For each pair of variables Vi, Vj having an edge between them, and for each pair of
variables Vk, Vl with edges both connected to Vi or both connected to Vj , we eliminate the edge between
Vi and Vj if Vi ⊥⊥ Vj | Vk, Vl. We continue to check independencies conditional on subsets of variables of
increasing size n until there are no more adjacent pairs (Vi, Vj) such that there is a subset of variables
of size n in which all of the variables in the subset are adjacent to Vi or adjacent to Vj . For each triple
of variables (Vi, Vj , Vk) such that Vi and Vj are adjacent, Vj and Vk are adjacent, and Vi and Vk are not
adjacent, we orient the edges Vi––Vj––Vk as Vi → Vj ← Vk, if Vj is not in the set conditioning on which
Vi and Vk became independent and the edge between them was accordingly eliminated. We call such a
triple of variables a v-structure. For each triple of variables such that Vi → Vj––Vk, and Vj and Vk are
not adjacent, we orient the edge Vj––Vk as Vj → Vk. This is called orientation propagation.

3 Results

3.1 Inferring causal graphs

We first applied the PC algorithm to the ICEES multivariate feature table. In Fig. 3a, we show the inferred
casual graphs, first using the entire table with all eight features and second in Fig. 3b using only the top
four important features with respect to TotalEDInpatientVisits, as determined in section 2.1. Expected
relationships between features based on subject matter expertise and published literature are represented in
black (solid and dashed) lines. There are eight such expected edges, which we use to measure the structure-
learning accuracy of the causal algorithm. Solid black lines represent expected edges (true positives) that are
reported via the PC algorithm, while dashed lines are edges which were expected but missed (false negatives).
Newly found relationships inferred by the PC algorithm, that are not expected, are represented in red (false
positive). We note that there were a few undirected edges detected, for which the algorithm was not able to
determine directionality.

Three of eight expected edges were inferred. For the determined false positive edges, we conducted a
further literature survey to find multiple (5+) citations where a relationship between the features were
reported. We marked them as reported edges, along with the true positives. Two out of the three additional
edges detected were found in the literature; hence, we marked them as reported. The expected directed edge
from Race → TotalEDInpatientVisits was also missed.

As discussed in section 2, we queried the openAPI a second time to generate a multivariate table contain-
ing only the top four important features (Prednisone, Race, Obesity and RoadwayExposure) with respect
to TotalEDInpatientVisits, as identified by random forest (Fig. 3b). We found significant improvement in
accuracy. Three out of five expected edges were detected. An undirected edge between Race and ObesityDx
was also detected, which are reported in literature as highly associated features.

3.2 Effects of Intervention

Having learned a causal network from the data, we now use it to answer relevant questions by making
inferences. To evaluate this, we computed the effects of interventions on features by modifying the network
to simulate interventions. Firstly, because some of the edges detected in Fig. 3a were undirected, we removed
them. We then learned the parameters of our learned causal DAG given the network structure and the data.
Next, we constructed a mutilated network to simulate a perfect intervention by setting a target node to
a particular value. Finally, we tested the effects of these interventions, while verifying the correctness of
the learned causal network, to substantiate some commonly known causal links like the following expected
claims:

– Claim (a). Obesity should have a direct effect on TotalEDInpatientVisits. Hence, conducting an in-
tervention on the node “Obesity” should reflect a change (increase or decrease, accordingly) in the
probability distribution of TotalEDInpatientVisits.
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(a) Inferred causal graph with all eight features. (b) Inferred causal graph with top four important features.

Fig. 3: Inferred causal graph. Solid black lines represent true positives, dashed lines represent false negatives
and red lines represents false positives

– Claim (b). Prednisone should have a direct effect on TotalEDInpatientVisits. Hence, conducting an
intervention on the node “Prednisone” should reflect a change (increase or decrease, accordingly) in the
probability distribution of TotalEDInpatientVisits.

– Claim (c). Sex2 should not have a direct effect on TotalEDInpatientVisits. Hence, conducting an in-
tervention on the node “Sex2” should not reflect a change (increase or decrease, accordingly) in the
probability distribution of TotalEDInpatientVisits.

We conducted these three interventions on our learned causal network. To test Claim (a), we created a
mutilated network by fixing the state of ObesityDx to 1, which means we are forcing ObesityDx to be present.
For Claim (b), we fixed the state of Prednisone to be 1, again meaning that we are forcing prednisone to be
present. For Claim (c), we fixed state of Sex2 to be Male. Next, we compared the changes in the probabil-
ity distribution of TotalEDInpatientVisits before and after these three ad hoc interventions to confirm the
expected causal influences. We plotted the changes in the probability distribution of TotalEDInpatientVis-
its in Fig. 4. As expected, there were changes in the probability distribution of TotalEDInpatientVisits for
interventions a and b, reflected in Fig. 4a and b, respectively. For intervention c, the changes before and
after intervention were negligible, meaning that Sex2 had no causal effect on the frequency of TotalEDInpa-
tientVisits.

Fig. 4: Effect of intervention on (a) Obesity, (b) Prednisone and (c) Sex: change in the probability distribution
of TotalEDInpatientVisits before (red) and after (blue) intervention.
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4 Discussion

We demonstrated the ability to use the ICEES OpenAPI to answer important questions about causal rela-
tionships between factors affecting asthma attacks. We focused on a large cohort of patients with asthma or
related conditions and a dataset that included data derived from EHRs and a variety of public sources of
environmental exposures data. We applied PC analysis, a constraint-based causal learning algorithm, on the
dataset and identified prednisone, race, and obesity as significant predictors of annual ED or inpatient visits
for respiratory issues, followed by residential distance from a major roadway/highway, airborne particulate
exposure, and sex. Of those, prednisone and obesity were found to be causally related to annual ED or
inpatient visits in our causal inference model, and sex and race were found to be indirectly related to annual
ED or inpatient visits via a causal relationship to obesity. On a smaller dataset, comprising only the four
most important features, as determined by random forest analysis, we identified residential distance from a
major roadway/highway as an additional variable that is casually related to annual ED or inpatient visits
for respiratory issues.

We validated our findings based on expert knowledge and prior published literature. Most of our results are
consistent with previously published literature [12]. For instance, prednisone, which is commonly prescribed
for patients who are non-responsive to first-line treatments such as inhaled albuterol [13], has been identified
as a factor associated with asthma exacerbations and ED or inpatient visits for respiratory issues [14].
Female sex, obesity, and African American race have previously been identified as factors that contribute
to asthma attacks [15]. In another work by our group [4] and others [16], obesity and sex have been found
to be highly related to asthma attacks. Several other works [17, 18] have additionally found a significant
association between African American race and increased risk of asthma attacks. Exposure to major roadways
or highways has also been found to be a risk factor for asthma. Several studies [19,20] have demonstrated an
increase in asthma attacks among patients residing in close proximity to a major roadway or highway. Our
findings on the relationship between roadway exposures and asthma exacerbations have been inconsistent,
with evidence to support [14] and negate [12] a relationship.

One factor that we expected to find in our model as causally related to asthma attacks, but did not, is
exposure to airborne particulate matter. Exposure to airborne particulate matter is a well-established trigger
for asthma attacks [3,12,14,15,21]. The failure to detect a causal relationship between exposure to airborne
particulate matter and asthma attacks likely reflects the imbalance in the distribution of patients across bins.
Indeed, we are actively refining both our exposure models and our binning strategy. For instance, instead
of using a Python algorithm to bin the airborne pollutant exposures, we are considering a binning strategy
based on subject matter expertise.

5 Conclusion

EHR data, while being rich data sources for important clinical information, are mostly observational and
generally challenging to access due to regulatory constraints. Performing real-world interventions are not only
costly, but even impractical, given the need to integrate large data sources across various domains. Causal
inference provides an excellent tool to simulate clinical interventions and answer questions about the effects
of medical and healthcare interventions. In this study, we used the regulatory-compliant open ICEES service
to generate a multivariate feature table and apply a causal inference model, as well as conduct simulated
interventions, to explore the influence of key demographic factors and environmental exposures on asthma
attacks. Our results were largely consistent with expectations based on subject matter expert opinion and
published literature. As part of our future studies, we are expanding our causal inference modeling to include
additional features and additional years of data in order to reflect the underlying causal relationships at a
larger scale, while supporting additional use cases, including primarily ciliary dyskinesia and other rare
respiratory disorders.

5.1 Availability

The ICEES asthma OpenAPI can be accessed at https:icees-asthma.renci.org/apidocs. The associated public
GitHub repositories include: https://github.com/ExposuresProvider/icees-api; https://github.com/NCATS-
Tangerine/FHIR-PIT; https://github.com/NCTraCSIDSci/camp-fhir.
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