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Abstract (178 words) 28 

The difference between chronological age and the apparent age of the brain estimated from 29 

brain imaging data — the brain age gap (BAG) — is widely considered a general indicator of 30 

brain health. Converging evidence supports that BAG is sensitive to an array of genetic and 31 

non-genetic traits and diseases, yet few studies have examined the genetic architecture and 32 

its corresponding causal relationships with common brain disorders. Here, we estimate BAG 33 

using state-of-the-art neural networks trained on brain scans from 53,542 individuals (age 34 

range 3-95 years). A genome-wide association analysis across 28,104 individuals (40-84 years) 35 

from the UK Biobank revealed eight independent genomic regions significantly associated 36 

with BAG (p<5x10-8) implicating neurological, metabolic, and immunological pathways – 37 

among which seven are novel. No significant genetic correlations or causal relationships with 38 

BAG were found for Parkinson’s disease, major depressive disorder, or schizophrenia, but 39 

two-sample Mendelian randomization indicated a causal influence of AD (p=7.9x10-4) and 40 

bipolar disorder (p=1.35x10-2) on BAG. These results emphasize the polygenic architecture of 41 

brain age and provide insights into the causal relationship between selected neurological and 42 

neuropsychiatric disorders and BAG. 43 

 44 
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Introduction 46 

Over the last decade, brain age has emerged as a promising measure of overall brain health1, 47 

2. To estimate brain age, machine learning models are applied to brain imaging data to learn 48 

visual patterns characteristic of different ages3, 4. The difference between predicted brain age 49 

and chronological age is termed the brain age gap (BAG) and indicates deviation from a 50 

normative aging trajectory, a potential health indicator. Earlier studies have found a large 51 

variation in the predicted brain age of individuals with the same chronological age, and that 52 

these interindividual variations correlate with neurological and mental disorders5-7, such as 53 

dementia6, 8, schizophrenia (SCZ)9, 10, major depressive disorder (MDD)11, and also mortality7, 54 

12. In addition, biological, environmental and lifestyle factors associated with these disorders 55 

have been reported to correlate with BAG, for example infections13, 14, smoking5, physical 56 

activity15, and education level16.  57 

 Genetic differences have been shown to explain a sizeable portion of interindividual 58 

variation in BAG. Twin-based heritability for BAG has been estimated to be as high as 0.6617, 59 

and single nucleotide polymorphism (SNP)-based heritability estimates are also relatively high 60 

— around 0.2 6, 18. Earlier gene-discovery efforts investigating genetic associations with BAG 61 

have found and examined two genomic loci in detail: one on chromosome 1 containing the 62 

potassium channel gene, KCNK2, and one in the chromosome 17 inversion region 63 

(17q21.31)18, 19; Genetic variants in these two regions together explain a negligible fraction of 64 

estimated SNP-heritability18. These results suggest that existing GWAS were potentially 65 

underpowered to fully characterize the genetic architecture, supported by studies using a 66 

conditional false discovery rate-based models yielding a larger set of associations6. 67 
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Furthermore, Smith et al.20 found a rich set of associations when investigating different facets 68 

of a multimodal brain age, suggesting that the interplay between genetic variants is complex. 69 

Although BAG has been frequently associated with mental disorders, the underlying 70 

genetic basis for the observed association has seldom been investigated, possibly due to 71 

incomplete knowledge of the genetic architecture of the former. Furthermore, the causal 72 

relationships between BAG and brain disorders remain untapped. Mendelian randomization 73 

(MR) has become an attractive tool to interrogate cause-effect relationships between risk 74 

factors or disorders21. Two-sample MR models have been used to infer causal relations 75 

between hundreds of traits or diseases22. However, MR analyses targeting the causal relations 76 

between BAG and brain disorders and associated traits have been lacking23.  77 

In the present work, we improve the yield of genetic associations for BAG using three 78 

strategies: First, we estimate brain age using a state-of-the-art deep neural network 79 

architecture (SFCN-reg) trained on one of the largest samples assembled to date5. Then we 80 

perform a GWAS for BAG on out-of-sample predictions for a portion of the UK Biobank v3 81 

data containing 28,104 unrelated individuals, about eight thousand more than earlier studies. 82 

Finally, we use two-sample MR to assess the genetic and causal relations between BAG and 83 

SCZ, bipolar disorder (BIP), Alzheimer’s disease (AD), MDD, and Parkinson’s disease (PD). 84 

  85 
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Methods 86 

Sample 87 

All datasets used in the present study have been obtained from previously published studies 88 

which have been approved by their respective institutional review board, research ethic 89 

committee or other relevant ethic organizations. 90 

We used UK Biobank imaging data (UKB, accession number 27412) released in 2019 91 

in combination with a pre-compiled dataset from various sources (Supplementary Table S1) 92 

for brain age model training and estimation. For the downstream genetic analyses, we started 93 

with the initial 40,330 UKB participants that had undergone at least one brain scan (using 94 

baseline scans where more were available). We excluded those with recorded brain injury or 95 

neurological or psychiatric conditions, those failing standard image quality checks5, those 96 

whose genetic data failed quality check by the UKB team, in addition to participants who 97 

withdrew consent. Among related participants (UKB-reported kinship coefficient >0), only 98 

one was included in the study. In total, 28,104 unique participants remained. 99 

 100 

Brain age estimation 101 

A minimal preprocessing protocol was applied to all raw T1-weighted brain MRI images before 102 

brain age estimation5: The auto-recon pipeline from FreeSurfer 5.324 was used to remove non-103 

brain tissue. The resulting volumes were reoriented to the standard FSL25 orientation using 104 

fslreorient2std, and linearly registered to the 1 mm FSL (version 6.0) MNI152 template using 105 

FLIRT26, with 6 degrees of freedom. For efficiency, during model fitting, we cropped a central 106 

cube spanning the voxels 6:173, 2:214, and 0:160 in the sagittal, coronal, and axial dimensions, 107 
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respectively. Before modelling, all voxel intensities were normalized by a constant factor to 108 

produce values in the range [0, 1]. 109 

The data from all sources (Supplementary Table S1 and UKB) were split into five 110 

equally-sized and disjoint folds with comparable age-ranges and sex distributions. Four of 111 

these folds were used for fitting the brain age model, and out-of-sample estimates were 112 

computed for the remaining fold. This procedure was repeated five times, resulting in out-of-113 

sample brain age estimates for all participants. Next, BAG was calculated by subtracting 114 

chronological age from estimated brain age. The subsequent analyses were performed on the 115 

out-of-sample estimates of the UKB data (Supplementary Table S2). 116 

 117 

Genome-wide association study 118 

Imputed genotypes for the 28,104 participants were obtained from UKB (Category 100314, 119 

for further details see27). We excluded SNPs based on missing rate (>0.02), the Hardy-120 

Weinberg Equilibrium test (p<10-6) and minor allele frequency (MAF; < 0.01). In total, ≈8.6 121 

million SNPs were analyzed. Since we have observed apparent differences in predicted brain 122 

age across folds (Supplementary Fig. S1), a GWAS was performed on each hold-out fold 123 

separately using PLINK 1.90 beta28. The additive genetic model was assumed, and 124 

chronological age, sex and the top ten principal components were included as covariates, 125 

accounting for population structure. Association results for each hold-out fold of UKB along 126 

with distributions of BAG are shown in Supplementary Figure S1. These association results 127 

were then meta-analyzed using the inverse variance weighted model implemented in PLINK 128 

to identify SNPs that are associated with BAG. Supplementary Figure S2 shows the 129 

association QQ plot which indicated no noticeable genomic inflation. 130 

 131 
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Associated regions and genes 132 

Association results were ‘clumped’ by the FUMA29 web-service using the linkage 133 

disequilibrium (LD) structure from the 1000 Genomes projects phase 3 EUR dataset (1KGp3), 134 

with parameters –clump-p 5e-8 –clump-2 1e-6 –clump-r2 0.1. The standard 250 kilo-bases (kb) 135 

were used as the inter-region distance threshold. Genes whose genomic coordinates located 136 

within the boundaries of each region were assigned to the corresponding region. SNPs with 137 

the smallest association p-values were taken as the lead SNPs for the corresponding regions. 138 

In addition, the gene that is closest to each lead SNP by genomic position was annotated using 139 

the Ensembl tool VEP30 (Table 1). 140 

Associated regions were fine-mapped using the FINEMAP31 program. The LD structure 141 

from 1KGp3 was also used in this analysis. The default settings of FINEMAP were used, which 142 

compares causal models assuming one causal variant in each region to that assuming two, 143 

based on the estimated posterior probabilities (PP_1 versus PP_2). FINEMAP ranks all possible 144 

configurations in each model presented as 95% credible sets. The confidence of a variant 145 

belonging to a set was evaluated by posterior probabilities of inclusion (PPI). In the case of 146 

assuming one causal variant, each single variant was assigned a PPI. In the two causal variants 147 

cases, each pair of variants was assigned a PPI. 148 

 149 

Post-GWAS annotations 150 

Both FUMA and Garfield32 were used for annotating associated SNPs. First, SNPs were 151 

assigned to genic elements (e.g., exon, intron, 3’ and 5’ untranslated regions, intergenic 152 

regions, etc.), and the enrichment of this assignment was tested by hypergeometric test 153 

(FUMA) or logistic regression models (Garfield). Expression levels of annotated genes to the 154 

associated SNPs were inspected in each of the 54 tissue types from the GTEx v8 dataset33. 155 
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Detailed biological functions for proteins coded by these genes were manually searched in 156 

the NCBI Entrez Gene database34 and the UniProtKB database35.  157 

 158 

Genetic correlations between BAG and disorders 159 

GWAS summary data for four disorders (SCZ36, BIP37, MDD38, and AD39) were obtained from 160 

the Psychiatric Genomics Consortium (PGC, https://med.unc.edu/pgc/download-results). For 161 

each GWAS, the association results for European ancestral samples excluding samples from 162 

23andMe were used (SCZ: n case=67,390, n control=94,015; BIP: n case=41,917, n 163 

control=371,549; MDD: n case=59,851, n control=113,154; AD: n case=71,880, n 164 

control=383,378). The PD GWAS results were obtained from the fixed-effect meta-analysis 165 

performed by the International Parkinson Disease Genomics Consortium (IPDGC, n 166 

case=33674, n control=449056)40.  167 

Before post-GWAS analysis we processed the results from all GWAS using a standard 168 

protocol. Specifically, SNPs having a MAF <0.05, or imputation INFO <0.5, or ambiguous allelic 169 

coding (A/T, or C/G) were removed from subsequent analyses. The LD score model (ldsc)41 170 

was applied to estimate SNP-heritability and genetic correlations between BAG and disorders. 171 

Only high-quality SNPs published in the HapMap3 dataset were used for estimation. The LD 172 

score derived from the 1KGp3 was used as input to ldsc. The Benjamini-Hochberg False 173 

Discovery Rate (FDR) procedure was used to correct for multiple testing across disorders 174 

(FDR-corrected p<0.05 was considered statistically significant). 175 

 To visualize polygenic enrichment, conditional QQ plots42, 43 were made for BAG versus 176 

each disorder. In these plots, the QQ curves for the association statistics (-log10 p-values) for 177 

BAG were stratified by the corresponding association strength for the conditioned disorder. 178 

As the association strength to the conditioned disorder increases, a successive leftward 179 
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deflation in these curves indicates polygenic enrichment. Similarly, conditional QQ for each 180 

disorder versus BAG shows polygenic enrichment in the reverse direction. 181 

 182 

Two-sample Mendelian randomization 183 

To study the cause-effect relations between BAG and the five disorders, two sets of MR 184 

analyses were performed. The first set, using standard models, included the inverse-variance 185 

weighted model (IVW)44, weighted median (wMed)45, Egger regression (Egger)46 and MR-186 

PRESSO (PRESSO)47. For these analyses, only genome wide significant SNPs (p<5x10-8) to the 187 

exposure traits or disorders were used as potential instruments. The PLINK program and the 188 

LD structure of 1KGp3 dataset were used to select instruments with the following parameters, 189 

--clump-kb 500 kb, --clump-p1 5x10-8, and --clump-r2 0.01. The TwoSampleMR package19 was 190 

used for data harmonization and causal inference for the IVW, wMed and Egger models. The 191 

same harmonized datasets were used as input to the MR-PRESSO software to assess outliers 192 

that may artificially affect MR estimates, i.e., SNPs that show horizontal pleiotropy to both 193 

BAG and disorders. Harmonized instrumental SNPs are shown in Supplementary Tables S6-194 

S15.  195 

The second set of models included the robust adjusted profile score (RAPS)48 and the 196 

CAUSE models49. These models can make use of SNPs that show a suggestive level of 197 

association (p<10-3) with exposure to increase statistical power without incurring weak 198 

instrument bias in estimation. While both models control for horizontal pleiotropy, CAUSE 199 

directly tests for a shared (correlated horizontal pleiotropy) versus a causal model for each 200 

relation49. Instead of estimating causal effects, CAUSE provides z scores for such tests; 201 

negative z scores suggest the existence of a causal relation and positive suggest otherwise. 202 
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The same instrument selection procedures used in the first set of models were used here, 203 

except that 10-3 was taken as the cut-off for selecting instruments, i.e. –clump-p1 10-3. 204 

As each of the six MR models has different assumptions that are difficult to verify in 205 

real data, a majority vote ensemble scheme was used to make conclusions for the existence 206 

of cause-effect relations: specifically, only when four or more models indicated a cause-effect 207 

relation (FDR adjusted p<0.05) was such a relation considered causal. 208 

In addition to applying multiple MR models, GWAS results for height measured for 209 

European samples50 (n=253,288; https://portals.broadinstitute.org/collaboration/giant/), for 210 

AD diagnosed in a Japanese sample51 (n case=3,962 and n control=4,047) and an African 211 

sample52 (n case=2,784 and n control=5,222) and for BIP diagnosed in a Japanese sample53(n 212 

case=2,964 and n control=61,887) were used to corroborate MR findings. As commonly done 213 

in genetic studies, height was used as a negative exposure control to test if population 214 

stratification could generate spurious causal effects 54. The non-European GWAS data were 215 

used to test if any observed causal effects generalize across ancestry groups, although with 216 

significantly smaller sample sizes. 217 

Results 218 

We obtained accurate brain age estimates; mean absolute errors (MAEs) in each of the five 219 

disjoint folds were consistently below 2.5 years (Supplementary Table S2). This was consistent 220 

when we split the dataset into different subsets based on covariates (MAE = 2.40 in females 221 

compared to 2.53 in males; 2.40 in the youngest half compared to 2.52 in the oldest), although 222 

we observed a slight age bias (Supplementary Figure S9). Based on the meta-analyzed GWAS 223 

results, we estimated a SNP heritability of 0.27 (standard error (SE)=0.036) for BAG (Methods). 224 
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Our estimate is comparable to or higher than the two previously reported estimates (0.26, 225 

SE=0.0446; 0.19, SE=0.0218).  226 

We identified eight independent genomic loci significantly associated with BAG (Fig. 1 227 

a,b and Table 1). Associations of lead SNPs in these regions to BAG are highly consistent in 228 

directions and effect sizes across the five folds (Supplementary Table S3). Among these loci, 229 

the one in the inversion region on chromosome 17 (lead SNP rs2106786), including the MAPT 230 

gene, has been previously reported18, 19, although indexed by a different SNP (rs2435204). This 231 

SNP was also highly significant in our analysis (p=5.4x10-21, beta=0.27 years, effective-232 

allele=G). The locus containing the RUNX2 gene (lead by rs2790102: p=8.92x10-9, beta=-0.15 233 

years, effective-allele=A), which showed suggestive significance in Jonsson et al.18, was 234 

genome-wide significant in the present study. The RUNX2 gene codes for a master 235 

transcription factor which plays a critical role in skeletal development55. Among the remaining 236 

six novel loci, the rs79107704-A allele showed the largest association with BAG; one copy of 237 

this allele was associated with an average increase in brain age of 0.63 years (Table 1). This 238 

SNP is located 3,405bp downstream of the Betaine-homocystein S-methyltransferase 2 gene 239 

(BHMT2, Fig. 1b), a gene whose product is involved in choline metabolism during 240 

development56. Other protein-coding genes that are closest to the lead SNPs include those 241 

involved in calcium signaling (CAMK2N2 and INPP5A) and metabolism and transcription 242 

regulation (GALC, KLF3 and KLHL38), both processes are implicated in biological ageing57. In 243 

Supplementary Table S5 we present detailed annotations of biological functions to each gene. 244 

We further annotated these identified SNPs to nearby genes and regulatory elements 245 

(Methods). Most of the associated SNPs are in non-coding regions such as intergenic, intron 246 
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or untranslated regions (Supplementary Figs. S3 and S4). Using the default parameters in 247 

FUMA29, 54 unique genes were found to be implied by these significant associations by 248 

genomic position. The expression levels of these genes in the 54 tissue types from the GTEx 249 

v8 project33 showed three remarkable patterns (Fig. 1c). The first set of genes expressed highly 250 

across almost all 54 tissues; the second set of genes showed low expression levels in most 251 

tissue types; and the last set, including eight genes, was highly expressed only in brain tissue 252 

types (Fig. 1c), for example MAPT, GFAP, and the Homeobox protein gene NKX6-2. These 253 

results suggest that BAG encodes coordinated physiological processes implicating both the 254 

brain and the peripheral systems. 255 

To nominate causal variants in each locus we performed statistical fine-mapping31 for 256 

regions around each lead SNP in Table 1 (Methods). Except for the locus on chromosome 14 257 

which was not resolvable, all loci clearly indicated that the 95% credible sets suggest a causal 258 

model with one causal SNP, instead of two, i.e., the posterior probability for the 1-SNP set 259 

were larger than those of the 2-SNP sets (Supplementary Table S16). Furthermore, four 260 

credible sets indicated that the lead SNPs were also the causal ones (posterior inclusion 261 

probability (PPI_1) > 0.05 and >PPI of the second most probable SNP(PPI_2)) (Methods; 262 

Supplementary Table 16) but identifying the causal SNP for the remaining were difficult. For 263 

example, the MAPT locus on chromosome 17 and the RUNX2 locus on chromosome 6 showed 264 

two SNPs having almost equal and small PPIs (i.e., <=0.05), indicating that the true causal 265 

variants may be some untyped rare ones not investigated in this study. The clearest signal 266 

comes from the regions on chromosome 3 and 5, where the PPIs for the lead SNPs were much 267 

larger than that for the second most probable causal SNPs. 268 
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We observed nominally significant genetic correlation between BAG and AD that did 269 

not survive FDR-correction (r=0.23, SE=0.1, p=0.02, FDR adjusted-p=0.13) and no significant 270 

associations with any other of the four disorders (Fig. 2a). SNP heritability estimates for the 271 

five disorders were all significant but varied greatly; SCZ showed the largest (0.34, SE=0.01) 272 

and AD showed the lowest (0.01, SE=0.005) estimates. Bidirectional conditional QQ plots (Fig. 273 

2b-d; Supplementary Figs. S6 and S7) showed that there was noticeable genetic enrichment 274 

for BIP conditional on BAG but not in the reverse direction. For AD and PD, both directions 275 

showed clear enrichment, surprisingly for PD which did not show significant genetic 276 

correlation with BAG (r=-0.07, p=0.42). 277 

We then performed extensive MR analyses using six different models to examine the 278 

existence of cause-effect relations between BAG and the five disorders (Methods). Figure 3a 279 

shows that BAG was only causally associated with PD, i.e., four out of the six MR models 280 

showed a negative relation with varying effect sizes (all with adjusted p <0.05). One year 281 

increase in genetically predicted BAG was estimated to reduce the risk of PD by a log odds 282 

ratio from 1.4 (by Egger regression) to 0.02 (by MR-RAPS) (Supplementary Table S15). In the 283 

reverse direction (i.e., disorders as exposure), increased genetic risk for AD and BIP were 284 

causally associated with increased BAG (30 and 55 SNPs used as instruments, respectively); 285 

these estimated causal effects on BAG were relatively larger for AD than BIP (Fig. 3b; 286 

Supplementary Table S16).  287 

A close investigation into the scatter plots of instrumental SNPs showed that the causal 288 

effect of AD on BAG was primarily driven by a SNP (rs59007384) in the APOE region, which 289 

was not identified as a horizontal pleiotropic instrument by MR-PRESSO (outlier test p>0.05) 290 
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(Fig. 3c); there were no extreme instruments identified for the BIP to BAG relation by MR-291 

PRESSO (Fig. 3d) but Egger-regression indicated existence of horizontal pleiotropy (Egger 292 

intercept test: p=0.017). The causal effects of BAG on PD were primarily driven by two SNPs 293 

in the inversion region on chromosome 17, effective alleles of these SNPs were associated 294 

with higher BAG and lower risk of PD (Fig. 3e). SNPs in the same region also drove the negative 295 

causal relation (not significant) from PD to BAG (Fig. 3f). However, both SNPs were flagged as 296 

horizontal pleiotropic instruments by MR-PRESSO (p<0.05) and Egger-regression (Egger 297 

intercept test: p=0.03 and 0.008, respectively). Therefore, the observed negative relations 298 

between BAG and PD are less likely to be causal. 299 

 We used the GWAS results for height of European samples and cross-ancestry MR 300 

analysis to corroborate the identified causal relations (Methods). We found no causal effect 301 

between BAG and height with any of the MR methods employed (all p > 0.05). Therefore, our 302 

observed AD and BIP to BAG relations are less likely to be driven by population stratification, 303 

i.e., both the exposure and outcome data originating from the same ancestry group. There 304 

was also no significant cross-ancestral causal effect detected using AD data from Japanese or 305 

African samples (IVW p=0.74, 0,85, respectively), and BIP data from the Japanese sample to 306 

BAG (beta=0.10, p=0.13). 307 

  308 
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Discussion 309 

Combining the advantages of large samples and advanced models for brain age prediction, we 310 

confirmed that BAG is a heritable and polygenic trait, and estimated the genetic pleiotropy 311 

and causal genetic relations with major brain and mental disorders. We identified seven novel 312 

loci associated with BAG, in addition to confirming the previously reported MAPT loci18, 19. 313 

While MR indicated that increased genetic risk for AD or BIP may be causally associated with 314 

higher BAG, our results demonstrate that individual variability and previously reported case-315 

control differences in BAG only to a marginal degree should be attributed to the genetic risk 316 

of the respective diseases. 317 

 Functional annotation of the genes linked to the identified loci confirms that 318 

deviations in BAG are linked to complex processes encompassing multiple biological systems20. 319 

While earlier work observed this variety when investigating different multimodal aspects of 320 

imaging data linked to brain aging, our findings suggest it also exists when looking at a singular 321 

BAG computed from only T1-weighted structural imaging. Our coarse division of the implied 322 

54 genes into three groups indicates that only eight genes are specifically expressed in brain 323 

tissues. The remaining genes were either expressed in abundance across all tissue types 324 

tested, including the brain, or expressed at very low levels across all tissues. Nonetheless, the 325 

proteins coded by these non-brain specific genes have been implicated in brain-related 326 

disorders or traits (Supplementary Table S5). For example, among the genes we found to be 327 

expressed across all tissue types (group 1), mutations in AP2M1 have been linked to epilepsy, 328 

intellectual developmental disorder, and seizures58; among the genes expressed in low levels 329 

across tissues (group 2), STH has been associated with frontotemporal dementia and 330 
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17q21.31 duplication syndrome59, 60. In addition, although our analysis revealed no significant 331 

pathway enrichment, these 54 genes contribute to biological functions that include calcium 332 

signaling, protein metabolism, DNA damage repair and general innate immune defense. Thus, 333 

our analyses highlight the role of these diverse sets of processes affecting the brain 334 

throughout life. 335 

Prior work has shown higher BAG in patients with a multitude of disorders compared 336 

to healthy controls5, 6, 8, 9, 11, and has documented partly overlapping genetic associations 337 

between BAG and clinical conditions6 . However, the causal effects have remained unclear. 338 

Our MR approach revealed that genetically predicted risks for AD or BIP were causally 339 

associated with increased BAG. However, these relations were only weakly supported by 340 

genetic correlation analysis. One possible explanation for this weaker support from genome 341 

wide signals (genetic correlation) in contrast to MR (significant associations only) might be 342 

due to heterogeneous genetic correlations across the genome, i.e. some genomic regions 343 

show positive correlations while others show negative correlations61, 62. In such a scenario, 344 

the net genetic correlations between the two traits are expected to be lower than regional 345 

correlations.  346 

The causal effect of genetically predicted risk to AD on BAG was small but consistent 347 

in directions across the six MR models, four of which were significant after multiple-testing 348 

correction. For BIP, although four models showed significant effects, the CAUSE model 349 

suggested an opposite direction of effect to the other five models. Thus, we advise careful 350 

interpretation of this result. Our attempts of testing across ancestral group causal relations 351 
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led to largely null fundings for the AD to BAG relations. We believe these non-significant 352 

fundings are largely due to the lack of statistical power in the non-European GWAS51-53. 353 

The observed causal relations between genetically predicted risk of brain disorders 354 

and BAG are intriguing. One possible interpretation is that overt changes in the brain incurred 355 

by the disorders contribute to accelerated aging. Another possibility may be that lifestyle and 356 

health-related behaviors of patients with clinical conditions such as AD and BIP, e.g., 357 

medication63, may increase brain age. Yet another is that genetic variation drives early life 358 

changes in brain structure which contribute to both phenotypes later in life. Given the 359 

comparable sample sizes to the GWAS of AD and BIP and the widely observed clinical 360 

correlations, surprisingly, no genetic nor causal relations of SCZ and MDD with BAG were 361 

found. On the one hand this may suggest that previously reported case-control differences do 362 

not reflect causal relations, but rather a combination of indirect and confounding factors. For 363 

example, smoking and physical exercise have been associated both with MDD and SCZ64-67 and 364 

brain age5, 66. Alternatively, it has been shown that both BAG20 and psychiatric disorders are 365 

highly heterogeneous phenotypes68, 69, and thus further identification and characterization of 366 

the causal relations may require even larger, and carefully screened, samples. It is also worth 367 

noting that while the sample sizes for the disorders are large, the one underlying our BAG 368 

GWAS is relatively small. Thus, our null findings in the direction from BAG to disorders may be 369 

due to too weak instruments70.  370 

Our initial results showed weak evidence of a causal relation between BAG and PD, 371 

corroborating two recent studies which reported a weaker correlation between BAG and PD 372 

71, 72. Striking patterns of enrichment between the two were shown in the conditional QQ plots 373 
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and four out of six MR models indicated that genetically predicted BAG may have protective 374 

effect from PD. However, we found that these relations were completely caused by the MAPT 375 

gene region on chromosome 17: after removing chromosome 17 from our analyses, no 376 

enrichment was observed in either direction (Supplementary Fig. S8). In addition, 377 

instrumental SNPs in this region were detected by MR-PRESSO as horizontal pleiotropic SNPs, 378 

i.e., affecting BAG and PD through independent biological pathways. Reperforming MR 379 

analysis excluding these outlier SNPs confirmed null causal relations. Thus, we conclude that 380 

we found no evidence for causal relations between genetically predicted risk for PD and BAG. 381 

Our analytic procedures also highlight the importance of triangulation and converging 382 

evidence in causal inference analysis73.  383 

 While the present study advances current knowledge regarding the genetic 384 

architecture of and causal contributions to BAG, the results should be interpreted with caution. 385 

Although we confirm previously reported genetic associations with BAG, e.g., the MAPT gene 386 

locus18, 19, our sample overlaps with previous ones—which were also based on UK Biobank 387 

data. We attempted replicating our findings in three independent but small samples (n ranges 388 

from 321 to 702; Supplementary Analysis and Table S4) but no clear replications were 389 

achieved. Therefore, independent large-scale samples are needed for replication. We used a 390 

simple voting schema across six different MR models to infer causal relations between 391 

genetically predicted BAG and brain disorders. Furthermore, as we only identified eight 392 

independent loci showing significant associations to BAG, other models74 that require large 393 

number of genome-wide significant instruments were considered not applicable. However, it 394 

should be noted our simple voting approach may not be the most efficient strategy for 395 

identifying causal effects. Formal development of ensemble methods, such as bagging75, may 396 
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provide better grounds for precise interpretation. Furthermore, our BAG GWAS is still smaller 397 

than GWAS performed for the disorders, which may partly explain the lack of causal effects of 398 

BAG on brain disorders. Therefore, to increase our confidence in the identified relations, large-399 

scale data for BAG, and replications in independent datasets are needed. Relatedly, our 400 

estimation of brain age was based on cross-sectional samples, which makes its interpretation 401 

non-trivial76, and studies built on longitudinal data could help disentangle its complexities. 402 

Finally, although we refer to our brain age estimation in general terms, it is important to 403 

reaffirm that it is based on T1-weighted imaging data. The brain is a complex and 404 

heterogeneous organ, and different imaging modalities are known to capture different 405 

aspects of the naturally occurring variation. Thus, studies relying on other modalities, either 406 

independently or in combination, could reveal a broader set of associations77.  407 

 In conclusion, the present study increases the yield of genetic associations with brain 408 

age to eight genomic loci; implicated genes indicate involvement of calcium signaling, DNA 409 

damage repair, protein metabolism, and general innate immune defense. Our analysis did not 410 

provide evidence of a causal relationship between BAG and the included clinical conditions, 411 

and their interactions remain unclear. 412 
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FIGURE LEGENDS 729 

Figure 1 Genetic associations for brain age gap.  730 

a. The Manhattan plot of meta-analyzed association results for brain age gap (BAG). 731 

Chromosome numbers are shown on x axis, -log10 association p values on y axis and lead 732 

SNP rs-numbers in the plot. b. Region plots for each of the eight associated regions. Genes 733 

located in each region are shown below each figure. Linkage disequilibrium r-squared values 734 

are indicated by colors; and recombination frequences by curves. c. Expression levels of the 735 

annotated genes across tissues analyzed by the GTEx v8 study. Colors indicate average log2 736 

transformed expression level in each tissue.    737 

 738 

Figure 2 Polygenic genetic overlap between brain age gap and disorders. 739 

a. Genetic correlation between brain age gap and disorders computed by ldsc. SNP 740 

heritability and its standard error are indicated. b-d. Conditional QQ plot between brain age 741 

gap and disorders in both directions. Colors are used to indicate different association 742 

strength to the conditioned traits, i.e., the ones indicated after the vertical bar in each 743 

figure. Dashed diagonal lines indicate expected null distributions.  Abbreviations used: AD, 744 

Alzheimer's disease; BIP, bipolar disorder; MDD, major depression disorder; PD, Parkinson's 745 

disease; SCZ, schizophrenia.  746 

 747 

Figure 3 Causal inference between brain age gap and disorders. 748 

a. Causal effect of brain age gap (BAG) on risk of disorders; b.  Causal effect of genetic risk of 749 

disorders on BAG. Colors indicate different models; triangle indicates significant effect after 750 

false discovery correction. Estimated standard errors for each effect are aslo shown. c. 751 

Scatter plots of SNP effects on AD (x axis) and BAG (y axis). d. Scatter plots of SNP effects on 752 
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BIP (x axis) and BAG (y axis). e. Scatter plots of SNP effects BAG (x axis) and PD (y axis).  f. 753 

Scatter plots of SNP effects on PD (x axis) and BAG (y axis). Causal effects estimated by the 754 

five models (except CAUSE) are shown by fitted lines; slopes of these lines indicate causal 755 

effect sizes. Exceptional SNPs are marked by boxes which include SNP rs-numbers and 756 

genome location in th hg19 coordinates. Abbreviation used: AD, Alzheimer's disease; BIP, 757 

bipolar disorder; MDD, major depression disorder; PD, Parkinson's disease; SCZ, 758 

schizophrenia.  759 

 760 
 761 
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Table 1 Genomic loci associated with BAG. 763 

Locus Lead SNP POS Gene A1 A2 Beta I2 P 
Chr3:183892867- 
183975709 

rs73185796 183975709 CAMK2N2/ECE2 T G -0.29 0.0 2.53x10-8 

Chr4:38591172- 
38779512 

rs13132853 38680015 KLF3 G A 0.23 0.0 2.34x10-18 

Chr5:78388694- 
78451813 

rs79107704 78388694 BHMT2 A G 0.63 0.0 1.65x10-8 

Chr6:45407654- 
45511945 

rs2790102 45432214 RUNX2 A G -0.15 0.0 8.92x10-9 
 

Chr8:124661974- 
124682971 

rs7461069 124669029 
 

KLHL38 A G -0.17 0.0 1.57x10-8 
 

Chr10:134544247- 
134597265 

rs4880424 134584577 
 

INPP5A T C 0.16 64.9
5 

3.69x10-8 
 

Chr14: 88391116- 
88556525 

rs17203398 
 

88449847 GALC C G -0.16 40.9
7 

1.42x10-10 
 

Chr17: 43101281- 
44863413 

rs2106786 43919096 MAPT G A 0.29 0.0 1.87x10-23 
 

Eight independent genomic loci significantly associated with brain age gap (BAG). Lead SNP 764 

rs-number, genomic position (in hg19 coordinates), effective allele (A1), the other allele 765 

(A2), effect size (Beta), meta-analysis heterogeneity (I2), association strength (p value, P). 766 

 767 

 768 
  769 
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FIGURES 770 
Figure 1 771 

 772 
  773 
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Figure 2 774 
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Figure 3 778 
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