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Longitudinal home self-collection of capillary blood using homeRNA correlates interferon and innate viral 

defense pathways with SARS-CoV-2 viral clearance 

 
One Sentence Summary: Self-blood collection using homeRNA captures temporal dynamics in host 

transcriptional immune response during acute SARS-CoV-2 infection.  
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ABSTRACT 
 

Blood transcriptional profiling is a powerful tool to evaluate immune responses to infection; however, blood 

collection via traditional phlebotomy remains a barrier to precise characterization of the immune response in 

dynamic infections (e.g., respiratory viruses). Here we present an at-home self-collection methodology, 

homeRNA, to study the host transcriptional response during acute  SARS-CoV-2 infections. This method 

uniquely enables high frequency measurement of the host immune kinetics in non-hospitalized adults during the 

acute and most dynamic stage of their infection. COVID-19+ and healthy participants self-collected blood every 

other day for two weeks with daily nasal swabs and symptom surveys to track viral load kinetics and symptom 

burden, respectively. While healthy uninfected participants showed remarkably stable immune kinetics with no 

significant dynamic genes, COVID-19+ participants, on the contrary, depicted a robust response with over 418 

dynamic genes associated with interferon and innate viral defense pathways. When stratified by vaccination 

status, we detected distinct response signatures between unvaccinated and breakthrough (vaccinated) infection 

subgroups; unvaccinated individuals portrayed a response repertoire characterized by higher innate antiviral 

responses, interferon signaling, and cytotoxic lymphocyte responses while breakthrough infections portrayed 

lower levels of interferon signaling and enhanced early cell-mediated response. Leveraging cross-platform 

longitudinal sampling (nasal swabs and blood), we observed that IFI27, a key viral response gene, tracked closely 

with SARS-CoV-2 viral clearance in individual participants. Taken together, these results demonstrate that at-

home sampling can capture key host antiviral responses and facilitate frequent longitudinal sampling to detect 

transient host immune kinetics during dynamic immune states.  
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INTRODUCTION  

The blood transcriptome can offer valuable mechanistic insights into an individual’s immune response to 

chronic and infectious diseases (1-3). In efforts towards personalized medicine, high-dimensional molecular 

diagnostics based on blood transcriptional signatures have been developed to detect infectious diseases, inform 

prognosis, and tailor treatment strategies in various cancers and autoimmune diseases (4-9). However, these 

multivariate molecular signature assays remain heavily reliant on traditional phlebotomy, a procedure that is 

resource-extensive, can be burdensome for patients, and is particularly difficult to perform daily (10). 

Consequently, these limitations restrict access to specimen collection, especially when early and frequent 

timepoints are desired. Instead of using disease- or treatment- relevant time points (precision sampling), clinical 

studies often rely on scheduling convenience or clinical staff availability (convenience sampling). In the era of 

precision medicine, convenience sampling can compromise the predictive values of biomarkers in both clinical 

testing and during biomarker development studies. Within the context of respiratory viral infection and the rapidly 

evolving and potentially transient nature of early infection immune kinetics, single timepoint participant samples 

(cross-sectional/non-longitudinal studies) can be misleading when confounded by each individual’s infection 

timeline. A home-use device that decentralizes specimen collection while preserving transcriptomic signatures 

during specimen transport back to a central lab has tremendous potential to catalyze development and application 

of RNA-based diagnostics and clinical research into the fundamental mechanisms of disease.  

Our team recently developed a home-use device (homeRNA) that enables self-collection of liquid 

capillary blood coupled with in-field stabilization of blood cellular RNA (11). This platform enables larger blood 

volumes and a potentially less painful user experience compared to prior systems that utilize finger sticks; further, 

by using a larger volume liquid sample, homeRNA overcomes many of the limitations of using dried blood spots 

for transcriptomics. The homeRNA blood collection kit consists of two major components: i) a Tasso-SST blood 

collection device (Tasso, Inc.) and ii) a stabilizer tube with embedded fluidics containing RNA stabilizer (Fig. 1). 
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We previously assessed its usability in an unsupervised setting using a cohort of healthy volunteers and 

demonstrated that at-home participant-collected and stabilized blood samples obtained from healthy adult 

volunteers yielded high RNA quality and sufficient RNA quantity suitable for downstream transcriptomics 

analysis (11). By recruiting study participants across the U.S., we demonstrated the feasibility of decentralized 

liquid biopsy for transcriptomics-based applications. In clinical study applications, this virtual self-collection 

strategy makes homeRNA scalable to geographically disparate multi-site studies over longer study durations 

while still maintaining i) a systematic collection schedule and standardization of collection protocols across the 

study and ii) high resolution time-course profiling of the blood transcriptional response across disease- or 

treatment-relevant time points.  

During acute viral infections, the complex interplay between various arms of the immune system gives 

rise to a rapidly evolving immune landscape; a delicate and time-dependent balance between pro- and anti-

inflammatory molecules is crucial to control the infection (viral clearance) while maintaining inflammatory 

homeostasis and preventing excessive host tissue damage. Furthermore, temporal patterns of transient host 

biomarkers may predict clinical outcomes such as viral clearance and symptom burden. During the on-going 

COVID-19 pandemic, we leveraged home sampling strategies to systematically profile the temporal landscape of 

host and viral factors during SARS-CoV-2 infection (COVID-19 response repertoire) in non-hospitalized adults 

and present the results of the first application of homeRNA in an infectious disease observational cohort.  

 

RESULTS  

 

Study design and participant characteristics 

Between January – September 2021, we enrolled participants across King County, Washington to evaluate 

the utility of a home blood self-collection methodology (homeRNA) for longitudinal transcriptomic studies and 

to test its first application in characterizing the immune response to respiratory viral infections using an outpatient 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2023. ; https://doi.org/10.1101/2023.01.24.23284913doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.24.23284913
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 5 

SARS-CoV-2 infected cohort. First, we compared both PAXgene venipuncture and homeRNA methodologies in 

healthy adult participants (n = 20), with RNA yield and quality as primary outcome measures (Fig. S1A). Next, 

we conducted a longitudinal observational case-control study using a SARS-CoV-2 outpatient cohort (Fig. 2A). 

Here, 39 outpatient (mild) COVID-19 participants were recruited through the Fred Hutchinson COVID-19 

Clinical Research Center within 7 days of PCR positivity for SARS-CoV-2 and balanced for vaccination status 

(Fig. 2A). The median days post first symptom onset (PSO) was 9 (IQR: 8.00-10.25) for all COVID-19+ 

participants. Additionally, healthy uninfected participants (n = 5) with no history of respiratory symptoms or 

infection within two weeks of eligibility screen were recruited as COVID-negative controls (Fig. 2A). The 

demographics and clinical characteristics of study participants are summarized in Table 1.  

A study kit package containing seven homeRNA blood kits and fourteen nasal swab kits was sent to all 

participants upon informed consent. Participants were asked to self-collect and perform stabilization of capillary 

blood from the upper arm using the homeRNA blood kit every other day for a period of two weeks (Fig. 2B). A 

device use survey was distributed with each blood collection timepoint to evaluate usability and blood collection 

parameters. COVID-19+ participants also collected daily nasal swabs and symptom surveys to track viral load 

kinetics and symptom burden respectively (Fig. 2B). 95.5% (n = 44) of the participants completed the study. 

Longitudinal blood and nasal swab samples obtained from 35 participants were used for transcriptional profiling 

and pathogen analyses respectively while seven participants were excluded due to insufficient RNA yield (n = 1) 

and incomplete collections (n = 6) (Fig. 2B, Table S1). Blood transcriptional signatures were profiled for 773 

genes spanning 56 immune pathways using the nCounter Host Response codeset (NanoString Inc.) (Fig. 2C).  

 

Utility of home blood collection and stabilization methodology for longitudinal transcriptomic studies 

 

Using donor-matched samples (Fig. S1A), we observed comparable RNA yield and quality between 

PAXgene and homeRNA sampling methodologies. As expected, PAXgene samples (2.5 mL collection volume) 
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afforded a significantly higher total RNA yield compared to homeRNA samples (0.1 – 0.4 mL micro-sampling 

volume) (Fig. S1B and S1C, Table 2).  However, both PAXgene and homeRNA afforded comparable yields per 

mL blood volume (Fig. S1B and S1C, Table 2). RIN scores were comparable between both sampling 

methodologies with homeRNA-stabilized samples showing slightly higher RIN scores in individual samples (Fig. 

S1B and S1C, Table 2). 

Within our longitudinal case-control cohort (Fig. 2A), 36 participants completed study procedures with 

98% (247/252) of the scheduled homeRNA blood samples and 93% (482/518) of scheduled nasal swabs 

successfully returned to the lab (Table S1). Only 1% (3/252) of the homeRNA collections failed to obtain blood 

while over 45% (115/252) of self-collections resulted in the maximum blood volume (Fig. 2D; Table S2). 6% 

(15/247) of returned blood samples did not yield sufficient RNA for transcriptomics analysis (Table S2). We 

observed a median total yield of 1.15 µg (IQR 0.71 – 1.87) and a median RIN score of 8.5 (IQR 8.0 – 8.7) (Fig. 

2E). Of note, we successfully profiled 79% (33/42) of samples with low (~100 µL; Level 1) reported blood 

collection volume (Table S2), demonstrating that transcriptomics applications using self-collected samples was 

robust even with collection volume variations. 

As kit usability can affect user acceptance of this sampling methodology, we further assessed pain level, 

ease-of-use, blood collection time, and overall kit usage time. Over 94% of participants reported total kit usage 

time of under 15 minutes (Fig. S1D) and completed blood collection within 6 minutes (Fig. S1E). Similarly, over 

90% of participants reported slight to no pain and ease of use for both the Tasso-SST blood collection and RNA 

stabilizer tubes (Fig. S1F).  

 

Viral load kinetics and symptom burden in an outpatient SARS-CoV-2 cohort 

 

To track SARS-CoV-2 viral load (VL) kinetics and detect co-infections with other respiratory pathogens, 

nasal swabs from COVID-19+ participants were subjected to a multi-pathogen RT-qPCR assay on the OpenArray 
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platform (Thermo Fisher) (Fig. 2C). Swabs with time-matched blood samples were serially tested until we 

observed clearance of all detected respiratory pathogens in two consecutive samples (Fig. 3A). As shown in Fig. 

3B, single cases of co-infection with adenovirus and Streptococcus pneumoniae were detected while 20% (6/30) 

of COVID-19+ participants in our cohort were co-infected with human rhinovirus (Fig. 3B). SARS-CoV-2 

sequencing showed infections from five variants (Alpha, Epsilon, and Delta) including ancestral lineages 20A 

and 20B (Fig. 3B). Due to the enrollment timeline, we observed a higher representation of both Alpha and Epsilon 

variants in unvaccinated individuals compared to vaccinated individuals, who were predominantly (56%) infected 

with the Delta variant (Fig. 3B; Table S3). We were not able to obtain variant information on four participants 

(3 vaccinated and 1 unvaccinated) due to low or no viral load (Fig. 3B). When viral loads were aligned to days 

PSO, we observed that unvaccinated individuals presented with higher viral loads and delayed viral clearance 

compared to vaccinated individuals; this difference did not reach statistical significance (Fig. 3C and 3D). 

Unvaccinated participants showed delayed viral clearance (16.5 PSO; IQR 12.75-19.5) compared to breakthrough 

infections (13.5 PSO; IQR 10.25-15.75), pointing towards a longer period of contagiousness (Fig. 3D). From 

participant symptom surveys, more than 30% of COVID-19+ participants experienced altered sensory (smell and 

taste), general fatigue, and respiratory congestion (Fig. 4A), with altered smell and taste having the highest 

symptom severity scores (Fig. 4B). Although we did not observe significant differences in symptom severity 

between unvaccinated and vaccinated participants, we noted an overall milder presentation of respiratory 

symptoms in vaccinated individuals (Fig. 4C). Symptom severity for individual participants is depicted in Fig. 

S2. Spearman correlation analysis between viral load and symptom burden showed a strong positive correlation 

between viral load, altered smell and taste (S1/S2), and disrupted sleep (H3). (Fig. 4C and 4D).   

 

At-home self-collection and stabilization of capillary blood captures host transcriptional responses to 

SARS-CoV-2 infection in an outpatient cohort  
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We analyzed a total of 232 longitudinal capillary blood RNA samples from 30 COVID-19+ and 5 healthy 

participants (Fig. 2A) and 6 single timepoint samples obtained from healthy participants (Fig. S1A). Using 

nCounter direct digital counting of native mRNA, we profiled expression of 773 genes spanning 56 biological 

pathways involved in the host immune response to infectious diseases. All 238 assayed participant samples passed 

the manufacturer’s recommended QC parameters (Fig. S3) and were normalized for i) assay variations using 

positive control spike-ins, ii) codeset versions using manufacturer-provided panel standards, and iii) sample input 

using nine reference genes. We fitted generalized additive mixed models (GAMMs) to the normalized counts to 

describe the kinetics of gene expression and examine their potential association with disease and/or vaccination 

status (Table S4; Fig. 5A) (12). We fitted three models: Model 1 assessed differentially expressed genes (DEGs) 

between COVID-19+ and healthy participants [covid19:healthy]; Model 2 assessed DEGs between vaccinated 

and unvaccinated COVID-19+ participants [covid19 vacc:unvacc] using only samples derived from COVID-19+ 

participants; Model 3 contrasted COVID-19+ vaccination subgroups to the healthy reference group [covid19 

vacc:healthy and covid19 unvacc:healthy]. All three models adjusted for age, sex, and host response codeset 

version as covariates (Table S4). In addition to pairwise contrasts, we fitted smooth functions in all models using 

days PSO as a continuous variable [s(days)] to identify temporally dynamic genes in four major participant 

groups: healthy [s(days):healthy], COVID-19+ unvaccinated [s(days):unvacc], COVID-19+ partially vaccinated 

[s(days):vacc(partial)], and COVID-19+ vaccinated [s(days):vacc(full)] (Fig. 5A). As all healthy participants 

within our cohort are vaccinated, we introduced a fourth category level for vaccination status (Healthy) in Model 

3 to allow us to distinguish responses by disease status (Table S4). Table S4 summarizes, for each fitted GAMM, 

the confounder adjustments, categorical variables used for vaccination status, samples fitted within each model, 

and the pairwise contrasts and smooth functions obtained from each model. An adjusted p-value < 0.1 using the 

Benjamini-Hochberg procedure is used to call significant genes. 

 Pairwise contrast analyses between disease and vaccination subgroups showed a low number of 

significantly DEGs in both the [covid19:healthy] (6 total DEGs) and [covid19 vacc:healthy] (5 total DEGs) 
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contrast groups, followed by [covid19 vacc:unvacc] (25 total DEGs) and [covid19 unvacc:healthy] (52 total 

DEGs) when false discovery rate (FDR) is controlled at 10% (Fig. 5A and 5B). Functional enrichment of the 40 

DEGs unique to [covid19 unvacc:healthy] using the Gene Ontology (GO) Biological Process database showed 

enrichment of pathways involved in antiviral responses, cytokine signaling and responses, Type I interferon 

signaling and responses, and B cell activation and proliferation (Fig. 5C). On the contrary, 20 of the unique DEGs 

in [covid-19 vacc:unvacc] showed functional enrichment in pathways associated with various immune cell 

differentiation (e.g., mononuclear, B-cell, lymphocyte, leukocyte, etc.) and regulation of cytokine production and 

stress response (Fig. 5C). Taken together, our results demonstrate that at-home self-collection and stabilization 

of capillary blood using homeRNA is capable of capturing key acute phase antiviral transcriptional responses in 

mild SARS-CoV-2 cases (outpatient setting) and suggest a distinct acute phase response between unvaccinated 

and breakthrough infections. Notably, we did not observe any significant dynamic genes in the healthy controls 

in both Models 1 and 3 (Fig. 5A). 

 

Mining dynamic genes through longitudinal transcriptional profiling provides insights into the COVID-19 

acute phase response repertoire 

Frequent and systematic sampling intervals over a 2-week period enabled us to profile the host immune kinetics 

at high-resolution during acute SARS-CoV-2 infection. By incorporating smooth functions [s(days)] into our 

models, genes with significant temporal dynamicity (response repertoire) were identified within each disease 

status and vaccination subgroup (Table S4; Fig. 5A). Using Model 1, we aimed to identify dynamic genes in 

COVID-19+ participants [s(days):covid19] and contrasted this list against the healthy reference group 

[s(days):healthy]. We identified a total of 418 dynamic genes (adjusted p-value < 0.1) within the COVID-19+ 

response repertoire  (Fig. 5A). On the contrary, we observed no dynamic genes across the same temporal window 

within the healthy reference group (Fig. 5A). As vaccination can reprogram the host response to infection, we 

further stratified the smooth function analyses of COVID-19+ response into three vaccination subgroups using 
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Model 3 (Table S4; Fig. 5A). We observed that unvaccinated COVID-19+ individuals [s(days):unvacc] 

presented the largest response repertoire consisting of 470 dynamic genes compared to vaccinated individuals 

[s(days):vacc] with a total response repertoire of 137 dynamic genes (Fig. 5A). Corroborating Model 1, no 

dynamic genes were observed in the healthy reference group in Model 3 (Fig. 5A). Comparison of response 

repertoire memberships between COVID-19+ and its respective vaccination subgroups revealed that a significant 

proportion of the COVID-19+ response within our cohort is driven by unvaccinated participants (Fig. 6A). A 

majority of the vaccinated subgroup repertoire consisted of genes with shared membership across all three 

comparison groups (Fig. 6A). Interestingly, smooth function analyses identified a subset of 96 response genes 

unique to the unvaccinated response repertoire functionally enriched in leukocyte and myeloid activation genes 

(Fig. 6B). When hierarchical clustering was performed on the top-ranked (by adjusted p-value) dynamic genes (n 

= 100) identified from the COVID-19+ unvaccinated response repertoire using samples obtained from the first 

sampling timepoint, a distinct transcriptional signature that consists of i) higher expression levels of Type I 

interferon (Fig. 6C; left panels C, J, and K), Type II interferon, and RNA sensing genes ii) lower expression of 

myeloid activation and TLR/TCR/BCR signaling genes (Fig. 6C; left panels A, E-G), and iii) enrichment of 

cytotoxic cell markers (Fig. 6C; left panel L) clustered COVID-19+ unvaccinated subgroups from vaccinated 

counterparts, whose transcriptional signatures more closely paralleled that of the healthy reference group (Fig. 

6C).  

 

Time-course geneset analysis depicts a robust interferon response in COVID-19+ unvaccinated subgroup.  

To further assess dynamics of co-expressed genes networks, we performed a time-course geneset analysis 

(TcGSA) comparing COVID-19+ samples to the healthy reference group using a highly curated blood 

transcriptional response geneset module (Chaussabel BloodGen3 Modules) (13-15) (Fig. 7A). Due to the 

variations in disease onset timeline across all participants, dynamic genesets were assessed across seven total 

sampling timepoints and an adjusted p-value < 0.1 using the Benjamini-Hochberg procedure was used to call 
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significant genesets. To evaluate if temporal dynamics between the two vaccination subgroups was comparable 

when using sampling timepoints instead of days PSO, we plotted each timepoint sample between the two major 

vaccination subgroups with days post symptom onset on the x-axis (Fig. 7B). As shown in this figure, we observed 

no significant difference between the median days PSO between the two vaccination subgroups across all 

timepoints. We identified 12 dynamic genesets when COVID-19+ participants were compared to reference 

healthy groups (Fig. 7A). Supporting the above results, TcGSA estimations showed a robust interferon response 

coupled with cytotoxic lymphocyte that waned over time. On the contrary, we observed increased expression of 

inflammation and B-cell related genesets at later sampling timepoints (Fig. 7A). Figure 7C depicts the temporal 

dynamics of three top-ranked dynamic genesets (M8.3, M9.1, and M15.127) along with their gene membership 

composition. Both interferon modules M8.3 and M15.127 showed tight homogenous co-expression between all 

module membership genes. The cytotoxic lymphocyte module (M9.1) showed higher heterogenicity in gene 

expression within the module. In the healthy reference group, both interferon modules showed stable kinetics 

while a very robust response was observed in early timepoints in the COVID-19 unvaccinated subgroup. 

Vaccinated COVID-19+ participants did not mount a robust interferon response within this captured temporal 

disease window.  

 

The interferon-response gene, IFI27, tracks closely with viral kinetics  

To visualize kinetics of dynamic genes identified from either GAMMs or TcGSA analyses above, we 

plotted expression of select genes for each individual participant (Fig. 8A). As shown in Fig. 8A, the smooth 

function fit for all positive and negative controls in addition to four representative reference genes did not show 

temporal dynamicity for both COVID-19+ and healthy groups (Fig. 8A). On the contrary, we observed several 

temporal trends for dynamic genes identified from previous GAMMs and TcGSA analyses (Fig. 8A). Genes 

within the cytotoxic lymphocyte module M9.1 (Fig. 7C) such as PRF1 and KLRD1 showed slight increase in 

expression in COVID-19+ compared to healthy controls that gradually waned over the course of the observed 
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temporal window. On the contrary, genes within the interferon response modules (M8.3 and M15.127) such as 

ISG15, XAF1, IFI27, and IFIT1 showed significantly elevated expression in COVID-19+ compared to healthy 

controls early in the observed window. Unlike the gradual waning of expression over time, expression of these 

genes decreased dramatically and returned to presumed baseline levels around 15 days PSO (Fig. 8A). We 

observed that IFI27 displayed the largest temporal change in COVID-19+ participants. We next assessed if 

expression of IFI27, an interferon response gene displaying the highest increase in expression, correlated with 

viral clearance and symptom severity on a participant-specific level. To achieve this, we plotted i) symptom 

severity and number, ii) SARS-CoV-2 viral load, and ii) IFI27 gene expression for each individual participant 

aligned to days PSO (Fig. 8B and Fig. S4). We observed that the temporal kinetics of IFI27 tracks closely to that 

of SARS-CoV-2 viral load regardless of vaccination status of the COVID-19+ participants (Fig. 8B).  

In addition to interferon and innate antiviral genes, we observed a group of co-expressed genes that show 

increased expression throughout the observation window. Fig. 8A depicts four select dynamic genes (ALOX5AP, 

ICAM3, TNFRSF9, and CASP3) identified from both GAMMs and TcGSA analyses. Corroborating results from 

previous smooth function analyses (Fig. 5A), healthy uninfected controls showed steady expression levels of 

these genes over time. Intriguingly, by performing a high frequency systematic sampling of SARS-CoV-2 acute 

phase response, we observed a group of genes (select four STRAP, UBA52, BCL2L1, LGALS3 shown in Fig. 8A) 

displaying a transient dip in expression early in the observation window, characterized by rapid suppression of 

gene expression followed by a rapid recovery to observed baseline level (based on our sampling window) as early 

as one week post onset of the suppression (e.g. BCL2L1 and LGALS3). Upon returning to observed baseline, 

expression of these genes continued to increase throughout the observation window (Fig. 8A). This transient and 

rapid pattern in dynamicity of the immune response during acute infection would be missed in single timepoint 

sampling or even longitudinal designs that are limited to weekly sampling due to barriers to sample collection. 

LGALS3, encoding for the β-galactoside-binding protein (Galectin-3), has been shown to mediate viral attachment 

and entry in herpes simplex virus infection (16) and enhance viral infection (e.g. influenza) and airway 
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inflammation (17). Playing a pro-inflammatory role in driving neutrophil infiltration and airway inflammation, 

LGALS3 correlates with severe outcome in COVID-19 infection (18). The observed transient systemic 

suppression of LGALS3 may provide protective homeostasis against damaging airway inflammation.  

 

DISCUSSION 

Whole blood transcriptional profiling is a powerful tool for the evaluation of immune responses to 

infectious diseases; however, blood collection via traditional phlebotomy remains a barrier to precise 

characterization of the immune response in highly dynamic infections such as those caused by respiratory viruses 

(8, 19). Here we present our study using an at-home self-collection methodology, homeRNA, to capture temporal 

gene expression profiles during the acute phase of mild-to-moderate SARS-CoV-2 infection. Our data 

demonstrate that home-based blood self-collection in the setting of acute illness is feasible, with high participant 

usability scores, and yields sufficient RNA quantity and quality to perform transcriptomic profiling. We also 

showed that longitudinal gene expression profiles vary significantly between COVID-19 and healthy participants, 

especially when comparing unvaccinated infected individuals to healthy controls. Furthermore, longitudinal blood 

sampling coupled with symptom surveys and viral load data revealed temporal relationships between host 

immune responses, symptoms, and viral load kinetics, especially with respect to interferon genes such as IFI27.  

Home-based RNA preservation platforms like homeRNA are particularly beneficial in the setting of highly 

communicable diseases such as SARS-CoV-2, where in-person phlebotomy visits are not desirable given the need 

for strict isolation measures and high exposure risk to healthcare workers; in-person phlebotomy, especially in 

the context of longitudinal sampling designs, is also highly inconvenient for infected individuals. Decentralized 

blood self-collection also enables on-demand and systematic distribution, collection, stabilization, and return of 

liquid blood specimen and is scalable to geographically disparate multi-site longitudinal studies. The temporal 

flexibility in both the timing and frequency of sampling also allows capture of transient but highly dynamic 

transcriptional signatures at specific treatment or disease stages. Previous studies of home-based blood collection 
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for RNA stabilization employ a fingerprick followed by capillary tube transfer into microcentrifuge tubes 

containing RNA preservation medium (20, 21). The homeRNA kit allows for collection of larger volumes of 

blood compared to the fingerprick approach (400ul with homeRNA versus 50ul with fingerstick), thus yielding 

more RNA for omics-based applications (Fig. 1).  

A critical metric for home-based blood self-collection for transcriptomics is reproducibility and stability 

of expression signatures over time despite variations in specimen storage and transit durations. We demonstrated 

our ability to achieve this with homeRNA in two ways. First, we showed that individual housekeeping genes are 

expressed at stable levels over time in both healthy and COVID+ subjects (Fig 8A). Secondly, healthy uninfected 

controls showed remarkably stable expression trends over time, with no differentially expressed genes over time 

(dynamic genes) in co-variate-adjusted smooth function models (Fig 5A). This is further demonstrated at the gene 

module and individual gene level, where we observed stable expression trends in healthy individuals of several 

genes and co-regulated pathways associated with interferon responses (Fig 7C and 8A). These findings in 

aggregate suggest that our platform is reliable and reproducible for longitudinal sampling. 

To the best of our knowledge, this is the first study to evaluate longitudinal gene expression signatures 

correlated to time-matched viral load kinetics and symptom assessment in SARS-CoV-2 infected individuals with 

mild-to-moderate disease using a fully remote study design. A significant proportion of SARS-CoV-2 infections 

are mild cases that do not require hospitalization. Regardless, mild cases of COVID-19 can present a wide range 

of symptom severity and individuals with mild infections can still develop post-acute sequelae of COVID-19 

(PASC) or long COVID (22). To date, transcriptional profiling of the immune response, especially in longitudinal 

studies, is heavily focused on hospital-acquired samples and controlled human challenge studies (23-25), 

oftentimes from patients with moderate-to-severe symptoms or requiring oxygen support (26). When mild 

outpatient cases are evaluated, single time-point samples are collected through initial clinic visit or resource-

intensive mobile phlebotomy (27) and longitudinal studies are oftentimes limited to infrequent sampling 

timepoints (28, 29). One study in outpatients with asymptomatic to moderate SARS-CoV-2 collected blood for 
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RNA-seq at days 0 and 5 post-enrollment, which was at a median of 5 days post symptom onset (28). Although 

extremely informative, transcriptional profiles of severe infection cases may not be representative of the host 

immune response in mild outpatient cases and thus to date, the precise characterization of the kinetics underlying 

the immune response to mild infections is scarce and broad transcriptional response in mild outpatient cases is 

not well understood.  

Using homeRNA, we can decentralize specimen self-collection and profile the host transcriptional 

response in an outpatient setting and can collect blood at much higher temporal frequency. Due to the variable 

nature of remote self-sampling pipeline, we sought to employ gene expression analyses methods that mitigate 

amplification of noise potentially introduced into the self-sampling technique. The molecular barcoding chemistry 

and single molecule digital imaging of the nCounter (nanoString) hybridization-based gene expression analysis 

allows for direct and amplification-free targeting of native RNA transcripts. The lack of reverse-transcription, 

amplification, and enzymatic steps coupled with direct probe-based hybridization of native RNA targets reduce 

amplification of error introduced at each processing step, allowing for highly sensitive and reproducible gene 

expression counts within our longitudinal dataset.  

Our data demonstrate that COVID-19+ participants have a robust interferon response in the early stages 

of infection, most apparent among unvaccinated individuals. This finding is consistent with other studies 

examining gene expression signatures in the peripheral blood, where early timepoints are associated with high 

levels of interferon response genes that decline in samples taken mostly from unique individuals at later timepoints 

(19). Importantly, elevated IFI27 expression has been consistently demonstrated in both early/mild and severe 

SARS-CoV-2 infections and can discriminate between infected and uninfected individuals (26, 30). IFI27 

(interferon alpha-inducible protein 27 or ISG12a) belongs to a family of interferon-stimulated genes whose 

expression has been associated with other viral infections (31, 32) including progression of HIV-1 (33) and as an 

early biomarker of influenza (34). Thus, our findings of differential expression of IFI27 in COVID-19 infected 

individuals have biological relevance and is consistent with prior studies. Furthermore, our study design allowed 
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for correlation between IFI27 expression, viral load, and symptom severity and duration. We previously 

demonstrated that self-sampling with foam nasal swabs provides a quantitative viral output that correlates with 

nasal cytokine levels in non-SARS-CoV-2 respiratory viruses (35). Here we demonstrated that similar 

correlations between symptoms, viral load, and IFI27 expression in the peripheral capillary blood are also present 

during acute SARS-CoV-2 infection.   

As the immune response to viral infections can vary significantly between individuals, we assessed if at-

home longitudinal self-sampling can detect distinct molecular signatures between disease sub-groups. Given that 

breakthrough cases (vaccinated) of COVID-19 generally present milder symptoms, we evaluated the 

transcriptional response in COVID-19 participants stratified by vaccination status. In a recently published study, 

transcriptional profiling of nasal swab samples comparing unvaccinated versus vaccinated breakthrough cases of 

COVID-19 demonstrated decreased innate and inflammatory response and increased adaptive host response in 

the breakthrough cases (36). Despite the lower number of study participants in our pilot dataset, we observed a 

parallel host transcriptional response, characterized by decreased interferon response in the periphery (Fig. 6C 

and 7C), demonstrating that at-home longitudinal capillary sampling can preserve distinct transcriptional 

signatures between disease subtypes.  

There are several limitations of our study. First, participants were enrolled up to 7 days following a 

positive SARS-CoV-2 infection, and first sampling timepoint obtained up to 16 days post symptom onset; 

therefore, early responses to infection are not captured in our data. Careful interpretation of temporal dynamics 

must be employed when interpreting the magnitude of our observed responses as response present outside of the 

captured temporal window may not be reflected in the dataset. For example, within our dataset, we observe a 

significantly lower interferon response from vaccinated COVID-19+ individuals. However, during the limited 2-

week snapshot window we acquired, we may have missed an earlier but more robust interferon response mounted 

in vaccinated COVID-19+ individuals. Second, as home (decentralized) self-collection methodologies can be 

highly susceptible to technical variabilities from sample collection, stabilization, storage, and transit period, we 
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expected some level of technical noise in the temporal dynamics. However, we observed surprisingly stable 

kinetics of the 773 host response genes analyzed within our healthy reference group unlike the highly dynamic 

transcriptional landscape of the COVID-19 acute phase samples, suggesting highly robust collection and 

stabilization using our sampling methodology. Third, as with other bulk transcriptomics-based analysis, our gene 

expression analysis method is not able to distinguish between active transcriptional remodeling versus changes 

in blood immune cell type composition, resulting in differential level of cell-type specific transcripts. In silico 

cell-type deconvolution algorithms such as CIBERSORTx can be applied to this dataset to further delineate 

transcriptional versus cell type abundance changes (19, 37, 38). Future development of home-based sampling 

methodology that is compatible with single-cell analyses platforms is of utmost interest to our group. Finally, due 

to our limited sample size and enrollment period, we were not able to characterize SARS-CoV-2 variant specific 

gene expression signatures. Clinical data suggest disease severity varies significantly by variant, especially when 

comparing ancestral strains and early variants to currently circulating Omicron lineage variants, and limited data 

suggest host immune responses can vary between strains (39, 40) . Future studies with adequate sample sizes are 

needed to account for variant specific host gene expression variability. 

 In sum, we present the first application of a novel home-based blood collection system for profiling the 

host gene expression kinetics during acute phase SARS-CoV-2 that produced robust longitudinal results and 

demonstrate its capability of profiling transient host response mechanisms during dynamic disease stages. We 

believe this tool can be applied broadly to a wide repertoire of disease states, especially those with highly dynamic 

host gene expression profiles, such as in infectious diseases where early host responses may be predictive of 

disease severity.  

 

MATERIALS AND METHODS 

Study Design and Participant Characteristics. 
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The objective of this study was to test the application of a home-use blood sampling and RNA stabilization kit 

(homeRNA) to capture transcriptomic signatures of disease and track their evolution over time in an out-of-clinic 

(remote) unsupervised use setting. We conducted a longitudinal observational case-control study in a cohort of 

individuals with acute COVID-19 infection (n = 39) and healthy controls (n = 5) (Fig. 2A). All healthy controls 

were recruited from the general population. For the control group, healthy adults with no history of respiratory 

symptoms or SARS-CoV-2 positivity within 14 days of eligibility screen were recruited from the general 

population. In the COVID-19+ group, both vaccinated and unvaccinated COVID-19+ adult participants with a 

positive SARS-CoV-2 nucleic acid amplification test within 7 days of eligibility screen were recruited through 

the COVID-19 Clinical Research Center. Participants who completed the full COVID-19 vaccination series at 

least two weeks prior to study enrollment were classified as vaccinated. Participants who received at least a single 

dose of COVID-19 vaccination but did not meet the two-weeks requirement above were classified as partially 

vaccinated. Participants who did not receive any doses of COVID-19 vaccination prior to or during their 

participant were classified as unvaccinated. All study participants provided informed consent. Each study 

participant collected blood samples using homeRNA every other day (7 sampling timepoints), collected daily 

nasal swab samples (14 sampling timepoints) and completed daily symptom surveys (14 surveys) over a two-

week period to track blood transcriptional response, viral load kinetics, and symptom progression respectively. 

The study was approved by the Fred Hutchinson Institutional Review Board [protocol approval number: 

FH10523]. This study was conducted at the Fred Hutchinson Cancer Center, Seattle WA. All sample collections 

were performed remotely by study participants. Participants were recruited to the study between January – 

September 2021. 

 

Respiratory specimen collection and viral load kinetics 

COVID-19+ participants were asked to collect anterior nasal swab samples from both nostrils using a sterile 

polyurethane custom foam swab (Puritan Ref# 251805PFSC2ARROW). Respiratory swab specimens were stored 
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dry (without universal transport medium), mailed back to the lab, and immediately transferred to -80ºC storage 

until ready for pathogen analysis. To quantify viral load, total nucleic acid was extracted using Magna Pure 96 

small total nucleic acid isolation kit (Roche Diagnostics). Isolated nucleic acid was screened for the presence of 

SARS-CoV-2 and multiple other respiratory viral and bacterial pathogens (Table S5) by TaqMan-based 

quantitative reverse transcription polymerase chain reaction (RT-qPCR) on the OpenArray platform (Thermo 

Fisher). TaqMan relative threshold values (Crt) were used to estimate viral load. A pathogen was classified as 

detected in a respiratory specimen when its Crt value was ≤ 28. To track viral load kinetics, respiratory specimens 

with time-matched homeRNA blood samples were serially assayed until samples were negative for any respiratory 

pathogen in two consecutive samples.  

 

Participant reported outcomes and homeRNA device use surveys 

Daily symptom surveys were administered virtually via REDCap (41) in the COVID-19 case group. A total of 26 

respiratory and non-respiratory symptom categories were presented in the survey (Table S6). Participants scored 

each symptom category based on severity (0 = none, 1 = mild, 2 = moderate, 3 = severe). COVID-19 vaccination 

manufacturer and dates were obtained to further classify COVID-19 cases into vaccinated and unvaccinated 

subgroups. Participants also completed a device use survey after each homeRNA blood collection to assess device 

usability, kit integrity during transport, blood collection parameters, and pain levels experienced during 

homeRNA blood collection.  

 

Gene expression analysis 

RNA isolation, cleanup, and concentration. All procedures using commercial kits were performed according 

to the manufacturer’s recommended protocol unless otherwise noted. For PAXgene venipuncture samples, total 

RNA was extracted using the PAXgene Blood RNA kit. For homeRNA-stabilized blood samples, total RNA was 
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isolated using the RibopureTM Blood RNA Isolation Kit. RNA concentrations were measured using the Take3 

microvolume plates on the BioTek Cytation 5 multimode reader (Agilent technologies). RNA quality was 

measured on the Bioanalyzer 2100 (Agilent Technologies) using the RNA 6000 Nano kit (Agilent Technologies 

#5067-1511) for samples with concentrations ≥ 5 ng/µL. RNA samples with concentration < 5 ng/µL, RIN values 

were measured using the RNA 6000 Pico kit (Agilent Technologies #5067-1513). For nCounter gene expression 

analysis, RNA samples were column purified and concentrated using the Monarchâ RNA Cleanup Kit (NEB 

#T2030). Samples were stored at -80ºC until ready for gene expression analysis.   

 

nCounter analysis. For gene expression analysis, direct detection and digital counting of native RNA transcripts 

was performed on the nCounter Pro Analysis System (nanoString). For each participant sample, 50-100 ng of 

total RNA samples were hybridized to the nCounter Host Response Panel codeset (nanoString) containing both 

capture and molecular barcoded-reporter probes to target genes. 773 genes associated with the host response to 

infectious diseases and 12 candidate reference (housekeeping) genes were targeted. Target-probe hybrids were 

immobilized on a cartridge, aligned, and digitally counted on the nCounter Pro digital analyzer. Two Host 

Response codeset versions (Host Response v1.0 and Host Response v1.1) were used to generate the dataset. A 

panel standard containing identical counts of all target panel genes was run alongside participant samples for each 

of the two codeset versions to normalize counts between the two codeset.  

 

Statistical analyses 

Differential gene expression analysis. We used generalized additive mixed models (GAMMs) to explore 

associations between gene expression and COVID-19 disease status over time, adjusting for age, sex, nCounter 

Host Response codeset versions (v1.0 and v1.1), and vaccination status (12). All fitted GAMMs included subject-

specific random intercepts to account for potential intra-subject correlation and described longitudinal gene 
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expression data using smoothed functions of time, defined as the number of days since first positive PCR test or 

onset of symptoms for COVID-19 positive participants. For healthy uninfected participants, an initial time point 

(Day 1) was defined as the median initial time point for COVID-19+ participants. We developed three GAMMs: 

i) Model 1 included COVID-19 disease status as factor; ii) Model 2 adjusted for vaccination but not COVID-19 

disease status, and was fitted to data from COVID-19+ participants only; iii) Model 3 was similar to Model 1, 

except that it adjusted for vaccination and COVID-19 disease status using a 4-level categorical variable with 

levels defined as (1) (COVID-19 negative, fully vaccinated), (2) (COVID-19 positive, unvaccinated), (3) 

(COVID-19 positive, partially vaccinated), and (4) (COVID-19 positive, fully vaccinated). P-values were 

adjusted for multiple comparisons by controlling the false discovery rate (FDR) using the Benjamini-Hochberg 

(BH) procedure (42). Adjusted p-values < 0.1 were used to identify differentially expressed transcripts. GAMM 

analyses were carried out using the gamm4 R package (43), setting the number of bases set to 5 in all analyses 

(43). Volcano plots was generated in R Statistical Software (v4.2.1, R Core Team 2022) (44). Functional 

enrichment was performed using graphical user interface ShinyGO (45).  

  

Time-course geneset analysis (TcGSA). 

Dynamic genesets between various disease groups were identified using the TcGSA package available on CRAN 

(http://cran.r-project.org/web/packages/TcGSA/index.html) (13). The TcGSA analysis utilized mixed models to 

compute the likelihood ratios for queried genesets (13). To account for the heteroskedasticity of the nCounter 

gene expression data, regularized log (rlog) transformation of normalized nCounter gene expression counts was 

performed in DESeq2 (http://bioconductor.org/packages/DEseq2/) prior to TcGSA analysis (46) (Fig. S5). 

BloodGen3 (14, 15) geneset module was used to query dynamic genesets within our expression dataset. To ensure 

samples from individual participants are represented within each analyzed time-course group, sampling 

timepoints were used as the time variable in the analysis. Dynamic genesets between disease groups (COVID-

19+ unvaccinated, COVID-19+ vaccinated, and healthy uninfected controls) were analyzed adjusting for age, sex, 
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and codeset version using a linear time function. P-values were adjusted for multiple comparisons by controlling 

the FDR using the Benjamini-Hochberg (BH) procedure (42). Adjusted p-values < 0.1 were used to identify 

significant genesets. For TcGSA heatmap visualization, significant genesets were clustered using the squared 

Euclidean (Ward D2) distance and the number of gene expression clusters within each dynamic geneset was 

estimated using the default gap statistic parameters (K-max = 4; methods = “firstSEmax”) and 500 Monte Carlo 

bootstrap samples. Estimation of gene expression dynamics for each significant geneset obtained from the TcGSA 

likelihood ratio test were displayed in a heatmap to visualize global temporal trends. Individual genesets were 

visualized using the rlog expression values for each gene within the queried geneset and aligned to sampling 

timepoints 1 – 7 (T1-T7) and displayed as spaghetti plots with each solid blue line representing the median scaled 

gene expression for a given gene over all participants.  

 

List of Supplementary Materials 

1. Detailed methods and materials 

2. Supplemental figures S1-S4.  

3. Supplemental tables S1-S6.  

4. Data file S1. Normalized counts of nCounter gene expression dataset obtained in the study.  

5. Data file S2. GAMM significant genes. 
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FIGURES 
 

 
 

Figure 1. homeRNA blood collection sampling and stabilization. Remote study design and self-blood 

collection from home enables decentralized sampling. homeRNA allows the user to collect up to 0.5 mL of 

capillary blood (without needing to milk the collection site as is common for finger stick blood collection) using 

the Tasso-SST blood collection device and perform RNA stabilization themselves within minutes of collection. 

Part of this figure is reprinted (adapted) with permission from (11) Copyright 2021 American Chemical Society. 
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Figure 2. Longitudinal transcriptional profiling of the SARS-CoV-2 acute phase response. A) Flow chart of 

cohort characteristics.  B) Study design depicting frequency of blood and nasal swab collection and symptom 

burden assessment. C) Flowchart depicting both host- and pathogen-associated outcomes measured in the study 

and their respective sample analysis workflows. D) Collected blood volume using Tasso-SST. E) Total RNA 

yield and quality of isolated RNA. Red error bars denote median with interquartile range of both RNA yield and 

RIN scores. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2023. ; https://doi.org/10.1101/2023.01.24.23284913doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.24.23284913
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 31 

 

Figure 3. SARS-CoV-2 viral load kinetics in unvaccinated and vaccinated COVID-19+ participants. A) 

Disease timeline and participant blood and nasal swab samples aligned to days PSO (Day 0) in both COVID-19+ 

participants and healthy controls. Blue cross denotes first PCR positive day; black and green circles denote SARS-

CoV-2 positive and negative nasal swab samples respectively; solid red triangles denote blood samples used in 

gene expression analysis while transparent red triangles denote missing blood samples. B) Heatmap depicting 

presence of SARS-CoV-2 and other respiratory pathogens in participants’ nasal swab samples. Right annotation 

columns depict sequenced SARS-CoV-2 variants and participants’ vaccination status. C) SARS-CoV-2 viral load 
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progression. Dotted lines represent individual viral load trajectory. Solid lines represent the loess smooth function 

of viral load within each vaccination subgroup. D) Box and whisker plot depicts viral clearance in unvaccinated 

versus vaccinated COVID-19+ participants.  
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Figure 4. Correlation between viral load and symptom severity in COVID-19+ participants. A) 3D bar plot 

depicts symptom prevalence (relative abundance) of 26 surveyed symptoms across 9 broad categories (A-S).  B) 

Circos heatmap depicts mean symptom severity score for each symptom type from days 8-25 PSO (rows) in 

COVID-19+ participants. Red denotes high symptom severity score while black denotes no experienced 

symptoms. Outer circle depicts broad categories of individual symptoms. Linear heatmap stratifies symptom 

severity scores by participants’ vaccination status. C) Spearman correlation analysis of SARS-CoV-2 viral load 

and symptom severity. Mean viral load for each day PSO and mean symptom severity score for each symptom 

type in COVID-19+ participants were analyzed. Purple and yellow denotes positive and negative correlation 

respectively. Width of the circle in the upper right matrix denotes the strength of the association with strongest 

association depicted by a thin line. Bottom left matrix depicts the Spearman correlation coefficient. Blank cells 
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denote no statistical significance for that particular association. D) Mean viral load and S1/S2 severity scores 

across all COVID-19+ participants aligned to days PSO.  
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Figure 5. Differentially expressed genes (DEGs) in COVID-19+ vaccinated and unvaccinated participants. 

A) Stacked bar plots depict number of DEGs from all three fitted GAMMs. Left and right plots depict the number 

of genes with raw and adjusted (FDR) p-values < 0.05, 0.1, and 0.2 respectively. Gray lines within each plot 

separate results of smooth function of days PSO [s(days):group of interest] and pairwise contrasts [test 

group:reference group]. Black arrow highlights lack of significant dynamic genes identified in healthy uninfected 

participants. B) Volcano plots depict significant DEGs from pairwise contrast groups shown in A). Genes are 

colored based on FDR cutoffs. Significant genes (FDR < 0.1) are labeled. x-axis depicts the estimated coefficient 

fitted from its respective GAMM while y-axis depicts the -log10(raw p-value). C) Venn diagram depicts gene 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2023. ; https://doi.org/10.1101/2023.01.24.23284913doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.24.23284913
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 36 

overlap of significant DEGs in each pairwise contrast groups. Lollipop plots depict GO functional enrichment of 

genes unique to the [vacc:unvacc] and [unvacc:healthy] contrast groups.  
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Figure 6. The COVID-19 response repertoire of mild-to-moderate outpatient infections. A) Circos plot 

showing overlap of significant genes identified from GAMM smooth function analysis between unvaccinated and 

breakthrough infections. Purple lines link identical genes between each group. The inner circle represents gene 

lists, where hits are arranged along the arc (dark orange denotes genes that hit multiple lists; light orange denotes 

genes unique to a particular list). B) Dot plot showing functional enrichment of genes unique to the COVID-19 

unvaccinated response. The size of the dot represents number of enriched genes. C) Heatmap depicting 

hierarchical clustering (Euclidean Ward D2) of top 100 ranked dynamic genes identified from the COVID-19 

unvaccinated response repertoire, where rows represent genes and columns represent the first timepoint sample 

from each participant. Top horizontal bars represent clinical characteristics of the corresponding samples. Left 
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vertical bars  represent select Host Response pathway annotation (light blue columns) and annotated immune cell 

markers (gray column). Various solid colors depict positive membership of a particular gene within that pathway.  
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Figure 7. Time-course geneset analyses (TcGSA) reveals higher interferon response intensity in 

unvaccinated individuals. A) Heatmap depicting expression kinetics of significant genesets identified from 

TcGSA. Chaussabel BloodGen3 modules were used to query all genes within our dataset. Columns represent 

sampling timepoints 1-7 while rows represent significant geneset modules. B) Violin plot compares median days 

PSO between unvaccinated and vaccinated subgroup in each sampling timepoint. C) Spaghetti plots depict 

expression kinetics (median scaled gene expression) of individual genes (blue line) within each module in healthy, 

unvaccinated, and breakthrough COVID-19 infections. Gene memberships are listed to the right of each module.  
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Figure 8. IFI27 expression tracks with SARS-CoV-2 viral load. A) Temporal trends of select response genes 

upregulated in early and late timepoints in COVID-19+ participants. Dotted lines connecting each analyzed 

sample (solid circles) represent expression kinetics in individual participants. Solid lines represent estimated loess 

smooth function in COVID-19+ participants (red) and healthy infected controls (green). Shaded area depicts 

confidence intervals. B) Correlation between IFI27 gene expression, viral load, and symptoms in individual 

participants. Total symptom number (blue columns), total symptom severity (gray columns), and IFI27 gene 

expression kinetics are plotted on the left y-axis. SARS-CoV-2 viral load is plotted on the right y-axis. IFI27 

expression kinetics of all healthy uninfected controls are displayed on the far-right plot. Scale for left y-axis 

adjusted to symptom number and severity.  
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TABLES 

Table 1. Demographics and Clinical Characteristics 
     

  

Cohort B  
(n = 35) 

Cohort A 
 (n = 20) 

COVID positive (n = 30) COVID 
negative 
(n = 5) 

 

unvaccinated (n = 14) vaccinated (n = 16) 
Demographics 
Sex, N (% cohort) 
   Female 
   Male 

 
9 (25.7%) 
5 (14.3%) 

 
10 (28.6%) 
6 (17.1%) 

 
5 (14.3%) 

0 (0%) 

 
12 (60%) 
8 (40%) 

Age (years), Median (IQR) 31 (29 - 41.5) 36.5 (31.25 - 52.5) 42 (39.5 - 54.5)   
Ethnicity, N (% cohort) 
   Hispanic 
   Non-Hispanic 

 
3 (8.6%) 

11 (31.4%) 

 
1 (2.9%) 

15 (42.9%) 

 
0 (0%) 

5 (14.3%) 

 
0 (0%) 

20 (100%) 
Race, N (% cohort) 
   Asian 
   Black/African American 
   White 
   Two or more races 
   Unknown 

1 (2.9%) 
0 (0%) 

8 (22.9%) 
3 (8.6%) 
2 (5.7%) 

0 (0%) 
0 (0%) 

15 (42.9%) 
1 (2.9%) 
0 (0%) 

1 (2.9%) 
1 (2.9%) 
3 (8.6%) 
0 (0%) 
0 (0%) 

4 (20%) 
0 (0%) 

14 (70%) 
2 (10%) 
0 (0%) 

Clinical characteristics 
Weight (lbs), Median 
   (IQR) 

165  
(146.8 - 193.5) 

179  
(146.3 - 201.3) 

160  
(142.5 - 184.5) 

155  
(127 - 193.8) 

Height (inches), 
   Median (IQR) 67.5 (66 - 69.9) 67.5 (64.3 - 70) 67 (59 - 71) 66 (64 - 69) 
Disease timeline (days), 
   Median (IQR) [min-max] 
   post 1st symptom onset 
   post 1st SARS-CoV-2+ test 

 
9 (8 - 10.25) [5 - 15] 

7 (6 - 8) [4 - 8] 

 
9 (8 - 10.75) [6 - 16] 

8 (7 - 8) [6 - 9] 

 
NA 
NA 

 
NA 
NA 

 
 

Table 2. PAXgene and homeRNA comparison 
RNA yield and quality measures PAXgene (n = 20) homeRNA (n = 19) p-val*  

Yield [total], mean (min-max) 8.21 (4.26 - 11.8) 0.88 (0.12 - 2.11) <0.0001 
median (IQR) 8.67 (5.06 - 10.9) 0.82 (0.43 - 1.19) 

Yield [per 1 mL blood], mean (min-max) 3.28 (1.71 - 4.72) 3.00 (1.05 - 5.28) 0.478 
median (IQR) 3.47 (2.02 - 4.37) 2.94 (1.65 - 4.12) 

RIN scores, mean (min-max) 7.4 (6.6 - 8.1) 7.8 (7.0 - 8.4) 0.0018 
median (IQR) 7.5 (7.1 - 7.7) 7.9 (7.5 - 8.1) 

*p-values were computed from an unpaired, non-parametric Mann-Whitney test.  
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