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Abstract

With the growing amount of COVID-19 cases, especially in
developing countries with limited medical resources, it is es-
sential to accurately diagnose COVID-19 with high specificity.
Due to characteristic ground-glass opacities (GGOs), present
in both COVID-19 and other acute lung diseases, misdiagno-
sis occurs often — 26.6% of the time in manual interpreta-
tions of CT scans. Current deep learning models can iden-
tify COVID-19 but cannot distinguish it from other common
lung diseases like bacterial pneumonia. COVision is a multi-
classification convolutional neural network (CNN) that can
differentiate COVID-19 from other common lung diseases,
with a low false-positivity rate. This CNN achieved an ac-
curacy of 95.8%, AUROC of 0.970, and specificity of 98%.
We found statistical significance that our CNN performs bet-
ter than three independent radiologists with at least 10 years of
experience, especially at differentiating COVID-19 from pneu-
monia. After training our CNN with 105,000 CT slices, we
analyzed our CNN’s activation maps and found that lesions
in COVID-19 presented peripherally, closer to the pleura,
whereas pneumonia lesions presented centrally. Finally, us-
ing a federated averaging model, we ensemble our CNN with
a pretrained clinical factors neural network (CFNN) to create
a comprehensive diagnostic tool.

1 Introduction

1.1 Background

The outbreak of severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) and its associated disease
COVID-19 has led to a global pandemic. As of March 31st,
2022, there have been over 486 million COVID-19 cases world-
wide, claiming an estimated 6.14 million lives according to
the World Health Organization (WHO) [13]. COVID-19 in-
fects the lungs, specifically the alveolar type II cells, resulting
in complications like pneumonia [4]. Currently, RT-PCR re-
mains the gold standard for COVID-19 diagnosis; however,
due to limited sensitivity of 89.9% [8], and a wait time of
at least 48 hours for results, the need for quicker and more
accurate diagnosis is imperative. This is especially the case
when patients present to the hospital with severe respiratory
diseases that could be COVID-19 or other conditions with
similar presentations such as bacterial pneumonia, pulmonary

edema, or sepsis. Because of the similarity in presentation of
these pulmonary conditions, it is often difficult to form an ac-
curate diagnosis with CT scans alone, leading to a high rate
of misdiagnosis. To this end, a high specificity deep learning
model that can quickly and accurately diagnose and differ-
entiate COVID-19 CT Scans from other lung conditions like
pneumonia has yet to be developed.

1.2 Disproportionate Effect of COVID-19

The disparity in the COVID-19 healthcare response between
developing and developed countries is staggering. Accord-
ing to the World Bank, high and high-intermediate countries
have a higher physicians per capita and nurses per capita
when compared to low and low-intermediate income coun-
tries [2]. Factors such as slow economic growth in developing
countries and the migration of healthcare workers from de-
veloping to developed countries are the primary reasons at-
tributed to the lack of healthcare professionals in developing
nations. The shortage of healthcare workers in the low and
low-intermediate countries has led to greater work hours per
week and higher rates of burnout [3]. These issues have only
been exacerbated due to the COVID-19 pandemic leading to
overburdened medical systems. Using digital technology and
automation in healthcare, particularly in low income nations,
has great potential to ease the burden on these nations’ al-
ready crumbling medical infrastructure.

1.3 Deep Learning

New developments in deep learning have led to innovative po-
tential diagnostic applications. Deep learning allows for the
extraction of subtle quantitative features in datasets allowing
for analysis of complex patterns in the training data, leading
to the possibility of creating automated high-accuracy diag-
nosis models using medical scans in radionomics [10]. The
convolutional neural network’s (CNN) ability to use historical
recall of data, and the use of nonlinear systems (as opposed
to commonly used linear systems) allows for more accurate
classification. In the past, CNNs have shown general usabil-
ity in diagnosing retinal conditions using optical coherence
tomography [6].
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1.4 Existing Works

SARS-Net [9] is one of many deep learning models developed
to aid with COVID-19 diagnosis. While this model is able
to achieve an accuracy of 97.6% in identifying COVID-19
from Chest X-Rays (CXRs), this model fails to differentiate
COVID-19 from other common pulmonary conditions such as
bacterial pneumonia leading to a low specificity. Specificity is
a measure of how well a model can identify individuals who
do not have a disease and can correctly identify what con-
dition(s) an individual might have instead. For effective use
in a clinical setting, and for triaging of patients, models that
detect COVID-19 from medical images CT Scans need a high
specificity.

2 Methods

2.1 Data Augmentation & Preprocessing

194,922 isolated CT slices for 3475 patients were obtained
from the CC-CCII dataset [1]. The slices were split into 80:20
ratio of training images to testing images. To standardize the
images, all the images were resized into a size of 512, 512, 1
through Lanczos3 interpolation. Lanczos resampling rescales
the images by passing the pixels in the image through an al-
gorithm based on sinc functions. This type of interpolation
minimizes the aliasing, which is crucial for the model to de-
velop accurate patterns. Layers of augmentation were then
applied other training images to increase the diversity of the
data. By altering the brightness, saturation, rotation of the
images, the model prevents overfitting of the training data.
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Figure 1: Example of an original vs augmented CT slice. In
this case, the rotation filter was applied to the input image.

2.2 Proposed Convolutional Neural Net-
work

The augmented images are passed into the first layer with size
512x 512 x 1. The first 2 dimensional convolutional layer con-
tains 64 3x3 kernels with a stride of 1x1 because of its edge
detection ability. We used this kernel size (3x3) because it is
symmetric around the center, and extracts a large amount of
details from the image. While this does increase the computa-
tional expense, the difference in computation from a 3x3 filter
to filters of greater sizes is marginal. These filters extract fea-
tures from the images by applying convolution operations to
create a feature map. The feature maps are transformed by
the Rectified Linear Unit (ReLU) activation function which
prevents exponential growth in the computation by assigning

0 to negative input values, thereby activating less neurons in
the feature map by zeroing values that do not contain any in-
formation. Spacial dimensions are then reduced using a 2x2
max-pooling filter which significantly reduces the computa-
tional cost by reducing the number of parameters to learn.
Lesions such as GGOs, crazy-paving patterns, and consolida-
tion in the lungs all show up on a CT Scan as brighter pixels.
Brighter pixels have grayscale values closer to 1 while darker
pixels have grayscale values closer to 0. This is why maximum
pooling was used instead of minimum pooling because on CT
Scans: the maximum values (i.e. the brightest pixels) con-
tain the most relevant information about the image needed
for classification of lung diseases. The resulting feature maps
contain high-level features which are then classified by a mul-
tilayer perceptron network after being flattened. A Softmax
activation is used to normalize the output from the last fully
connected layer into a multinomial probability distribution
over K classes. Here, K = 3 for COVID-19, bacterial pneu-
monia, and healthy slices. Our CNN has 6,542,531 trainable
parameters.

2.2.1 Minimizing Complexity

Between the input and output layers of a neural network, a
series of hidden layers are used to identify various patterns
within the training data. The training accuracy of a CNN
will generally increase with more hidden layers, along with the
computation and complexity of the model. An overly com-
plex model will often overfit because it learns the patterns
in the training data so well that it is not able to extrapolate
to testing data. This means there is a tradeoff between the
complexity and the accuracy the model achieves on testing
data. Current state-of-the-art models VGG19, InceptionV3,
and ResNet152 have 19, 48, and 152 layers respectively. These
large numbers of layers significantly increase how much the
model overfits because the model is too complex. This com-
plexity also increases the time to train the model because
of the substantial amount of computation that comes along
with additional increased layers. On computing systems with
lower computation power, these models may be untrainable in
certain scenarios due to the immense amount of computation
required. With this in mind, our CNN was designed to clas-
sify image features with just 6 hidden layers. Together with
the input and output layers, our CNN minimizes unnecessary
computation and complexity.

2.2.2 Dropout Layers

After choosing the number of hidden layers in our novel archi-
tecture, we further increased accuracy and prevented overfit-
ting by implementing regularization through dropout layers.
Dropout layers randomly set some of the outputs of a certain
layer to 0. The proportion of outputs that are dropped out
is based on the dropout factor p such that the probability
an output in a certain layer is dropped is 1 — p. We placed
dropout layers after the 1st and 2nd max-pool layers and af-
ter the 1st and 2nd dense layers (Figure 2). Standard con-
vention is to set dropout p = 0.5 for fully connected (dense)
layers and p = 0.8 or 0.9 for convolutional layers, however
this technique is arbitrary and is not generalizable to every
CNN. Using GridSearchC'V from sklearn library, we use grid
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searching to test dropout factors between 0.1 and 0.9 (incre-
ment = 0.1) in combination for all four dropout layers. The
following set of dropout factors achieved the highest accuracy
on a training set: 0.6 for between the convolutional layers and
0.7 for between the dense layers.

2.3 Training Convolutional Neural Network

Our CNN was trained using a stratified random sample of
105,000 isolated CT slices taken from our training set (Sec-
tion 2.1). We used 35,000 slices for COVID-19, pneumonia,
and healthy (control). We trained our CNN on a NVIDIA
GeForce 3090 GPU for 250 epochs by using CUDA, which
enabled the GPU to be used for general purpose computing.
The Tensorflow operations performed on the NVIDIA GPU
were accelerated with the cuDNN library. All Python scripts
were run using Ubuntu.

2.3.1 Initializing Weights

Our CNN uses random initialization to set the initial weights
for the model before training. Our CNN initializes its weights
using a Glorot (Xavier) Uniform Initializer because of its abil-
ity to maintain variance across layers, which prevents the gra-
dients from exploding or vanishing. The weights for each layer
are chosen by selecting samples from the range on a uniform
distribution.

6
inputs + outputs

(1)

U(—z,x) where z = \/

@ Conv2D . MaxPooling2D . Dropout . Flatten . Dense

Figure 2: Visualization of the CNN’s Architecture

2.3.2 Loss Function

The CNN used the Categorical Cross Entropy loss function
[14]. This loss function takes the model’s predictions and
applies a Softmax activation to form a probability distribu-
tion (p;). The distance between this predicted probability
distribution and the ground truth values (¢;) is calculated by
cross-entropy and is penalized logarithmically so that large
differences output a value of 1 while small differences out-
put a value of 0. Specifically, the logarithm (base 2) of this
distribution is multiplied with the distribution of the ground

truth label for all classes (n). The categorical cross entropy
(Formula 2) is calculated by summing all of these products
across all the classes to form a quantitative measurement of
the uncertainty, or lack of order, in the system, A categorical
cross entropy closer to 0 indicates the current set of weights
are able to classify the training CT Scans with a high ac-
curacy. A categorical cross entropy closer to 1 indicates the
current set of weight classifies the training CT Scans with a
low accuracy.

Losscgg = — th‘ -logy (pi) (2)
i=1

2.3.3 Adam’s Optimizer

Our CNN uses Adam’s Optimizer [7] to minimize its categor-
ical cross-entropy loss. Adam’s optimizer was chosen because
of its use of momentum and a non constant learning rate.
Momentum allows the optimizer to overcome valleys caused
by noise in the loss gradient when converging to the minima.
Adam’s uses an adaptive learning rate based on adaptive mo-
ment estimation. The optimizer computes the moving aver-
ages of gradient (G;) and gradient squared (G?) to estimate
the moments mean (m;) and uncentered variance (v;) respec-
tively. m; and v; are calculated using Formula 3 and Formula
4 respectively. Formula 5 uses information from the current
interaction of weights as well as the hyperparameters to adjust
the weights for the iteration in order to minimize the value of
the categorical cross entropy loss function. In Formulas 3-5,
t is a certain iteration of weights at a specific epoch. The
hyperparameters for these computations were tuned using a
grid-search method for COVison. Using GridSearchCV from
the sklearn library in Python, a cross validation process is
performed where a metric for different portions of the data
are averaged to estimate the performance. This process was
used to tune the initial learning rate (1), beta 1 (51), beta 2
(B2) for the CNN with root mean squared error (RMSE) as
the metric. The hyperparameters were tuned by a factor of
10 from a range of 0.1 to 0.0001 for n and 0.9 to 0.9999 for 5,
and By. The combination of hyperparameters that achieved
the lowest root mean squared error (RMSE) are summarized
in Table 2.
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Figure 3: Accuracy of the CNN in classifying the training
data across 250 epochs (left) and value of categorical cross-
entropy loss function for each epoch (right).

2.4 Clinical Factors Dataset Oversampling

We used the Khorshid COVID Cohort (KCC) [11] and the
Israeli Ministry of Health public health database to con-
struct a custom dataset of 7 clinical factors (shortness of
breath, cough, headache, fever, sore throat, age, and gen-
der). Combined, we compiled clinical factors for 30 patients
with COVID-19, 30 patients with pneumonia, and 125,882
healthy patients. Training a model on this dataset results in
an imbalance classification problem because of the skewness
in distribution over the three classes. To address this, the
data was resampled using the Imbalanced Learn library in
Python. The majority class of healthy patients was under-
sampled so that 12,000 sets of clinical factors were randomly
selected. Both minority classes of patients with COVID-19
and patients with pneumonia were oversampled through ran-
dom duplication so that 11,970 sets of clinical factors were
added to the original 30 sets for both classes. We applied
oversampling and undersampling to the three classes. The
complete dataset had 36,000 sets of clinical factors equally
distributed among the three classes. This was split 80:20 into
a training/testing set.

2.5 Clinical
(CFNN)

In addition to CT Scans, a patient’s clinical factors can serve
as a means of differentiating whether a patient has COVID-19
or pneumonia. We designed this secondary neural network
called the clinical factors neural network (CFNN) to work
in conjunction with our CNN (for CT Scans) designed and
trained in Sections 2.2 and 2.3 respectively. Adding another
neural network to the CNN framework increases the variation

Factors Neural Network

during training, which consequently decreases the spread of
predictions and the overall bias. The ensembling process to
combining the CFNN and CNN is described in Section 4.

Our CENN is a fully connected neural network (FCNN),
or multilayer perceptron neural network, with 6 fully con-
nected (dense) layers. This means that every neuron in a spe-
cific layer is connected to every neuron in the following layer.
The output layer has a size of 3 neurons in our model, which
are the 3 classes the images are categorized into. The large
amount of connections increases the complexity and computa-
tion time, so we added a dropout layer for regularization after
the first 3 dense layers to reduce overfitting. The dropout fac-
tor was tuned to p = 0.5 using the same grid-searching method
in Section 2.2.2. ReLU was used as the activation function in
all the hidden layers to prevent exponential growth in com-
putation, and Softmax was used in the final layer to create
the probability distribution over the 3 classes: COVID-19,
pneumonia, and healthy (control). In total, there are 60,099
trainable parameters in our CFNN.
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Figure 4: Architecture of Clinical Factors Neural Network

2.6 Training CFNN

In total we trained our model for 7 clinical factors: short-
ness of breath, cough, headache, fever, sore throat, age, and
gender. After processing our training data, we trained our
CFNN on a NVIDIA GeForce 3090 GPU using CUDA and
cuDNN. We utilized early stopping in our training, which is
a regularization method in which the amount of epochs is de-
creased to minimize overfitting. Both the accuracy and loss
of the model began to stabilize by 40 epochs so we did not
continue training our model past 50 epochs. The weights in
our CFNN were initialized using a Glorot Uniform Initial-
izer (Section 2.3.1) and the Categorical Cross Entropy loss
function (Section 2.3.2). Adam’s Optimizer was used to opti-
mize the weights to minimize the Categorical Cross Entropy
loss function, thereby achieving maximum accuracy. We used
grid searching to choose the best hyperparameters for Adam’s
Optimizer (method in Section 2.3.3). The optimal hyperpa-
rameters are summarized in Table 2. The network reached a
maximum accuracy of 92% and a loss of 0.12.
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Figure 5: Accuracy of the CFNN in classifying the training
data across 50 epochs (left) and value of categorical cross-
entropy loss function for each epoch (right).

3 Results

3.1 CNN Testing

To test our CNN, we took an simple random sample of
25,658 isolated CT slices from our testing set created in Sec-
tion 2.1. The breakdown of the testing data are as follows:
12766 healthy (control), 7254 pneumonia, and 5638 COVID-
19. None of the slices used for testing were a part of the
training set to prevent overfitting to the training data. Re-
sults after classifying the testing images are summarized in
Figure 6 (confusion matrix).

12114 30 101
0.9489268 0.0041356 0.0179142 0.8

Predicted Covid Predicted Pneumonia Predicted Normal

171 7081 143
0.013395 0.9761511 0.0253636
-0.4
481 143 5394 -02
0.0376782 0.0197133 0.9567222
True Normal True Pneumonia True Covid

Figure 6: Confusion matrix comparing the true labels for the
25,658 CT scans and the predicted labels by our CNN.

For this multi-classification problem, we use multiple metrics
to determine the accuracy of our CNN in differentiating be-
tween healthy lungs, lungs with pneumonia, and lungs with
COVID-19. One such metric is the AUROC (area under re-
ceiver operating characteristic) which is a graphical plot that
illustrates the diagnostic ability of a classifier system based on
how well the CNN differentiates between different classes. To
graph AUROC, we calculated the true positive rate (TPR),
false positive rate (FPR), true negative rate (TNR), and the
false negative rate (FNR) after we testing our CNN on the
testing data.

TPR = Tri—PFN (6)
FN

FNRE= 25T FN @)
TN

TNR = p s (8)
FP

FPR= 55T FN )

We calculate true positive, true negative, false positive, and
false negative rates by using the “one vs all” method. For
example, to calculate the cumulative false positive value, we
calculate the FP (6) for all three classes COVID, pneumonia,
and healthy - and then average of all three values to deter-
mine the final combined FP. Specifically we take one class,
for example, COVID, and treat the combine pneumonia and
healthy and treat it as the “rest”. Thus we reduce the 3x3
confusion matrix (Figure 6) to a 2x2 matrix and then we use
Formulas 6 and 9 to calculate the TPR and the FPR respec-
tively. After repeating this process for all three classes, we
calculate the sensitivity (cumulative FPR) using Formula 11,
and specificity (cumulative TPR) using Formula 12, letting
n = number of classes = 3. Finally we graph the sensitivity
and specificity to create the AUROC.

A B TP+ FN o)
Y = TP Y FP+ TN + FN
" FPR;
Sensitivity = ZZ% (11)
" TPR;
Specificity = ZZ% (12)
AUROC
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Figure 7: Visualization of the CNN’s AUROC versus a ran-
dom classifier (dashed lines). AUROCsS closer to 1 indicate a
greater ability to separate the 3 different classes.
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Condition  Testing Training
COVID-19 35000 5638
CT Scans Pneumonia 35000 7254
Healthy 35000 12766
COVID-19 9600 2400
Clinical Factors Pneumonia 9600 2400
Healthy 9600 2400

Table 1: Breakdown of how many CT scans and clinical factors used for the testing and training of COVision.

3.2 Comparison Against Radiologists

We performed a two sample z-test to determine if our CNN
outperforms 3 independent board-certified radiologists with
at least 10 years of clinical experience with statistical signifi-
cance. We took a simple random sample of 297 images from
our testing set and asked three radiologists to blindly clas-
sify CT scans as either COVID-19, bacterial pneumonia, or
healthy. Radiologist 1 classified 97 images, Radiologist 2 clas-
sified 150 images, and Radiologist 3 classified 88 images. The
radiologists’ results are summarized in Figure 8.
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Figure 8: Confusion matrix comparing the true labels for 297
CT scans and the predicted labels by 3 independent radiolo-
gists. The radiologists’ accuracy was 73.4%.

We performed the two sample z-test at a significance level
of @« = 0.05. Our CNN had an accuracy of p; = 0.958 on a
testing sample size of ny = 25658, and the radiologists had an
accuracy of po = 0.734 on a testing sample size of no = 297.
Our null hypothesis was that the accuracy of our CNN is equal
to accuracy of the three radiologists (p1 = p2). Our alternate
hypothesis was the accuracy of our CNN is greater than accu-
racy of three radiologists (p; > p2). All conditions were met
for performing the test as both samples were random (used
the sample function from the random library in Python). All
calculations were computed using the statsmodels library in
Python.

_ _ — 0.956
P+ s 25658 + 297
P1 — D2
z

B \/p0'<1_p0)'(n%+n%>

z = 18.66, so p(z > 18.66) ~ 0

Since the p-value of approximately 0 is less than the signifi-
cance level of 0.05, there is significant evidence to reject the
null hypothesis. Specifically, there is significant evidence that
our CNN is more accurate than the three radiologists in clas-
sifying chest CT scans as COVID-19, bacterial pneumonia,
or healthy. When analyzing the confusion matrices (Figures
6 and 8), we find that our CNN can differentiate COVID-19
from pneumonia with 97.8% accuracy while the three trained
radiologists can differentiate with a 55.5% accuracy.

3.3 Grad-CAMs for CNN

To visualize the weights of the trained CNN, we created
Gradient-Weighted Class Activation Mapping (Grad-CAMs)
for a stratified simple random sample of 3000 CT slices from
our CT scan testing set without any data augmentation (i.e.
flips, rotations, etc.) because we wanted to generalize our
Grad-CAMs to a standard view of Chest CT Scans. This re-
sulted in 1000 healthy scans, 1000 pneumonia scans, and 1000
COVID-19 scans. Heat-maps of the activation map from the
CNN’s last convolutional layer were created with a CT scan
as input. This quantitative heat-map was then normalized
to a range of [0, 1] and transformed into a visualization with
a jet color scale from Matplotlib library in Python. Super-
imposing these colored heat-maps onto the original CT scan
highlights regions of the CT scan that the model perceives as
significant for accurate classification. The Grad-CAMS show
that lesions are generally present in the center of the lungs in
bacterial pneumonia. Lesions for COVID-19 typically present
peripherally, closer to the pleura. COVID-19 lesions are also
shown to be much more scattered while lesions from bacterial
pneumonia are more localized. These human-interpretable
image features can be used by radiologists to improve the
accuracy of manual diagnosis of pulmonary conditions.
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Figure 9: Grad-CAMs for bacterial pneumonia (left), and
a COVID-19 CT scans (right). Yellow pixels have a higher
weightage. Blue pixels have a lower weightage.

3.4 CFNN Testing

The clinical factors neural network (CFNN) was blindly
tested on the a testing set of 7200 clinical factor sets (2400 for

healthy, pneumonia, and COVID-19). The CFNN achieved
an accuracy of 88.75%, correctly classifying 6390 sets of clini-
cal factors. The highest categorical accuracy of 97.58% came
from the Healthy class, followed by 85.46% for COVID-19 and
83.20% for pneumonia. Therefore, our CFNN should be used
in conjugation with other models to produce the most accu-
rate diagnosis. To this end, we propose an ensemble model
combining our CNN and CFNN in Section 4.

3.5 CFNN Weights

The weights from the trained CFNN were extracted from the
model to determine the importance of each clinical factor in
making a prediction. These weights for the neurons mathe-
matically transform the input into the output for the neuron
and determine the impact of the neuron on the next layer.
Using the get_weights function from the layers module in
tensorflow.keras, the weights across the first layer were aver-
aged for each of the 7 input neurons. After normalizing the
weights to a [0, 1] range, we found that the most influential
factor was “Shortness of Breath”.

Hyperparameter Initial Learning Rate (n) | Beta 1 (81) | Beta 2 (f82) | epsilon €
CNN (CT Scans) 0.001 0.9 0.999 1078
CFNN (Clinical Factors) 0.01 0.99 0.999 1078

Table 2: CNN and CFNN Adam’s optimizer hyperparameter choices that achieved lowest RMSE after grid-searching.

4 Ensembling

To combine our CNN and CFNN which can both inde-
pendently differentiate between healthy, pneumonia, and
COVID-19 patients, we create an ensemble model. Specifi-
cally, the predictions of each network are combined using fed-
erated weight averaging which determines a weight (w) based
off of the ratio of training data used for the K** model (n},) to
total training data used for all models (n). For our ensemble
model, K = 2 for the two trained models and F'(k) are the
weights for the k*" trained model. ncyy = 105000 for the
CNN and nerpnyny = 36000 for the CENN which forms a ratio
of 0.745 to 0.255 between the two models for the weighted
average. This formula for is shown in Formula 13 [12].

K
N
w_k; (k)

(13)

5 Discussion

Through our research, we developed a deep learning frame-
work to differentiate COVID-19 from other common pul-
monary conditions. Our framework has two parts: a con-
volutional neural network (CNN) that uses CT scans, and a
clincal factors neural network (CFNN) that uses clinical fac-
tors such as age, weight, and symptoms to help differentiate
between healthy, pneumonia, and COVID-19 patients. To-
gether we call this framework COVision. In the future, this
framework can be trained to differentiate other lung condi-
tions apart from bacterial pneumonia such as different types

of lung cancer. The CNN achieved an accuracy of 95.8%,
an AUROC of 0.970, and a specificity of 98% on 25658 CT
scans from our testing set. When compared to three board
certified radiologists with at least 10 years of experience, our
CNN has a statistically significant higher accuracy (95.8% vs.
73.4%), especially in differentiating COVID-19 from pneu-
monia and healthy CT Scans. After analyzing our CNN’s
activation maps, we found evidence that COVID-19 lesions
presented peripherally, closer to the pleura while pneumonia
lesions presented centrally on a chest CT scan of the lungs
(coronal plane). When analyzing the weights of our CFNN
(clinical factor neural network), “shortness of breath” was
the best indicator of disease. COVision has the potential to
save countless lives, particularly in developing nations with a
shortage of doctors and huge volume of patients due to the
coronavirus pandemic by assisting medical professionals in the
diagnosis process for these patients.

6 Data Availability

The CT Scans of COVID-19, pneumonia, and healthy pa-
tients were obtained from the China Consortium of Chest CT
Image Investigation (CC-CCII) dataset [1]. Ground truth for
the CC-CCII dataset was established via serology tests and
confirmed by laboratory findings. Clinical factors for COVID-
19, and pneumonia patients were obtained from the Khorshid
COVID Cohort (KCC) [11]. Clinical factors for healthy pa-
tients were obtained from Israeli Ministry of Health public
dataset [5]. We compiled all the clinical factors data into a
CSV file using the pandas and numpy libraries in Python. We
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removed the clinical factors from the dataset that were not
one of the following: shortness of breath, cough, headache,
fever, sore throat, age, and gender. We binarized the ages of
the patients by having a threshold age of 60 years (1 assigned
to age if age is greater than 60 years, 0 assigned if the age is
less than 60 years).
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