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Abstract 
Post-traumatic Stress Disorder (PTSD) is a common debilitating mental disorder, that occurs in some 

individuals following extremely traumatic events. Traditional identification of Genetic Markers (GM) for 

PTSD is mainly based on a statistical clinical approach by comparing PTSD patients with normal controls. 

However, these statistical studies present limitations, often generating inconsistent results. Few studies have 

yet examined thoroughly the role of somatic mutations, PTSD disease pathways and their relationships. 

Capitalizing on deep learning techniques, we have developed a novel hierarchical graph attention network 

to identify highly correlational GM (HGMs) of PTSD. The network presents the following novelties: First, 

both a hierarchical graph structure and a graph attention mechanism have been integrated into a model to 

develop a graph attention network (GAtN) model.  Second, domain-specific knowledge, including somatic 

mutations, genes, PTSD pathways and their correlations have been incorporated into the graph structures. 

Third, 12 somatic mutations having high or moderate impacts on proteins or genes have been identified as 

the potential HGMs for PTSD. Fourth, our study is carefully guided by prominent PTSD literature or 

clinical experts of the field; any high saliency HGMs generated from our model are further verified by 

existing PTSD-related authoritative medical journals.  Our study illustrates the utility and significance of a 

hybrid approach, integrating both AI and expert-guided/domain-specific knowledge for thorough 

identification of biomarkers of PTSD, while building on the nature of convergence and divergence of PTSD 

pathways. Our expert-guided AI-driven methodology can be extended to other pathological-based HGM 

identification studies; it will transform the methodology of biomarker identification for different life-

threatening diseases to speed up the complex lengthy procedures of new biomarkers identification.  

 

Introduction  
Post-traumatic Stress Disorder (PTSD) is a common and debilitating mental disorder that occurs in some 

individuals following exposure to extremely traumatic events, such as life-threatening accidents or natural 

disasters 1,2. It leads to symptoms such as re-experiencing (e.g. having trauma-related memories that intrude 

into what is currently happening), avoidance of stimuli associated with the trauma, negative changes in 

cognition and mood, and hyperarousal 2-7. These symptoms could cause serious and long-lasting problems, 

including unemployment, marital instability, physical illness, and early mortalities 3,8-14. Family, twin and 
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molecular genetic studies have suggested that genetic factors contribute to the development of PTSD 13-23. 

However, despite more than a decade of research efforts, robust Highly-associative Genetic Markers 

(HGMs) of PTSD remain largely unknown 4.  

       Traditional methods identifying genetic markers related to PTSD are mainly based on statistical 

analysis and comparisons among PTSD patients and normal controls 2,4,11,14,17,20-22,24-50. Two major 

approaches are candidate gene association studies and Genome-wide Association Studies (GWAS) 
2,4,11,14,17,20-22,24-54. 

        In candidate gene association studies, only a few selected genetic markers are involved in the analysis, 

and the selection is mainly based on existing biological knowledge obtained from prior research on PTSD-

related neurobiological processes 17,20,24-26.  Much research efforts have been made in candidate gene 

association studies 27-43. For instance, the FKBP5 gene, which is an important regulator of the stress system, 

has been suggested to have single-nucleotide polymorphisms associated with PTSD through interactions 

with child abuse 3,27,31. However, the majority of PTSD HGMs could hardly be identified by candidate gene 

association studies, since such studies are usually limited to genetic regions where there are prior 

hypotheses about their roles in the development or maintenance of PTSD, whereas people’s prior 

understanding on the pathophysiology of PTSD is incomprehensive or even incorrect 14,17,21.  

        In GWAS, the frequencies of hundreds to millions of genetic variants across the entire genome are 

compared simultaneously between those with and without PTSD 17,20,21,24,25,44,45. It is a hypothesis-free 

approach avoiding the need for prior knowledge of specific candidate genes/variants, and thus capable of 

identifying unknown mechanisms 20,24,45. It has gained momentum in recent years for PTSD-related genetic 

marker identification 2,4,11,14,22,24,46-54. For example, a GWAS conducted on veterans and their intimate 

partners reported a genome-wide significant association between PTSD and a single-nucleotide 

polymorphism (rs8042149) located in the RORA gene 46. However, given the large number of genetic 

markers simultaneously involved in the statistical analysis, large sample sizes are required for GWAS to 

have statistical power 44,55. Results of GWAS are also best combined with known or putative PTSD-related 

biological knowledge, in order to avoid spurious findings caused by sampling bias 20. 

       There are other problems with traditional genetic studies of PTSD. A major issue is the inconsistency 

among research results when different samples are investigated 4,21,25,26,41,43,56-59. Besides, previous PTSD-

related studies have mainly focused on germline mutations, with the underlying hypothesis that PTSD-

related genetic factors are heritable, while less attention has been paid to somatic mutations 2,4,11,14,22,27,30-

33,37-40,42,43,47-54,56,59. In 2021, Sragovich et al. have extracted somatic mutations from RNA-seq data, and 

utilized STRING analysis, which is a method based on protein interaction information, to identify crucial 

PTSD-related genes with somatic mutations60. Eight genes have been identified in the study, including 

TSC1, FMR1, GSK3B, EZR, TNF, IL1R2, CASP1 and CASP4 60. However, studies in this field are still in 

the beginning stage. 

       In recent years, Artificial Intelligent (AI) techniques have been utilized in finding genetic markers 

associated with diseases, though not on PTSD.   For instance, to classify whether a gene is associated with 

Parkinson’s Disease (PD), a neural network-based ensemble (n-semble) method based on protein features 

has been put forward, reaching 88.9%, 90.9% and 89.8% for the precision, recall and F score in a five-fold 

validation, respectively 61. Another PD-related gene prediction model named N2A-SVM has also been 

proposed based on protein interaction information and techniques including Node2vec, the autoencoder and 

the support vector machine 62. Its area under the receiver operating characteristic (ROC) curve reaches 

0.7289 for classifying whether a gene is associated with PD in a ten-fold validation 62. A similar 

methodology has also been applied to the disease Multiple Sclerosis (MS), and achieved 70.11% accuracy 

for classifying whether a gene is associated with MS in a five-fold validation 63. Besides, Chang et al. 64 has 

proposed a deep learning method based on a sparse auto-encoder to identify cancer-related genes, by 

extracting features from protein expression profiles and protein interaction information, and achieves ROC 

value over 0.8 in predicting cancer-related genes. There are also studies applying AI methods for identifying 

Alzheimer’s Disease (AD)-related genes, using techniques including autoencoders, stepwise artificial 

neural networks, convolutional neural networks and conditional generative adversarial networks 65-68. Given 

the lack of ground truth, most of those papers have not reported their exact accuracy for identifying AD-
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related genes, while some of them have claimed that previous studies/analyses (related to 

AD/neurodegenerative diseases or gene functions) could support some genes they identified 65-68. Besides, 

in 2021, Li et al. have published a plan on designing an AI-driven causal graph model to identify the HGMs 

for AD in the future 69. Moreover, utilizing data on 83 diseases, a feed-forward neural network has been 

designed for disease diagnosis based on information of gene expression and disease pathways, and 

sensitivity analysis has been performed to identify associations between diseases and genes 70. There are 

literature supports for 70% of the top 10 disease-gene associations identified in the study 70. Thus, AI 

techniques seem promising in identifying genetic markers for diseases.  

       In this paper, we have developed a graph-based deep learning diagnosis model to identify probable 

HGMs for PTSD, utilizing hierarchical graph structures and graph attention mechanisms 71,72. Compared to 

previous studies, our novelties are listed as follows: 

• We have constructed a hierarchical biomedical graph representing different layers of one’s biological 

system, ranging from somatic mutations, genes, to pathways, while incorporating a variety of domain-

specific knowledge during the graph construction process, including the impact level of somatic 

mutations to proteins (i.e. CADD scores), lengths of genes, and the number of PTSD-related pathways 

on which each gene locates.  

• We have utilized graph attention mechanisms to calculate the weights of complex gene-gene 

interconnections to complement the domain-specific pathway-based information. We have also used 

attention mechanisms to capture crucial long genes and genes located in more PTSD-related pathways. 

• We have proposed a novel saliency score that calculates PTSD-related risk for somatic mutations 

utilizing the novel hierarchical graph attention network (H-GAtN). A list of HGMs have been 

identified based on the saliency score and on the literature. 

 

Results  
Experimental setting and evaluation 
The model was implemented in PyTorch 73. The training epoch was 30 and the optimizer was Adam (initial 

learning rate = 10-6, reduced by one-tenth after every 10 epochs). L2 regularization has been applied (weight 

decay = 10-7). The hidden dimensions of the embedding layer, the mutation graph, the gene graph, and the 

final fully connected layer were 8, 16, 32, and 16, respectively. 80% of the patients and 80% of the normal 

control subjects were randomly selected as the training set, and the rest were used as the testing set. The 

percentage of misclassified subjects (the subject would be classified as PTSD patients when the predicted 

PTSD probability is larger than 0.5, otherwise classified as normal controls) in the testing set was used to 

evaluate the model’s classification accuracy, and the final error rate could be lowered to 11.8%. The area 

under the ROC curve was 0.90. 

Top HGMs identification 
There were 13566 high/moderate-impact somatic mutations detected in the subjects, which were taken as 

input features of the model. The studied mutations have high or moderate impacts on the proteins of 4561 

genes. After model training, saliency scores of all mutations were calculated. Table 1 shows detailed 

information about the mutations with the top 20 saliency scores and the gene affected by each mutation. 

The type of mutations includes insertion-deletion (INDEL), and single-nucleotide variant (SNV).  

 
Ranking 

(based on 

Saliency 

Score) 

Chromoso

me 

Position Type Reference 

allele 

Alternative 

allele 

Affected gene  

1 8 30180593 INDEL CAG C DCTN6 

2 18 51176872 SNV C T MEX3C 

3 3 111606778 SNV G A CD96 

4 11 118349865 INDEL G GA CD3G 

5 6 41198325 SNV C A TREML2 
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6 14 102050157 SNV C T DYNC1H1 

7 6 33008108 SNV C T HLA-DOA 

8 7 100373707 INDEL AT A PILRA 

9 9 137039846 SNV G A NPDC1 

10 1 158292315 SNV G A CD1C 

11 12 57741942 SNV T C AGAP2 

12 19 51415990 SNV G C SIGLEC10 

13 19 51414971 SNV C G SIGLEC10 

14 19 54574980 SNV A G LILRA2 

15 7 100399296 SNV C T PILRA 

16 6 32937309 SNV G T HLA-DMB 

17 14 61549756 SNV T G PRKCH 

18 12 10315316 SNV A G KLRD1 

19 17 27306800 SNV T G WSB1 

20 3 10301346 SNV C T SEC13 

Table 1. Somatic mutations with the top 20 saliency scores 

 

       Among these top 20 mutations, we have identified 12 of them as HGMs based on the related literature. 

A detailed description of the related literature for these top 20 mutations could be found in Table 3. We 

selected the HGMs comprehensively considering the closeness of their relationship to PTSD, the number 

of related research articles, the citations, and the impact factor of the journals. These 12 identified HGMs 

were further divided into three tiers given the strength of literature support. The identified HGMs and their 

tiers are listed in Table 2. 

 
Saliency 

score ranking 

Chromo

some 

Position Type Reference 

allele 

Alternative 

allele 

Gene affected Tier 

6 14 102050157 SNV C T DYNC1H1 1 

7 6 33008108 SNV C T HLA-DOA 

2 
17 14 61549756 SNV T G PRKCH 

19 17 27306800 SNV T G WSB1 

20 3 10301346 SNV C T SEC13 

1 8 30180593 INDEL CAG C DCTN6 

3 

2 18 51176872 SNV C T MEX3C 

5 6 41198325 SNV C A TREML2 

8 7 100373707 INDEL AT A PILRA 

9 9 137039846 SNV G A NPDC1 

11 12 57741942 SNV T C AGAP2 

15 7 100399296 SNV C T PILRA 

Definition: 

Tier 1: The affected gene is taken as closely related to PTSD by more than x number of 

authoritative/representative journal articles. 

Tier 2: The affected gene is taken as related to PTSD, but the number of related articles is limited. 

Tier 3: The affected gene is taken as related to more than one kind of neural/mental disease, by more than x 

number of authoritative/representative journal articles. 

Table 2. List of Identified HGMs 

HGMs validation 
As mentioned in the introduction section, in Sragovich et al.60, eight genes with somatic mutations have 

been suggested to be potentially related to PTSD, including TSC1, FMR1, GSK3B, EZR, TNF, IL1R2, 

CASP1, and CASP4. Specifically, in the dataset used in our study, there are 12 somatic mutations with high 
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or moderate impacts on those eight genes. We have checked the saliency score ranking of those 12 somatic 

mutations for reference. Figure 1 shows the saliency scores of all somatic mutations considered in our 

model, and mutations on the left have higher saliency scores. Vertical red lines correspond to the ranking 

of the 12 reference somatic mutations. It could be seen that they are distributed across the left-hand side of 

the figure, which implies the identified risky mutations in Sragovich et al.60 also have relatively higher 

saliency scores calculated by our model. Hence, to a certain extent, our saliency score supports the potential 

importance of genes identified in Sragovich et al.60. The 12 reference mutations are not the ones with top 

saliency scores in our study. One possible reason is that Sragovich et al.60 concentrated on the high-impact 

mutations while our study focused on both high-impact and moderate-impact mutations. 

 
Figure 1. Ranking based on mutation saliency score  

 

       To further validate the model’s capability of identifying potential HGMs, we investigated the genes 

affected by the top 20 HGMs identified by our model, specifically their presence in research related to 

PTSD or other mental/neural diseases. The supportive literature is summarized in Table 3. It could be 

seen that most of the genes affected by the top-ranking mutations have also been identified as biomarkers 

for mental diseases or neural diseases by other researchers. Among them, the gene DYNC1H1 has been 

recognized by many researchers as not only a potential biomarker but also a key target in the treatment of 

PTSD. The supportive literature further validates our model’s capability of identifying potential HGMs. 

 
Ranking 

based on 

saliency 

score 

Affected 

gene 

Related disease Representative literature 

1 DCTN6 Neural diseases It was found that DCTN6 deficiency enhances aging in mouse 

brains74. DCTN6 was also identified to have close relation to protein 

PQBP1, which has been linked to intellectual disability disorders and 

progressive neurodegenerative diseases75. 

2 MEX3C Mental diseases 

and neural 

diseases 

MEX3C was identified as one of the risk genes contributing to 

Neurodegenerative brain diseases76. The location of the gene 

18q21.2 has been suggested highly correlated with some mental 

disorders including schizophrenia77 and depression78. 

3 CD96 Other diseases CD96 was related to immune system79. 

4 CD3G Mental diseases CD3G was related to immune system. It was identified to be 

associated with prenatal depressive symptoms80. 
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5 TREML2 Neural diseases TREML2 was identified to be Alzheimer’s disease risk genes81. 

Missense variant in TREML2 was found to be protective against 

AD82. 

6 DYNC1H1 PTSD DYNC1H1 was not only identified as biomarker for diagnosis of 

PTSD83, but also a key target in the treatment of PTSD84. 

7 HLA-DOA PTSD HLA-DOA was related to immune system. It was identified to be 

related to PTSD in an article using Transcriptome-wide association 

studies (TWAS)85. 

8, 15 PILRA Neural diseases PILRA was identified to be correlated to Alzheimer’s disease by 

many articles86,87. 

9 NPDC1 Mental diseases 

and neural 

diseases 

NPDC1 was identified to be correlated to Alzheimer’s disease88. It 

was also identified to be associated with development and prognosis 

of schizophrenia89. 

10 CD1C Mental diseases CD1C was related to immune system. It was suggested to have a 

good diagnostic performance in major depressive disorder90. 

11 AGAP2 Mental diseases AGAP2 was identified as risk gene related to autism in many 

research articles91. It was also identified as differentially methylated 

gene related to Alzheimer’s disease92. 

12, 13 SIGLEC10 Other diseases SIGLEC10 was related to immune system93. 

14 LILRA2 Mental diseases LILRA2 was identified as differentially expressed transcripts and 

genes in a study on loneliness94. 

16 HLA-

DMB 

Other diseases HLA-DMB was mainly related to immune system. It was identified 

as a gene associated to schizophrenia95. 

17 PRKCH PTSD PRKCH was identified as a gene significantly upregulated in PTSD 

cases compared to controls96. It was also identified as a gene closely 

associated with stroke97. 

18 KLRD1 Mental diseases KLRD1 was identified as possible therapeutic targets of stress-

related disorders98. 

19 WSB1 PTSD WSB1 was identified as a gene significantly upregulated in PTSD 

cases compared to controls96. It was also suggested to be protective 

towards Parkinson’s disease99. 

20 SEC13 PTSD SEC13 is part of the complex mTORC1, which is identified as a key 

to the formation and also the treatment target of PTSD100,101 and 

Alzheimer’s disease102. 

Table 3. A description of the top 20 somatic mutations from representative literature  

 

Network-learned edges 
The graph attention convolutional network in our model could learn a set of edge parameters from the 

training data, which represents the network’s belief in the connection strength between gene pairs. In Fig. 

2, we visualized the connectivity of gene node DYNC1H1, which is affected by the top identified HGM. 

The first-order neighbors are the gene nodes connected to DYNC1H1 with the largest edge parameters. The 

orange-colored nodes are the overlap of these first-order neighbours and the genes affected by mutations of 

the top 20 saliency scores. Since the gene DYNC1H1 has been implied to be correlated to PTSD by a 

sufficient number of research articles, these network-learned neighboring genes could be suggestive 

candidates for potential PTSD-related pathway studies. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 1, 2023. ; https://doi.org/10.1101/2023.01.30.23285175doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.30.23285175
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

 
Figure 2. Visualization o network-learned graph edges for gene DYNC1H1 

 

Discussion 
A novel graph-based deep learning diagnosis model has been developed to identify probable HGMs for 

PTSD. Hierarchical graph structures and graph attention mechanisms have been utilized in the model to 

incorporate a variety of domain knowledge on somatic mutations, genes, pathways, and their correlations 
71,72.  

       Our model has identified 12 mutations as potential HGMs for PTSD, and there are 11 genes whose 

corresponding proteins are affected by these 12 mutations at high or moderate impact levels. Among the 

identified high-risk genes, DYNC1H1 was also identified in previous research as not only a biomarker but 

also a key treatment target for PTSD. For other identified genes, literature support could also be found 

proving their correlation to PTSD or mental/neural diseases. The learned edge parameters of our graph 

attention network also provide suggestive candidates for PTSD-related pathway discovery. 

       It is worth noting that 5 out of the 11 high-risk genes (TREML2, PILRA, NPDC1, AGAP2, SEC13) 

identified to be related to PTSD by our model were suggested to be closely related to Alzheimer’s Disease 

in previous research. This implies that there may be underlying connections between these two diseases. 

Besides, two of our identified genes were suggested to be correlated to depressive symptoms (CD3G, CD1C) 

and two of them were suggested to be correlated to schizophrenia (NPDC1, HLA-DMB). These findings 

may provide new insights for future research on not only biomarker identification, but also potential 

treatment studies like drug repurposing. 

       Last but not the least, a notable proportion of the top 20 mutations affect genes that are mainly related 

to the immune system (CD96, CD3G, CD1C, HLA-DOA, HLA-DMB, SIGLEC10). As shown in Table 3, 

HLA-DMB and HLA-DOA were identified to be associated with schizophrenia95. In that study, the authors 

suggested that their regression analysis supported disease mechanisms that involve the activity of 

immunity-related pathways in the brain. The similar findings in this study could further demonstrate the 

importance of the role that immune system plays in the PTSD disease mechanism. 

       In the future, research efforts are encouraged on improving the HGM identification procedure. A 

limitation of the current study is the small number of subjects, which might lead to overfitting in the model 

training. In the future, larger PTSD somatic mutation datasets are in need. In addition, few-shot learning 

techniques that are tailor-made for HGM identification are suggested to be developed, so as to 
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fundamentally reduce the burden in data collection. Moreover, future studies might also consider the 

incorporation of quantitative PTSD phenotype measurement, additional demographic information and 

environmental factors into the model, such as the severity and duration of subjects’ trauma exposure 50,103,104. 

 

Method 
Data Collection and Pre-processing 
Two types of data have been collected in this study, including sample data and knowledge-based data. The 

sample data contained genetic information and demographic information of the studied samples, and were 

used as the network input. The knowledge-based data contained the biomedical information of mankind, 

including pathway data and CADD scores, and were used in the construction of the neural network. Figure 

3 illustrates our data extraction procedure. Details are specified in the following sections: 

 

 
Figure 3. Data extraction procedures: National center for biotechnology information (NCBI), Gene expression 

omnibus series (GSE), Search tool for retrieval of interacting genes/proteins (STRING), On-line CADD scoring 

system of Washington University (UW) 105-108 

 

Genetic data 

The genetic data were obtained from the supplementary table of a study conducted by Sragovich et al., 

which extracted somatic mutations from blood samples of 85 Canadian infantry soldiers, including 27 

PTSD patients and 58 normal controls 60. Specifically, the dataset contains information on somatic Single-

nucleotide Variants (SNVs) and Insertions/Deletions (INDELs) with high/moderate impacts on proteins, 

and information on genes of the proteins they influence. The SNVs and INDELs were mapped to the 

GRCh38 human reference genome 60. Some mismatched columns in the table have been detected and 

corrected in the data cleaning. Synonyms referring to the same gene in the dataset have been replaced by 

the latest gene symbol among them using the Ensembl website and MyGene109,110. Sragovich et al. 60 was 

based on RNA-seq data of subjects, and RNA-seq read frequencies of SNVs/INDELs have also been 

extracted from its supplementary table. The SNVs/INDELs without read frequency information in partial 

subjects (taking up around 1% of all SNVs and INDELs in all subjects) were taken as non-existing 

mutations in corresponding subjects. Moreover, to account for the fact that somatic mutations are more 

likely to be implicated in long genes, the lengths of genes were obtained from the Ensembl website and 

MyGene109,110. 
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Pathway data 

The pathway information was obtained from the STRING database by setting all genes with somatic 

mutations in the dataset of Sragovich et al.60 as inputs, and the STRING database returned pathways that 

the input genes are enriched in 105,111. Specifically, pathways or biological processes from three databases, 

including the Biological Process (Gene Ontology) database, the KEGG pathway database and the Reactome 

pathway database, have been extracted 112-114. Then, PTSD-related pathways were selected from them by a 

domain expert to generate the final PTSD-related pathway dataset 115. 

 
CADD scores 

The CADD (Combined Annotation Dependent Depletion) score tool116 is a logistic regression model for 

the calculation of variant impact, and it has been utilized to identify genetic markers in previous studies117. 

The CADD tool requires the following variant information: CHROM, POS, REF, and ALT. For the somatic 

mutations with high/moderate impacts on proteins, we obtained their Phred-scaled CADD scores from the 

online calculation system provided by Washington University108. 
 
Demographic data 

For each subject, we obtained the corresponding demographic information, including age group (six age 

groups, including 18-24, 25-30, 31-36, 37-42, 43-50, 50-61 years old) and gender, from the original dataset 

used in Sragovich, et al 60 (i.e. NCBI accession number: GSE109409 107,118).  

 
Ethics approval and consent to participate 

Datasets of 60,107,118 used in this study were obtained following the research protocol accepted by the Human 

Research Ethics Committee (HREC) of Defense Research and Development Canada (DRDC) - Protocol 

2017-019, and informed consent was obtained from all participants 60,107,118.  
 

Methodology 
This study proposed a novel hierarchical graph attention network (H-GAtN) to identify probable HGMs for 

PTSD. The proposed methodology consists of four steps. Firstly, a hierarchical biomedical graph was 

constructed utilizing the genetic and pathway data we collected, with nodes corresponding to 

genes/mutations and edges corresponding to their biomedical connection. Secondly, we trained a 

hierarchical graph attention network to learn a high-level graph representation of the constructed biomedical 

graph. Thirdly, the learned high-level feature from the proposed graph neural network was combined with 

other demographic features, including age and gender. The concatenated features were fed into a deep 

feedforward neural network for the final prediction of PTSD probability. Finally, we calculated the saliency 

score for each somatic mutation and obtained the top 20 probable candidates for HGMs.  
Knowledge-based hierarchical graph construction: mutations, genes, and pathways 

A graph as a non-linear data structure can represent the interaction of an arbitrary number of nodes with 

arbitrary connectivity status, and is thus widely used to model complex real-life scenarios including social 

networks, traffic forecasting, etc. Previously, graphical convolutional neural networks have also been 

proven successful in dealing with molecular interaction 119 and mutation-related disease prediction 120,121. 

Therefore, we adopted a graph data structure in our PTSD diagnosis scenario, and a biomedical graph was 

constructed to model the PTSD-related genes and mutations, making it possible for a deep neural network 

to learn the correlations and interactions of these biomedical concepts. 

Specifically, we constructed a hierarchical biomedical graph capturing (1) the interactions of somatic 

mutations, (2) the interactions of genes, and (3) the hierarchical linkages between somatic mutations and 

genes (see Figure 4). The first hierarchy of the biomedical graph was a subgraph with each node 

representing a mutation associated with PTSD. The edges in this subgraph represented the mutation-

mutation interactions, and all somatic mutations located on the same gene were linked to each other by 

undirected edges. The second hierarchy of the graph was a subgraph with each node representing a gene 

associated with PTSD. The edges in this subgraph represented the gene-gene interactions, and were 

constructed according to the PTSD-related pathways. All genes involved in the same pathway were linked 
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to each other by undirected edges. The two subgraphs were connected by mutation-gene edges. Each 

mutation-gene edge connected a somatic mutation to the gene on which the mutation has a high/moderate 

impact. The weights for the mutation-mutation edges and the gene-gene edges in the subgraph were 

uniformly set to 1. The weights for the mutation-gene edges were assigned with the corresponding CADD 

score, and were normalized to the range from 0 to 1. 

 

 
Figure 4. Hierarchical graph construction and projection 

 

GNN model structure 

After constructing the biomedical graph using domain-specific knowledge, we trained a hierarchical graph 

attention network to learn a high-level graph representation of the constructed biomedical graph (see Figure 

5). The input of the network was the mutation frequency of one subject, and the output was a real number 

between 0 and 1 indicating the probability of the subject having PTSD.  

       Each somatic mutation was represented by a one-hot feature vector multiplied by its frequency. The 

one-hot representations were first embedded into a low-dimensional dense space by an embedding layer. 

The embedded mutation feature vectors were then fed to the first graph convolutional layer, which 

conducted graph convolution based on the mutation subgraph. The resulting mutation node features were 

fed to a graph projection layer, which adjusted the node number and dimension of the node features. Then 

the projected node features were fed into the second graph convolutional layer, which conducted graph 

convolution based on the gene subgraph. To better address the complex gene-gene interconnections that 

are yet to be captured by domain knowledge, a graph attention convolutional layer was incorporated as the 

third graph convolutional layer. After the hierarchical graph learning, an attention-based fusion layer was 

incorporated on top of the graph neural network to combine the gene node features and generate a supreme 

node with its feature vector reflecting the overall information for the subject.  

      The feature vector learned by our H-GAtN model was then concatenated with the demographic features 

of the subject. The concatenated vector was fed into a feedforward neural network which generated the 

final prediction of a real-number probability. 
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Figure 5. H-GAtN model structure 

 

Graph projection layer 

The graph projection layer was an important structure in our H-GAtN model, designed as a bridge chaining 

the two graph convolutional layers applied on two subgraphs. The input of the layer was the learned 

mutation node features 𝑼(𝑛×𝑗), and the layer projected the input into gene node features 𝑽(𝑚×𝑖). n and j are 

the number of mutation nodes and the dimension of node features in the mutation subgraph. m and i are the 

number of gene nodes and the dimension of node features in the gene subgraph. Equation (1) illustrates the 

projection operation. 𝑬(𝑚×𝑛) was a matrix composed of the mutation-gene edges, and left-multiplying 𝑼 

by 𝑬 was equivalent to calculating a weighted sum for mutation nodes connected to the same gene. The 

mutations with higher CADD scores would have higher weights during the process. 𝑊(𝑗×𝑖) was a set of 

learnable network parameters that transferred the dimension of the resulting node features. 
 

𝑽(𝑚×𝑖) = 𝑬(𝑚×𝑛)𝑼(𝑛×𝑗)𝑾(𝑗×𝑖) 

 

(1) 

 

Graph attention layer and attention-based fusion layer 

Different types of graph convolutional layers were used at different hierarchies of the graph, adapting to 

the specific characteristics of the data. In the first hierarchy, the vanilla version of graph convolutional layer 

was applied to process the mutation nodes with known connections. In the second hierarchy, an attention-

based graph convolutional layer was also incorporated in addition to the vanilla version of graph 

convolutional layer. Adopting the GAT layer proposed in Veličković et al. 72, the structure of the graph 

attention convolutional layer is shown in Figure 5. The layer did not require prior knowledge of the pathway 

information, and all the edges were uniformly initialized to 1. During the training process, the model 

iteratively optimized its parameters including the edge weights. After training the model on the training 

data for some epochs, the model preserved the edges that were useful, and removed those useless edges by 

assigning them a small weight. The graph attention convolutional layer was capable of discovering the 

pathways that are currently unknown. Stacking it with the vanilla version of the graph convolutional layer, 

we obtained a network that combined the advantages of the domain-knowledge-based approach and the 

data-driven approach. 

       The attention-based fusion layer utilized domain-specific knowledge to merge all the gene nodes into 

one single supreme node. Our attention mechanism included feature-based attention, gene-length-based 

attention, and pathway-based attention. Different components of the attention score captured the importance 
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of each gene in different aspects. Equations (2-3) illustrate how the final attention score for each gene node 

was calculated. 𝛼𝑛1  was the feature-based attention score, which measured the similarity of each node 

feature to a set of learned parameters. 𝛼𝑛2 was the gene-length-based attention score for the nth gene, and 

was determined by the total number of nucleotides within that gene. 𝛼𝑛3 was the pathway-based attention 

score of the nth gene, and was determined by the number of pathways which included that gene. 
 

𝛼𝑖 = 𝛽𝑖,1 × 𝑤1 + 𝛽𝑖,2 ×𝑤2 + 𝛽𝑖,3 ×𝑤3 
(2) 

 

𝛽𝑖,1 = 𝑢𝑖 ∙ 𝑣 
(3) 

where  

𝛼𝑖 is the final attention score of the ith gene, 

𝛼𝑖1, 𝛼𝑖2, and 𝛼𝑖3 are three attention scores of the ith gene calculated in different ways, 

𝑤1, 𝑤2, and 𝑤3 are trainable scalar variables, 

𝑢𝑖 is the node vector of the nth gene, 

𝑣 is a trainable vector variable. 

 

Demographic features 

The learned high-level features from the proposed H-GAtN model were combined with other demographic 

features, including age and gender. The categorical demographic data were first processed into dummy 

variables, resulting in a 0/1 vector with 6 components (one for gender information and five for age group 

information). The demographic features were first rescaled to the same magnitude as the learned H-GAtN-

based features, and then concatenated to the learned features. The concatenated vector was fed into a deep 

feedforward neural network for the final prediction. Ablation study proved that adding the demographic 

information improved the model accuracy of identifying PTSD patients, reducing the error rate from 17.6% 

to 11.8%. 

 
Saliency analysis 

We conducted a saliency analysis to better understand how each mutation could affect the prediction of the 

final output, thus revealing the importance of each mutation in causing the disease. Previous work in 

computer vision 122 has shown that the gradients with respect to the input values could reflect how much 

each input feature contributes to the output value. The predicted output (in our case whether the subject has 

PTSD) of a single subject could be approximated by a linear expression, shown in Equation (4). The 

magnitude of each dimension of the gradient indicated the relative sensitiveness of that particular input 

feature. After averaging the gradient on the whole dataset, we defined the saliency score using Equation 

(5), where 𝐷  is the whole dataset, including training and testing data. After training the model, we 

calculated the saliency score for each input somatic mutation, and obtained the relative importance of each 

mutation. 
 

�̂�(𝐱) ≈ 𝒘(𝒙)𝑇𝐱 + 𝑏 

 

(4) 

 

𝐬 = ∑
𝒘(𝐱)

|𝐷|
𝐱,𝑦∈𝐷

 

 

(5) 

 

Data Availability 
Partial genetic data supporting this study is available at the supplementary data of Sragovich et al. 60. The 

demographic data used in this article is available at GEO with the accession number: GSE109409. Other 
datasets generated in this study will be made available upon request to the corresponding authors. 

 

Code Availability 
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The code for this study will be made available upon request to the corresponding authors. 
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