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ABSTRACT 

Objective: In recent years artificial intelligence-enhanced breast thermography is increasingly 

being evaluated as an ancillary modality in the evaluation of breast disease. The objective of this 

study was to evaluate the performance of Thermalytix, a CE-marked system that analyzes 

thermal images using advanced thermal radiomics against unaided manual interpretation of 

thermographic images by trained thermologists. 

Methods: In this retrospective, multi-reader study,  thermal imaging data of 258 women  who 

participated in a previously published clinical trial were used.  These images were read manually 

by 3 trained thermologists independent of each other, using the approved scoring system of the 

American Association of Thermologists.  None of the readers were involved in the collection of 

the images in the study cases. The images were then evaluated by the Thermalytix system, which 

is a commercially available software that automatically extracts hotspot, areolar and nipple 

radiomic parameters with a total of 64 individual radiomic features being analyzed using 3 

random forest classifiers configured for 200 decision trees to generate a score predictive of the 

presence of breast cancer in the region of interest.  The manual interpretation and Thermalytix 

interpretation were compared for sensitivity, specificity, positive predictive value, and negative 

predictive value and receiver operating characteristic curves were created to estimate prediction 

accuracy.  

Results: Automated Thermalytix had sensitivity and specificity of 95.2% and 66.7% respectively 

while AUROC of 0.85 (13.7% greater) than manual interpretation. Further,  hotspot and vascular 

scores derived in the automated Thermalytix are the strongest predictors of breast cancer lesions 

(AUROC: 0.84 and 0.83, respectively).  
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Conclusions:  Overall this suggests that automated AI-based Thermalytix has higher accuracy in 

the prediction of breast cancer lesions and must be further investigated in the wider women 

population to validate its use in hospital settings as a screening modality for breast cancer. 
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 INTRODUCTION 

Infrared thermal imaging technology has been used in medicine since the early 1960s (1). Since 

then, it has undergone three generations of advancements (2). Early imaging systems were large 

with limited display and temperature measurement, used single-element detectors in an optical 

mechanical scanning process and were cooled with liquid nitrogen. The next generation cameras 

had built-in two scanning mirrors with small 2-D arrays as detectors, used time delay integration 

algorithms for image enhancement and electronic cooling systems were introduced, which 

improved the camera performance. The latest generation of cameras do not have mirrors, instead 

they use a microelectromechanical system (MEMS) with large 2D focal plane array detectors, 

Vanadium microbolometers and on-chip image processing to increase the reliability and 

sensitivity of the system (3). These cameras do not require cooling, hence making it almost a 

maintenance-free technology. Their thermal sensitivity is about 0.01 to 0.05 °C with spatial 

resolution less than 2 mm over a range of distances and fields of view range from 200 × 200 mm 

to 500 × 500 mm at a distance of 1 m (Figure 1A). Lastly, these cameras are compact, portable, 

light weight, manufactured by silicon wafer technology and are inexpensive in comparison to the 

previous versions (4).  

These advances in sensor technology combined with an increasing awareness of using non-

invasive and non-ionizing medical imaging techniques has led to a resurgence in the use of 

thermography in many different medical specialties. These include but not limited to diabetic 

neuropathy (5), peripheral vascular assessment (6), thermoregulation study, fever screening (7), 

dentistry, dermatology (8), muscular pain and shoulder impingement syndrome study [9], 

diagnosis of rheumatologic diseases (9), detection of metastatic liver disease (9), assessment of 
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bowel ischemia, vascular perfusion in renal transplantation and assessment of plastic surgical 

flaps (10). 

Globally, breast cancer is a major cause of morbidity and mortality (11). In 2020, there were 

estimated 1,78,361 (26.3%) new cases and 90,408 (21.9%) deaths in India (12). Mammography 

screening in combination with appropriate treatment can  significantly decrease cancer mortality 

(13). However, in many low and middle countries, access to mammography is limited, due to 

issues of cost, socio-cultural barriers, limited health personnel and medical infrastructure in the 

rural regions of these countries, leading to geographic and socio-economic disparities in access 

to breast screening (14). Further, there is a variation in age-specific incidence of breast cancer, 

such that there is higher incidence in the 40 – 50 year age range in Asian countries as compared 

to 60 -70 year age range in western populations (15). Consecutively, in this age group, 

mammographic screening has a lower sensitivity due to high proportion of dense breasts found in 

younger patients (16). 

For these reasons, the Breast Health Global Initiative of the World Health Organisation has 

suggested that low and middle income countries should embark on clinical breast examination 

(CBE) as the first modality of breast screening (17). However, the coverage rate of CBE cancer 

screening remains low (18) and its efficacy in detection of early breast cancer, down-staging 

disease, and reducing mortality remains uncertain (19). As a result, there is a need for 

development of techniques other than mammography to bridge this gap and reduce the health 

inequities currently present (20). 

The US-FDA had approved thermography as an adjunct to mammography in 1982. As noted 

above, previous usages had lower resolution due to the use of earlier generations of thermal 
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cameras and thermal images were represented using false color palettes, which required the 

interpreter to identify the malignancy visually from these false color images. The evaluation of 

the breast thermal image was qualitative and not quantitative. Hence, the thermal interpretation 

results were highly subjective with unacceptably low sensitivity and specificity. 

Modern high‐resolution thermal cameras can detect minute temperature differences and when 

combined with computer algorithms for thermal analysis may reduce subjectivity and enable 

automated quantitative interpretation thereby making the interpretation process more factual 

[21]. Scores are generated using machine learning algorithms over medically interpretable 

parameters that describe the metabolic activity inside the breast tissue and indicate the presence 

of a possible malignancy (22). This mirrors the trend in the field of digital mammography, 

wherein the use of machine learning algorithms for extracting, detecting, characterizing and 

classifying radiomics features of mammograms has shown clinical benefit and are extensively 

used [23]. AI-enhanced breast thermography uses similar principles and is currently being re-

evaluated at various centers as an ancillary modality in the screening and diagnosis of breast 

disease (24,25). In this paper, we have compared the performance of an automated breast 

thermography interpretation tool called Thermalytix that uses a combination of domain 

knowledge and data analytics for interpretation of thermal images, with the manual interpretation 

of the thermal images by an expert thermologist in the detection of breast cancers. 

METHODOLOGY 

Study Population 

We retrospectively examined data and images that had been collected from the Institutional 

Review Board-approved prospective multicentric clinical trial (CTRI/2017/10/010115) 
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conducted from September 2017 to July 2018 at the following two clinical sites: Narayana 

Hrudayalaya (NH) and Health Care Global (HCG), Bangalore, Karnataka, India (26).  During 

this study, all the participants had undergone both thermography and mammography/ ultrasound 

and suspicious findings were confirmed by histopathology.  Thermal imaging was performed 

before other imaging modalities to avoid the unwanted effect of compression and gel application 

on thermal images obtained. 

Out of 326 women who were initially recruited, 68 women were excluded due to incomplete 

data.  The remaining 258 women were included in the study analysis, of which 204 (79.1%) 

women were recruited from one site (NH) and 54 (20.9%) women from the other site.   

Study Design 

In this multi-reader study, thermal images obtained at the two study sites were uploaded to the 

Thermalytix software system which automatically analyzes and interprets the thermal image 

generating a report. This is the Thermalytix test group.  Subsequently, the thermal images alone 

(without computer aid) were read by 3 senior board-certified radiologists. One of them was a 

certified manual thermologist who had experience in breast thermography and the other two 

(who completed a standard thermography reading training program) were trained in 

thermography.  This is the manual thermography test group.  None of the readers were involved 

in the collection of the images in the study cases. Further, the readers were blinded to all 

diagnostic reports and Thermalytix imaging reports (Figure 1B). 
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Thermal Imaging Protocol 

The room temperature was stable at approximately 22°C using an air-cooler when necessary. 

Patients were asked to remove their clothes from their waist upwards and were left to equilibrate 

with ambient conditions for 10–15 min. The thermographic imaging was carried out by having 

the patient sit at a 1.0 m distance from the camera.  The patients raised their arms above the head 

and five thermal images were captured at the following positions --frontal (0°), left oblique 

(45°), left lateral (90°), right oblique (-45°), and right lateral (-90°), in order to obtain images of 

complete breast skin area (27). 

Technical specifications of the thermographic system 

Thermographic imaging was performed using the following digital infrared cameras, namely, 

FLIR T650SC and FLIR A315 (FLIR Systems, Wilsonville, OR, USA) and Meditherm IRIS 

2000 camera (Meditherm, Cheyenne, WY, USA). The technical specifications of these cameras 

are similar and use an uncooled focal plane array detector (micro bolometer) with geometric 

resolution of 76.800 pixels per picture (320 X 240). The spectral range is from 8 µm to 14 µm 

and the temperature range lies between – 40°C and 120°C. The thermal sensitivity of FLIR 

T650C, FLIR A315 and Meditherm IRIS 2000 are 0.02°C, 0.05°C and 0.5°C respectively. The 

spatial resolution is 0.48 mm at 30 cm (IFOV 1.58 mrad) 

Manual Thermographic Assessment 

The five thermal images per participant were made available to the readers who classified each 

participant as suspicious for malignancy or not.  They assessed the images visually without 

computer aid using Ville Marie and Thermobiological grading system as per the guidelines given 
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by the American Academy of Thermology (27) that is a combination of certain quantitative and 

qualitative thermographic signs.  The thermologists graded the thermal images of each 

participant on a scale of 0 to 5 with grades 0, 3, 4, and 5 as test-positive for manual 

interpretation.  

Thermalytix image processing and analysis  

Thermalytix is a supervised machine learning tool that extracts relevant thermal radiomic 

features from breast thermograms to generate the overall likelihood of malignancy, and generates 

annotated markings of suspicious thermal patterns.  

In the first step, the software automatically performs image quality checks to ascertain if the 

uploaded thermal images are focused and in the correct position using pre-trained machine 

learning models (28).  Then preprocessing of thermal images is done using foreground/ 

background separation using Otsu segmentation [29] and contrast enhancement of breast area by 

automatically selecting the maximum and minimum temperature limits for the color palette such 

that more than 70% of body pixels are above green in the Rainbow color palette.  

Hotspot radiomics correspond to features that characterize regions of high thermal activity in the 

breast. These are detected from thermal images using a fusion of multiple histogram-based 

thresholds discussed in our earlier work [30).  Two histogram based temperature thresholds are 

computed, and the maximum of both thresholds is considered as the hotspot threshold.  From 

these detected hotspots and warm spots, 34 features are extracted to characterize the shape, size, 

symmetry, and temperature of these thermal activities  
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Areolar Radiomics.  Hotspots that overlap with the areolar region are segregated among all the 

hotspots as areolar hotspots. From these areolar hotspots, features such as symmetry, coverage, 

shape, and boundary of hotspots are extracted to characterize the changes near the areolar region. 

Additionally, we also extract mean nipple temperature difference and maximum nipple 

temperature difference. Overall, 16 features are extracted.  

Vascular Radiomics. Vessel changes occur during the onset of cancer. Manual thermography 

protocols such as Ville Marie emphasize the importance of vascular criteria in determining the 

malignant lesion. Unlike hotspot and areolar segmentation where there are distinct boundaries, 

thermal signatures of breast vessels are diffuse, representing transmitted heat from vessels 

beneath the skin surface. This results in spurious results when traditional vessel detection 

techniques are applied directly. To address this issue, a three level gaussian enhancement of 

vessel structures is performed followed by passage through shape and temperature filters to 

segment the vessel structures (31).   From the detected vessel structures, 17 features such as 

number of vessels, number of branches, mean caliber, symmetry, relative temperatures etc. are 

extracted to characterize the vascular structures.  

Three random forest classifiers configured for 200 decision trees over independent sets of 

vascular, thermal and areolar features are used to obtain the three Thermalytix scores, namely, 

the vascular, thermobiological and areolar scores with the confidence of malignancy (range: 0 to 

1).  The three individual scores are combined to get an ensemble score (32).  If any of these 

scores is greater than a threshold (such as 0.5), it calls for the user/clinician’s attention so that 

subsequent diagnostic tests can be prescribed.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.31.23285320doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.31.23285320
http://creativecommons.org/licenses/by-nc-nd/4.0/


Definition of disease positive: The radiologists’ conclusion from standard-of-care modalities, 

ultrasound, mammography, and histopathology, was considered as the final ground truth. 

Statistical analysis 

Data analysis was performed using SPSS (IBM SPSS v26.0.0.0) and the parameters of 

sensitivity, specificity, positive predictive value, and negative predictive value were calculated.  

The receiver operating characteristic (ROC) curve was plotted for both tests to compare their 

performance at different operating points. The area under ROC (AUROC) was calculated to 

predict accuracy and it is known to be related to the Wilcoxon rank-sum test statistic for the 

comparison of two groups. The kappa statistic was calculated using the Fleiss Multirater kappa 

test for assessing the inter-observer agreement between the three thermologists. 

RESULTS 

Out of the 258 women included in the analysis, 63 (24.4%) women had a breast malignancy, of 

which 33 malignancies are from clinical site 1 and 30 malignancies are from clinical site 2. The 

remaining 195 (75.6%) women were considered negative based on radiologist conclusions based 

on one or combination of mammography, USG and Biopsy reports. Using this information as the 

ground truth, the results of the Thermalytix were compared with manual thermography 

interpreted by 3 expert thermologists. There was a substantial strength of agreement between the 

three thermologists, κ = 0.808 (95% CI, 0.78 to 0.84), p<0.001. 

 Thermalytix had a sensitivity of 95.2% (90.0%, 100.5%), specificity of 66.7% (60.0%, 73.3%), 

a PPV of 48.0% (39.2%, 56.8%) and NPV of 97.7% (95.2%, 100.3%). Whereas based on the 

scoring system, manual interpretation of thermography showed an average of sensitivity 68.8% 

(57.5%, 80.1%), specificity of 65.1% (58.7%, 71.5%), positive predictive value of 40.9% 
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(31.6%, 50.2%) and negative predictive value 86.6% (80.9%, 92.2%) (Table 1). The data for the 

manual interpretation is presented separately for each thermologist in Table 3.    

The AUROC derived for the automated Thermalytix using the B-score was 0.85 that was higher 

by 12% (AUROC = 0.73) than Thermologist 1, 14% (AUROC = 0.69) than Thermologist 2 and 

13% (AUROC = 0.72) than Thermologist 3 (Figure 6). The individual classifier AUC 

performance was also estimated suggesting greater predicting accuracy using the hotspot score 

(AUROC = 0.83) and vascular score (AUROC = 0.84) than areolar score (AUROC = 0.58) in 

deriving and predicting breast cancer lesions using Ensemble score (AUROC = 0.91) as shown 

in Figure 7. 

DISCUSSION 

In this comparative study of investigating the accuracy of automated Thermalytix in comparison 

with the manual interpretation of thermography scans by expert thermologists, Thermalytix had a 

sensitivity of 95.2%, specificity of 66.7%, positive predictive value (PPV) of 48.0% and negative 

predictive value (NPV) of 97.7% whereas manual interpretation of thermography showed an 

average of sensitivity 68.8% , specificity of 65.1%, PPV of 40.9% and NPN of 86.6%.  The area 

under ROC for Thermalytix was 13.7% higher than the average AUROC by manual 

interpretation. 

Modern infra-red thermal cameras, in addition to having excellent thermal sensitivity and 

resolution and not only measure the skin’s temperature, but also rearrange these values into an 

“image”, creating a heat map of the breast’s region of interest, where each “pixel” express an 

equivalent temperature value.  Computational algorithms are capable of identifying patterns in 

almost any type of data and augment human visual accuracy in analyzing medical images.  There 
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are six main steps in the process: loading of images, preprocessing, segmentation, feature 

extraction, selection, and classification. The first three steps are responsible for removing any 

pixels unrelated to the abnormality.  Features extraction and selection are responsible for 

converting the images to statistical features and reducing their size by selecting the most relevant 

ones. The algorithm then classifies the datasets and obtains a final result.  The combination of 

modern cameras and advanced algorithms is the basis for the renewed interest in thermography 

to detect breast cancer (24,25). 

Other investigators too, have attempted to combine thermographic images with computational 

analysis.  In 1977, Negin et al (33) implemented a basic software tool whose results 

demonstrated that the automatic interpreter out performed from 4 to 7% the classification results 

produced by a human interpreter with respect to both thermographic impression and biopsy, 

considering the same test images.  In 1999, Wiecek et al (34) described a tool developed in 

MATLAB that implements thermal signature calculations to detect pathological cases using first 

and second order statistical parameters computed from 2D wavelet transform of the image.  The 

FDA-approved Sentinel Breastscan too uses thermal imaging with computer analysis to detect 

breast cancer.  Wishart et al (35) analysed infrared scans four different ways: Sentinel screening 

report, Sentinel artificial intelligence (neural network), expert manual review and NoTouch 

BreastScan a novel artificial intelligence programme. They found that the sensitivity of Sentinel 

screening (53%) and Sentinel neural network (48%) was low but analysis with computer 

software (70%) was much closer to expert manual review (78%). Sensitivity (78%) and 

specificity (75%) using computer software were higher in women under 50.  Arora et al (36) 

studied 92 women suspicious breast lesions identified on prior mammogram or ultrasound and 

found that Sentinel Breastscan could detect breast pathology with sensitivity up to 97% and a 
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negative predictive value of 82%.  Another FDA-approved device is the NoTouch Breastscan.  

Nair et al (37) studied 180 breasts by both digital thermal analysis and mammography with 

abnormalities having pathological confirmation. The sensitivity and specificity of computer 

analysis was 88.24% and 70.52% respectively with NPV of 87.01% and PPV of 72.82%. While 

for mammography the sensitivity and specificity were 96.25% and 96.7% with NPV of 96.7% 

and PPV of 96.25%.  Umadevi et al. (38) developed the software called ITBIC for breast thermal 

image interpretation. Their system captures three thermal images for each female subject 

screened (i.e., frontal, left and right views) and then extracts highest temperature area of the 

thermograms and creates a simplified image for its interpretation. The authors reported the 

following results on 50 female breast thermal images: positive predictive value of 80%, negative 

predictive value of 95.6%, sensitivity of 66.7%, and specificity of 97.7%.  

It is likely that our technology would out-perform these previous attempts.  Our system uses the 

highest resolution thermal cameras to obtain images; from these images, as described in the 

methods section, a total of 64 individual radiomic features are extracted and the analysis uses 

three random forest classifiers configured for 200 decision trees.  We have had encouraging 

results in clinical studies too.  In a prospective multicenter study of 258 symptomatic women, an 

earlier version of the Thermalytix had a sensitivity of 82.5% and specificity of 80.5% with 

respect to the diagnostic mammogram, which had a sensitivity of 92% and specificity of 45.9%.  

Subsequently, in a multisite observational study of 470 symptomatic and asymptomatic women, 

Thermalytix obtained a sensitivity of 91.0%, specificity of 82.39%  and with negative predictive 

value of 98%.  The overall area under the ROC curve was 0.90 (39). More recently, we 

conducted a prospective study to evaluate the performance of Thermalytix as compared to 

mammography in 459 women at a tertiary care hospital.  The Thermalytix system demonstrated 
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an overall sensitivity of 95.24% and specificity of 88.58%, results that compare favorably with 

performance benchmarks for mammography across the world (40). 

Thermalytix with portable infrared camera technology potentially offers several advantages in 

the scenario of breast cancer screening.  It is a non-contact, non-invasive, non-breast 

compression test that is privacy aware, uses no radiation, and is an affordable, portable and light 

small screening device. As a portable device, it improves access to care. It is affordable and 

hence is available for all socio-economic groups. The test can be made available at very remote 

health centres, thereby bridging geographical distances. It can also be conducted by low-skilled 

health care workers. We have evaluated the suitability of its use both in primary health centres 

and in a community setting in more geographically remote and under-developed regions in India. 

The results of this study strongly suggest that recent improvements in digital image capture and 

artificial intelligence software have led to better performance than when using manual 

interpretation alone for breast cancer detection. However, good results in further clinical studies 

conducted on larger number and diverse patient population from different geographical regions 

will ensure adequate validation of the results. 
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Age Group Definition of Thermalytix Positive 

Women aged below 65 years 
 

Thermo-biological score >= 0.5,  

Areolar score >= 0.5,  

Ensemble score >= 0.6,  

Vascular score>= 0.5 and presence of lump,  
Ensemble score >=0.48 and lump 

 

Women aged 65 and above 

 
Thermo-biological score >= 0.35,  

Areolar score >= 0.35,  

Ensemble score >= 0.5,  

Vascular score>=0.5 and presence of lump,  
Ensemble score >=0.48 and lump 

 

 

Table 1. Logical rules to obtain the final classification of women positive on Thermalytix 
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Test Name Sensitivity Specificity PPV NPV 

Thermalytix B-score 95.2% 

(90.0%, 100.5%) 

66.7% 

(60.1%, 73.3%) 

48.0% 

(39.2%, 56.8%) 

97.7% 

(95.2%, 100.3%) 

Thermalytix Ensemble 
Score 

88.9% 

(81.1%, 96.6%) 

79.5% 

(73.8%, 85.2%) 

58.3% 

(48.5%, 68.2%) 

95.7% 

(92.5%, 98.8%) 

Manual 
Thermography 

    

Thermologist 1 60.3% 

(48.2%, 72.3%) 

81.5% 

(76.0%, 86.1%) 

51.4% 

(41.8%, 60.9%) 

86.4% 

(82.2%, 90.6%) 

Thermologist 2 74.6% 

(63.8%, 85.4%) 

50.8% 

(43.8%, 57.8%) 

32.9% 

(25.2%, 41.0%) 

86.1% 

(79.8%, 92.4%) 

Thermologist 3 71.4% 

(60.8%, 82.8%) 

63.8% 

(56.3%, 69.8%) 

38.5% 

(29.6%, 47.3%) 

87.2% 

(81.7%, 92.7%) 

 

Table 2. Sensitivity, Specificity, Positive predictive value (PPV)and Negative predictive value 

(NPV) of Thermalytix and Manual Thermography. (*, *) represents lower and upper limits of 90% 

confidence interval 
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