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Abbreviations List

AIC - Akaike information criterion

AUC - area-under-curve

aSAH - aneurysmal subarachnoid haemorrhage

BET - brain extraction tool

BIC - Bayesian information criterion

CT - computed tomography

CTA - computed tomography angiography

CTH - computed tomography (of head)

DICOM - digital imaging and communications in medicine

DCI - delayed clinical ischaemia

DSA - digital subtraction angiography

EHR - electronic healthcare record

EVD - external ventricular drain

HU - Hounsfield unit

ITU - intensive therapy unit

IVH - intraventricular haemorrhage

mFS - modified Fisher scale

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.22.23284860doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.22.23284860
http://creativecommons.org/licenses/by/4.0/


PACS - picture archiving and communication system

ROC - receiver operating characteristic

TCD - transcranial Doppler
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Abstract

Purpose

Cerebral vasospasm following aneurysmal subarachnoid haemorrhage (aSAH) is a significant

complication associated with poor neurological outcomes. We present a novel, semi-automated

pipeline in ITK-SNAP to segment subarachnoid blood volume from initial CT head (CTH) scans and

use this to predict future radiological vasospasm.

Methods

42 patients were admitted between February 2020 and December 2021 to our tertiary

neurosciences centre, and whose initial referral CTH scan was used for this retrospective cohort

study. Blood load was segmented using a semi-automated random forest classifier and active

contour evolution implemented in the open-source medical imaging analysis software ITK-SNAP. 

Clinical data were extracted from electronic healthcare records in order to fit models aimed at

predicting radiological vasospasm risk.

Results

Semi-automated segmentations demonstrated excellent agreement with manual, expert-derived

volumes (mean Dice coefficient=0.92). Total normalised blood volume, extracted from CTH

images at first presentation, was significantly associated with greater odds of later radiological

vasospasm, increasing by approximately 7% for each additional cm3 of blood (OR=1.069, 95% CI:

1.021-1.120; p<.005). Greater blood volume was also significantly associated with vasospasm of a

higher Lindegaard ratio, of longer duration, and a greater number of discrete episodes. Total blood

volume predicted radiological vasospasm with a greater accuracy as compared to the modified

Fisher scale (AUC= 0.86 vs 0.70), and was of independent predictive value.

Conclusion

Semi-automated methods provide a plausible pipeline for the segmentation of blood from CT head

images in aSAH, and total blood volume is a robust, extendable predictor of radiological
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vasospasm, outperforming the modified Fisher scale. Greater subarachnoid blood volume

significantly increases the odds of subsequent vasospasm, its time course and its severity.
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Introduction

Outcomes following aneurysmal subarachnoid haemorrhage (aSAH) remain poor, with an estimated

mortality of approximately 30%[1]. An important contributor to both morbidity and mortality following aSAH

is cerebral vasospasm, the spasmodic narrowing of intracranial arteries which can lead to delayed cerebral

ischaemia (DCI). Symptomatic vasospasm occurs in 20% of patients[2], and typically occurs at a delay of 3

to 12 days after the haemorrhagic event[3]. Whereas angiographic or radiologically-detected vasospasm

can be detected in as many as 50-70% of aSAH patients, not all are associated with neurological deficits.

As such, the prediction and forward recognition of clinically significant vasospasm represents a substantial

challenge in the management of these patients.

One predictor of future vasospasm is the total volume of blood seen on the CT head scan at

presentation[4–8]. Furthermore, intraventricular haemorrhage (IVH) has been shown to independently

predict cerebral vasospasm[6,8–13], and total blood volume is associated with worse functional

outcomes[14]. Drawing on these key findings, aSAH severity is frequently graded in clinical practice using

the modified Fisher scale (mFS)[8] -- a subjective assessment of bleed extent on CT head scans. However,

the modified Fisher scale only crudely notes blood distribution and blood load, and accordingly, its

qualitative nature limits its predictive power. Troublingly, the modified Fisher scale has recently been

demonstrated to lack inter-rater reliability[15], and thus may not provide an objective metric of blood burden

and distribution following aSAH.

Further work has introduced similar qualitative or semi-quantitative severity scores for the

purposes of predicting vasospasm from cisternal blood volume[5], intraventricular blood volume[16], and

intraparenchymal blood volume[17]. Yet, these scales are also observer-dependent and can exhibit poor

inter-rater agreement[18,19]. Nevertheless, in patients of poor clinical grade whose clinical neurology is

difficult to assess, these metrics represent some of the few available clinical tools which can inform the

likelihood of vasospasm and guide risk-stratification and management. The precise relationship between

quantified blood volume and radiological vasospasm likelihood remains poorly defined.
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Although the presence and degree of blood in cerebral compartments is associated with clinical,

symptomatic vasospasm[8,12,19], little work has looked at the prediction of radiological vasospasm from

routinely acquired neuroimaging data. Although the precise relationship between radiological vasospasm

and DCI is contested[20], there is strong recent evidence of its association with clinical and functional

outcomes [21,22]. As the onset of DCI is difficult to diagnose and frequently missed [23], such radiological

outcomes remain important to guide decisions regarding clinical intervention, including angioplasty [24].

Quantitative image segmentation approaches, such as those used to segment other organ

systems[25], can detail both the volume and morphology of blood load and would overcome the

aforementioned difficulties, potentially offering a more accurate method for vasospasm prediction.

However, manual image segmentation of haemorrhage on CT head scans can be technically challenging,

time-consuming and impractical for clinical use. Novel developments in medical image segmentation mean

that precise and robust estimates of blood volume and distribution are easier to calculate. These include

semi-automated tools such as active contour evolution and clustering based algorithms[26] which are more

efficient and have precedent in delineating vascular structures in other areas[27].

Here, we present a working pipeline, implemented in ITK-SNAP, for the efficient, semi-automated

segmentation of blood on a non-contrast, routine plain CT head scan, obtained at first presentation of

patients with aSAH. We demonstrate that semi-automated segmentations align well with clinical expert

impressions of blood distribution and require minimal correction. Our model is compared against the

current standard of the modified Fisher scale in correlating against occurrence of any radiological

vasospasm as the primary outcome. Secondary outcomes included time to, duration and number of

discrete vasospasm episodes and general reported outcome measures of length of intensive therapy unit

(ITU) stay, hospital stay and mortality.
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Methods

Protocol

The study was performed in accordance with the STROBE checklist[28] and the European Society of

Radiology statement on imaging biomarkers[29] where relevant.

Ethics

This retrospective cohort study was approved by the institutional review board (53-202122-CA) in

the context of a wider service evaluation regarding radiological assessment of vasospasm in patients with

aSAH at our tertiary neurosciences centre.

Participants

A list of candidate patients were identified from the institutional electronic healthcare record (EHR)

Patients were included in this study if they (i) were treated for an aneurysmal subarachnoid haemorrhage at

the academic neurosciences centre between February 2020 - December 2021; (ii) the initial CT head (CTH)

scan performed at first presentation was available on the clinical imaging repository; and (iii) the patient

had no prior medical history of aSAH or intracranial haemorrhage, no previous intracranial coil

embolisation, or any other intracranial implant in situ that would degrade CT image quality.

Image processing and segmentation pipeline

The steps regarding image pre- and post-processing and haemorrhage segmentation, alongside the

software packages used have been outlined in Figure 1. Briefly, the first CT head (CTH) scan performed

following the SAH ictus was obtained from the Picture Archiving and Communication System (PACS).

DICOM CT files were anonymised and converted to NIfTI format using the command line tool dcm2niix[30].
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dcm2niix includes an inbuilt Gantry tilt correction routine that was used to ensure NIfTI files were correctly

oriented. NIfTI files were loaded into the FMRIB software library (FSL)[31] and a binary mask image was

generated to delineate the brain using FSL’s Brain Extraction Tool (BET). To perform BET, images were

initially smoothed using a Gaussian kernel of size 1mm3 and thresholded between 0 to 120 Hounsfield

Units (HU)[32] and parameterised for optimal extraction of brain tissue from CT images[32]. The extracted

brain image was binarised to generate a brain mask that could be used in subsequent analysis, and was

manually inspected for adequacy before being used.

Fig 1. Image processing pipeline describing data collection, pre-processing, segmentation, quality control and

information extraction. (yellow font = software library; DICOM = Digital Imaging and Communications in Medicine; nii

= nifti file type; FSL = FMRIB Software Library; ITK-Snap = Insight Segmentation and Registration Toolkit; RF = random

forest; HU = Hounsfield Units. ‘CT-scan’ designed using resources from Flatiron.com)

All segmentations were performed in ITK-SNAP, an open-source and multi-platform 3D medical

image analysis software, optimised for user-guided segmentation[33]. All images were resampled using

linear interpolation such that voxels were cubic in size to ensure consistency between patients and diverse

scanner types. Briefly, to segment the image, a random forest classifier (tree depth = 30, number of trees =

50, classifier bias = 0.5) was initially trained on each image using manually labelled examples to classify

voxels into one of four tissue subtypes: CSF, bone, parenchyma, or blood (Figure 1). HU values at each

labelled voxel and the 2-voxel wide neighbourhood around each labelled voxel were used to train the

classifier. This was used to generate a speed image, which encoded at each pixel the desired rate of growth

or retraction of the contour. Spherical seeds were manually placed on the image to initialise the contour,

which was then allowed to actively evolve over approximately 500 iterations. Segmentations took, on

average, 12 minutes to perform for each brain. Example series of axial slices through four brains are shown

in Figure 2, which display the segmentation output for all blood detected by this process.

Fig 2: Examples of semi-automated subarachnoid haemorrhage segmentations for each modified Fisher grade.

(yellow = segmentation overlay, mFS = modified Fisher Scale)
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Quality assessment

All segmentations were reviewed and manually corrected by an academic neurosurgical resident

with a decade of post-doctoral neuroimaging experience (A.S.P.) and consultant neurovascular surgeon

(A.K.T.) to provide finalised segmentations to act as the ground truth for subsequent analyses. Dice overlap

coefficients were calculated between the original and expert-corrected segmentations to assess the quality

of the semi-automated segmentation pipeline.

Clinical data extraction

Relevant clinical data were extracted from the EHR and from radiology reports available on PACS.

This data included, as the primary outcome, the presence of radiologically detectable vasospasm via:

transcranial doppler (TCD), CT angiogram (CTA), or digital subtraction angiography (DSA). The majority of

patients received repeat TCD imaging during recovery, with documented Lindegaard ratios (n=30), with CTA

and DSA performed based on assessment of clinical need. Secondary outcomes included time to

vasospasm, vasospasm duration (defined as the number of days with any positive radiological vasospasm),

number of discrete vasospasm episodes (defined as the number of episodes of detected vasospasm that

were separated by at least one day of exclusively negative tests), vasospasm severity, length of ITU

admission, length of hospital admission, and mortality. Vasospasm severity was quantified in two ways.

Firstly, the consultant neuroradiologist’s subjective impression of vessel calibre (using CTA or DSA) was

extracted and categorised as: ‘none’, ‘mild’, ‘moderate’, or ‘severe’. Secondly, the greatest Lindegaard ratio

was extracted from radiology records for all patients who received TCD imaging and where this was

documented. Given that many of the patients were intubated and sedated during their initial hospital

admission and the data was retrospectively collected, clinical vasospasm or delayed clinical ischaemia

(DCI) could not be reliably ascertained. The modified Fisher grade was recorded by author A.S.P following

manual review of the images.

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.22.23284860doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.22.23284860
http://creativecommons.org/licenses/by/4.0/


Data and statistical analysis

Generalised linear models were fitted in MATLAB (R2019b, Mathworks Inc., Natick, MA) to assess

for significant associations between predictors and response variables. Where response variables were

binary values, logistic regression was used, otherwise a linear regression model was used.

For logistic models, (McFadden’s) pseudo-R2, was calculated to estimate the model’s predictive

power[34], with values between 0.2 - 0.4 representing an “excellent” model fit[35]. Model goodness-of-fit

was calculated in reference to a null model fit with constant (intercept) terms alone. Additional

comparisons between nested models were performed using the likelihood-ratio test, alongside evaluation

of the Akaike information criterion (AIC) and Bayesian information criterion (BIC). Hosmer-Lemeshow and

Stukel tests were used to assess for model fitting and misspecification (Supplementary Methods).

All values are reported as mean ± standard deviation, unless otherwise specified. Data were tested

for normality using the one-sample Kolmogorov-Smirnov test. All significance tests, unless stated

otherwise, were two-tailed with a significance threshold of 5%. Total blood volume was normalised and

scaled (total blood volume x mean participant brain volume / participant brain volume) using the brain

volume estimated from the BET images derived above. Blood volume reported is normalised to participant

brain volume unless stated otherwise. The sample size was determined pragmatically, namely the

maximum number of images obtained within the specified study period. Scatter plots, unless stated

otherwise, are colour-coded according to the radiological vasospasm status of the patient (maroon:

vasospasm detected by any modality during admission; blue: no vasospasm detected by any modality

during admission).
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Results

Participant demographics

Data from 42 patients were used for this study (see Table 1 for a summary of demographics). 71.4%

(n=30) of the included patients developed radiological vasospasm, detected via TCD, CTA, or DSA during

admission, comparable to previously reported rates of radiological vasospasm[3]. There was no evidence of

a difference in vasospasm risk in patients following endovascular coil embolisation versus aneurysm

clipping (χ2 = 1.45; p = 0.23), nor was vasospasm risk associated with patient gender (χ2 = 26; p = 0.61) or

age (t = -1.00, p = 0.32). Patients with radiological vasospasm experienced similar ITU stays (360±202

hours vs 288±381 hours; p = 0.46), but remained in hospital for significantly longer as compared to those

who did not (59.8±46.6 days vs 23.7±24.2 days; 95% CI [4.6, 67.6], t = 2.33, p = 0.026). Length of ITU stay

was neither significantly correlated with the duration (r = 0.25; p = 0.14) or number of distinct vasospasm

episodes (r = 0.09; p = 0.56).

Table 1. Descriptive information regarding each patient’s demographics, aneurysm, treatment and hospital

outcomes. (*patient passed away before coil embolisation organised. AComm = anterior communicating artery,

PComm = posterior communicating artery, MCA = middle cerebral artery, ICA = internal carotid artery, PICA = posterior

inferior cerebellar artery, SCA = superior cerebellar artery)

Number of patients 42

Mean age (SD) 57.8 (11.6) years

Female sex (%) 27 (64.3)

Aneurysmal location (%) AComm
PComm
MCA
ICA
PICA
SCA

17 (40.5)
5 (11.9)
7 (16.7)
5 (11.9)
6 (14.3)
2 (4.8)

Radiological vasospasm
frequency determined
by (%)

TCD
CTA
DSA
Any modality

23 (54.8)
30 (71.4)
16 (38.1)
30 (71.4)
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Treatment frequency:
CSF diversion (%)

External ventricular drain
Lumbar drain
No CSF diversion

30 (71.4)
11 (26.2)
11 (26.2)

Treatment frequency:
Neurovascular (%)

Coil embolisation
Aneurysmal clipping
*Other

32 (76.2)
9 (21.4)
1 (2.4)

Mean length of ITU stay
(SD)

343 (251) hours

Mean hospital stay (SD) 50.3 (44.6) days

Mortality (%) 4 (9.5)

Subarachnoid blood volume can be accurately and reliably segmented and estimated using a semi-automated

pipeline

In general, all segmentations agreed with the expert-corrected segmentations (Dice coefficient:

median = 0.994; mean = 0.920) with a mean volumetric error of (mean =  2.49±5.82 cm3).

Segmented subarachnoid blood volume is associated with radiological vasospasm risk

Patients who developed radiological vasospasm had a significantly greater non-normalised blood

load on the CT head scan at initial presentation (vasospasm mean blood volume = 60.3±30.5 cm3;

non-vasospasm mean blood volume = 24.2±21.4 cm3, t = 3.74, p < .001; Figure 3).

Fig 3: Greater segmented blood load is associated with greater radiological vasospasm risk. Boxplot of blood volume

in patients who developed radiological vasospasm (maroon) and those who did not (blue). (*** = p< .001)

Similarly, logistic regression demonstrated a significant association between normalised blood

volume and vasospasm risk (OR = 1.069 [95% CI: 1.021 - 1.120]; p = .0049; df = 40). This indicates that the

odds of radiological vasospasm occurring during admission increase by approximately 7% for each cm3 of

blood present in the subarachnoid spaces. This model explained a ‘good’ proportion of variance (pseudo-R2

= 0.30) and significantly more variance than a constant model (F = 15.2; p < .0001). There was no evidence
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that the model was misspecified (Stukel test: pza = 0.61, pzb = 0.51; Hosmer-Lemeshow test: χ2 = 3.49, df = 8,

p = 0.90). A retriever operator characteristic (ROC) curve was constructed for this model (Figure 4). This

demonstrated that the fitted model reliably separated the binary classes using normalised blood volume

alone, and the ROC curve accordingly shows a high area-under-the-curve (AUC = 0.86). Furthermore, the

significance of the relationship between blood volume and vasospasm was preserved after adding

potential confounding variables into the model (see Table 2). Leave-one-out cross validation over this full

model demonstrated a classification accuracy of 71.4% for subsequent vasospasm, with the full model

maintaining a high predictive power (AUC = 0.89) and good proportion of explained variance (pseudo-R2 =

0.41).

Fig 4: Receiver operating characteristic (ROC) curve demonstrating the performance characteristics of the binary

classifier fit in the logistic regression model. Black = univariate logistic regression model using normalised total

blood volume; grey = logistic regression model using dummy-coded modified Fisher score values.

Table 2. Logistic regression fit parameters for all variables in the full predictive model including confounding

variables. Following inclusion of potential confound variables into the logistic regression against radiological

vasospasm, the only significant predictor remained the estimate for blood volume (*, p < .05, italic typeface). Note

that estimates for logistic regression are given in the form of log odds. χ2-statistic vs. constant model: F = 20.6,

p-value = 0.00215.

Estimate (log odds) Confidence interval t value p value

Intercept 2.3975 [-4.40, 9.20] 0.69 0.49

Age -0.099725 [-0.22, 0.02] -1.69 0.09

Gender 1.4887 [-0.57, 3.54] 1.42 0.16

Treatment: coiled 0.14742 [-2.03, 2.33] 0.13 0.89

EVD inserted 0.78481 [-1.43, 3.00] 0.70 0.49

Lumbar drain inserted 0.08629 [-2.26 2.43] 0.072 0.94

Normalised blood volume* 0.0741 [0.0077, 0.1406] 2.19 0.03
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For comparison, a logistic regression model using only mFS scores was also fitted (see

Supplementary Results Table S1). For dummy coding, mFS scores 1 and 2 were combined. While this also

outperformed a constant model (χ2 = 6.31; p < .043), it had less predictive ability (AUC = 0.70) as compared

to the previous models described (Figure 4).

The mFS was significantly associated with larger volumes of subarachnoid blood (normalised blood

volume for mFS 1: 8.5±5.7 cm3; mFS 2: 23.6±12.8 cm3; mFS 3: 53.9±37.8 cm3; mFS 4: 61.3±29.0 cm3;

one-way ANOVA: F = 7.35, p < .001). Following Bonferroni correction for multiple comparisons, scans of

mFS grade 4 contained significantly larger blood volume than scans of mFS grade 1 (p = .001) and grade 2

(p = .037). To assess whether blood volume contained additional independent information, it was added to

a logistic regression model containing mFS alongside confounding variables (see Tables 2, S2, S3 for full

models). In doing so, model predictive power was improved (Likelihood ratio = 8.00; p < .0047) and

predictive error was reduced (mFS only: AIC = 47.5, BIC = 58.0; mFS and blood volume: AIC = 41.55, BIC =

53.7). However, when the mFS was added to the blood volume model, no increase in predictive power was

shown (Likelihood ratio = 1.94; p = 0.16). Similarly, leave-one-out cross validation of the full model

demonstrated a classification accuracy of 78.6%, greater than the classification error for models containing

blood volume (71.4%) or mFS (69.0%) alone. Taken together, these results indicate that the normalised

blood volume contains additional information to the mFS, and constitutes a significant and independent

predictor of radiological vasospasm.

Greater subarachnoid blood volume is associated with worse vasospasm severity

To investigate whether segmented blood load was associated with the severity of radiological

vasospasm, we extracted the subjective impression of severity from radiologist reports. A one-way ANOVA

demonstrated a significant association between normalised blood volume and subjective severity (F = 5.42;

p = 0.003). Post-hoc testing using the Tukey-Kramer method for multiple comparisons demonstrated that

patients with reported ‘moderate’ and ‘severe’ radiological vasospasm had significantly greater blood load

than those without vasospasm (p = 0.028 and p = 0.004, respectively; Figure 5A). However, no significant

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.22.23284860doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.22.23284860
http://creativecommons.org/licenses/by/4.0/


difference in blood volume was found between patients with mild, moderate, and severe vasospasm (p >

.05 throughout).

Fig 5: Associations between subarachnoid blood volume and metrics of severity of radiological vasospasm. A:

Boxplots of blood volume grouped by radiologist’s impression of subjective severity of vasospasm. B: Scatter plot

showing the greatest recorded Lindegaard ratio from TCD plotted against normalised blood volume.  (* = p <.05, ** =

p<.01)

To further probe this result, we evaluated quantitative metrics of vasospasm severity (Figure 5B).

We extracted the largest Lindegaard ratio observed for all patients who received documented TCDs (n = 30

patients received at least one TCD positive or negative for vasospasm following admission). Similarly,

blood volume was significantly correlated with higher Lindegaard ratios (r = 0.45; p = 0.014), indicating that

blood load was related to the severity of radiological changes seen in vasospasm-positive patients. This

relationship remained significant when only TCD-positive vasospasm patients were included (n=23; r = 0.46;

p = 0.027).

Fig 6: Associations between subarachnoid blood volume and temporal vasospasm-related outcomes. A: Scatter plot

showing the number of discrete episodes of vasospasm against normalised blood volume. B: Scatter plot showing the

duration of vasospasm in days plotted against normalised blood volume. C: Scatter plot showing the total length of

hospital admission plotted against normalised blood volume.

Subarachnoid blood volume influences the duration and frequency of vasospasm episodes

Of patients who developed vasospasm, radiological evidence of vasospasm was first reported an

average of 5.30±3.41 days after presentation, and persisted for 3.62±3.22 days, consisting of 1.29±1.22

discrete episodes.

Increased blood volume was significantly associated with more discrete episodes of radiological

vasospasm (r = 0.57, p < .001) [Figure 6A]. Similarly, there was a strong association between blood volume
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and vasospasm duration (r = 0.54, p < .001; Figure 6B). However, no association was found between

subarachnoid blood volume and the time from admission date to first vasospasm (r = -0.13; p = 0.51).

Association of subarachnoid blood volume with neurosurgical patient outcomes

Blood volume was not significantly associated with length of ITU stay (r = 0.16; p = 0.34), and there

was no difference in mean blood volume between patients who subsequently died and those who did not,

although this approached significance (fatality group: 77.9±43.9 cm3; non-fatality group: 47.0±30.2 cm3; t =

1.87; p = 0.07). However, blood volume was significantly correlated with total length of hospital admission

(r = 0.36; p = 0.027; Figure 6C), indicating that patients with larger subarachnoid blood load may experience

a more complicated or prolonged recovery.
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Discussion

Summary

In this article, we present a novel ITK-SNAP-based pipeline for reliable and efficient segmentation of

subarachnoid blood on initial CT head scans using semi-automated methods and expertly verified. Utilising

this framework, we show that total segmented blood volume following subarachnoid haemorrhage is

associated with several vasospasm-relevant outcomes. We show that greater total blood volume is

significantly associated with a greater probability of subsequent radiological vasospasm, with the odds of

vasospasm occurring increasing by approximately 7% for each cm3 of subarachnoid haemorrhage. We also

demonstrate that subarachnoid blood load influences the natural history of vasospasm both in terms of

duration and number of distinct episodes, and is associated with overall hospital length of stay.

Interpretation and context

Our pipeline successfully produced segmentations of blood from CT head scans for all scans

included in the study. Segmentations were close to ground truth as defined by corrected segmentations

provided by a consultant neurovascular surgeon, indicating that our methods were accurately and reliably

delineating blood from other tissue, in spite of its complex and tortuous morphology and also in spite of a

wide array of scanner acquisition protocols from several referring hospitals. While previous machine

learning methods have been used to detect and classify intracranial haemorrhages[36,37], by providing

saliency maps highlighting probable regions where blood is distributed[38], these methods do not produce

segmentations from which precise blood volumes can be obtained. Quantitative volumetric segmentations

have typically been applied to haemorrhagic lesions from traumatic brain injuries, with focus on subdural

haematoma, extradural haematoma, and intraparenchymal haemorrhage[39–43]. Less work has attempted

the automated segmentation of subarachnoid blood[37], and to our knowledge this work represents the

first use of machine learning techniques to segment blood from CT head scans in aneurysmal SAH

patients.
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Our results demonstrate that the initial blood burden following subarachnoid haemorrhage has

future consequences. Previous literature has focused on predicting the risk of symptomatic vasospasm (or

delayed cerebral ischaemia) based on blood volume on CT head scans[4,7,8,11,12], with few papers

addressing angiographic or radiological features. In our cohort, haemorrhagic blood load was associated

with greater radiological vasospasm risk, episodes, duration, severity and a longer length of stay in hospital.

Radiological vasospasm is itself well known to be strongly associated with delayed cerebral ischaemia and

poorer functional outcomes[21,22].

That we found both blood volume and the radiological vasospasm to be significantly associated

with overall hospital admission length, suggests that subarachnoid blood burden and its sequelae may

complicate and prolong hospital admissions. This may be because of additional complications associated

with higher blood volumes including hydrocephalus that in turn require invasive treatment. Although the

length of intensive care stay was not associated with blood volume in our cohort, we did note an

association with greater mortality that approached significance.

To address the clinical utility of our segmentations, we compared the predictive power of total

subarachnoid blood volume with that of the modified Fisher scale, a qualitative grading metric commonly

used in clinical practice. The modified Fisher scale alone possesses a number of limitations. Recent work

has highlighted its inherent subjectivity, demonstrating only moderate inter-rater reliability scores[15].

Further, its predictive power is limited by its qualitative nature, resulting in a low-dimensional and

low-resolution description of blood load and distribution. In our dataset, the modified Fisher scores also

significantly predicted vasospasm risk but with reduced accuracy. In addition, we found that normalised

blood volume provides additional information to the logistic regression model that is independent of the

modified Fisher scale, and therefore may be incorporated into the future development of radiological

vasospasm risk scales. Nonetheless, it may be that information about blood volume distribution across

compartments (i.e. cisternal and ventricular blood) is provided the modified Fisher scale, and this would not

be captured by a total blood volume value. However, as blood segmentations can be further extended to
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include information about the spatial distribution of blood in the brain, we suggest that total blood volume

provides a potential powerful regressor for predicting vasospasm.

Limitations and strengths

Our interpretations are limited by the modest number of patients included, alongside the

retrospective design of the study. Furthermore, the statistics presented here are exploratory, although the

significance of the associations presented remained so after multiple comparison corrections. Additionally,

we describe several steps to demonstrate that regression models fitted were robust. Although our fitted

and internally validated regression model demonstrates good performance on our single-centre dataset,

further work with larger, multi-centre datasets will be required to cross-validate and confirm the findings

reported above. However, the results nonetheless highlight important and unexplored potential areas of

further study within the vasospasm literature, and our presented analysis pipeline can easily be extended to

larger datasets, prospective studies, collaborative segmentations, and more sophisticated statistical

models.

The modified Fisher score was validated for prediction of delayed cerebral ischaemia[8] rather than

radiological vasospasm, and so may not be expected to predict radiological vasospasm more accurately

than blood volume. DCI remains challenging to diagnose, especially in sedated or high-grade patients[44],

and unsurprisingly its onset is often missed[23]. However, early angiographic vasospasm is significantly

associated with the subsequent development of DCI[45,46]. Further, vasospasm as detected on TCD or CTA

is well correlated with clinical deficits[21,22,45,46], and both vasospasm duration and severity can be used

to assess the likelihood of delayed cerebral ischaemia and therefore the need for clinical interventions such

as angioplasty[21,24,47,48]. Therefore, we propose that radiological detection of vasospasm, as an

objective biomarker, may provide important information that may guide clinical decision making. Total

blood volume provides useful information that can be used to predict the likelihood of significant

vasospasm, and identify a subpopulation of patients that may require more stringent monitoring and/or
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intervention. Further modelling would be necessary to determine the influence of CSF drainage factors

which may assist in reducing subarachnoid blood volume.

Fully manual segmentations drawn out by experts or trained raters, despite being considered the

gold standard method, are time- and labour-intensive, often require lengthy training periods[49], and risk

introducing substantial intra-rater and inter-rater variability and bias arising from various sources, including

differences in opinion about the ground truth segmentation and in anatomical knowledge about relevant

structures[50]. Accordingly, previous work has shown substantial variation in consistency and

reproducibility of manual segmentations across both raters and structures[51–53]. Over recent years,

semi-automated and automated methods have begun to match and even outperform manual segmentation

in metrics of precision and inter-rater variability across a variety of modalities and structures[49,52,54,55].

Our semi-automated method adds to the growing literature of potential applications for machine

learning methods in radiological interpretation and triage, and removes some of this intra- and inter-rater

variability. Many computer-assisted methods for delineation of blood volume have previously focused on

segmentation of haemorrhages within non-subarachnoid space [39,56–59]. However, application of these

methods to aSAH has been noted to be challenging [40,57], and accordingly Dice scores for segmentations

of subarachnoid blood have been consistently lower than for other haemorrhage subtypes [37,53,60,61],

and convolutional networks used to automatically segment intracranial haemorrhage that includes

subarachnoid blood have only achieved low-to-moderate Dice scores [62,63].

We attempted to mitigate any bias on behalf of the rater through expert assessment and correction,

and correspondingly our mean Dice score between original and corrected segmentation was high (0.92),

indicating excellent agreement between rater segmentation and expert opinion that required minimal

correction. This score was substantially larger than those comparing manual segmentations by different

observers [53,61], and in previous literature [37,53,60,61]. In particular, Boers et al. [53] previously utilised

similar methods to segment aSAH, but achieved only moderate Dice scores for its automated

segmentations (mean Dice score 0.55, range 0.00 - 0.83). Nonetheless, some variability remains, as
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labelling training data for the classifier and placement of seeds remain as manual steps that may lead to

unintentional biases in volumes.

Segmentations took on average 10-15 minutes per scan for the rater to perform. Although this is

notably faster than manual segmentations, this remains a non-trivial period of time that may bottleneck

scan reporting, and may therefore be unfeasible in clinical radiology contextS.

Potential extensions to a fully automated pipeline (such as nnU-Net[64], which has already seen use

in brain tumour segmentation [65,66]) would address a number of these limitations and allow for

development of a clinically valuable toolkit. Validated, fully automated segmentations would allow for

faster, reproducible and accurate delineation of blood distribution and volume, and may remove variability

introduced in manual steps. Nonetheless, these methods still require training and validation, and this

dataset serves as an important repository in facilitating this research.

Conclusion

The semi-automated pipeline presented here robustly segments fresh blood from CT head scans on

admission following subarachnoid haemorrhage. Our segmentation pipeline is significantly faster than

manual segmentations, and demonstrates high accuracy when compared with expertly corrected volumes.

Using these methods, we demonstrate that blood load following aSAH is associated with risk and timeline

of radiological vasospasm. Notably, the odds of developing radiological vasospasm were greater for larger

haemorrhage volumes, with a 7% increase in vasospasm odds per additional cm3 of blood on the scan, and

observed vasospasm is likely to be more severe and persist for longer. Total blood volume constitutes an

independent predictor for radiological vasospasm from the clinically employed modified Fisher scale, and

carries potential for extension in the future to fully automated segmentation pipelines, and for the

development of more sophisticated radiological risk scores for vasospasm.
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Fig 1. Image processing pipeline describing data collection, pre-processing, segmentation, quality control and

information extraction. (yellow font = software library; DICOM = Digital Imaging and Communications in Medicine; nii

= nifti file type; FSL = FMRIB Software Library; ITK-Snap = Insight Segmentation and Registration Toolkit; RF = random

forest; HU = Hounsfield Units. ‘CT-scan’ designed using resources from Flatiron.com)
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Fig 2: Examples of semi-automated subarachnoid haemorrhage segmentations for each modified Fisher grade.

(yellow = segmentation overlay, mFS = modified Fisher Scale)

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.22.23284860doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.22.23284860
http://creativecommons.org/licenses/by/4.0/


Fig 3: Greater segmented blood load is associated with greater radiological vasospasm risk. Boxplot of blood volume

in patients who developed radiological vasospasm (maroon) and those who did not (blue). (*** = p< .001)
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Fig 4: Receiver operating characteristic (ROC) curve demonstrating the performance characteristics of the binary

classifier fit in the logistic regression model. Black = univariate logistic regression model using normalised total

blood volume; grey = logistic regression model using dummy-coded modified Fisher score values.
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Fig 5: Associations between subarachnoid blood volume and metrics of severity of radiological vasospasm. A:

Boxplots of blood volume grouped by radiologist’s impression of subjective severity of vasospasm. B: Scatter plot

showing the greatest recorded Lindegaard ratio from TCD plotted against normalised blood volume.  (* = p <.05, ** =

p<.01)
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Fig 6: Associations between subarachnoid blood volume and temporal vasospasm-related outcomes. A: Scatter plot

showing the number of discrete episodes of vasospasm against normalised blood volume. B: Scatter plot showing the

duration of vasospasm in days plotted against normalised blood volume. C: Scatter plot showing the total length of

hospital admission plotted against normalised blood volume.
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