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Abstract 

Oral squamous cell carcinoma (OSCC) is amongst the most common cancers worldwide, with 

more than 377,000 new cases worldwide each year. OSCC prognosis remains poor, related to 

cancer presentation at a late stage indicating the need for early detection to improve patient 

prognosis. OSCC is often preceded by a premalignant state known as oral epithelial dysplasia 

(OED), which is diagnosed and graded using subjective histological criteria leading to variability 

and prognostic unreliability. In this work, we propose a deep learning approach for the 

development of prognostic models for malignant transformation and their association with clinical 

outcomes in histology whole slide images (WSIs) of OED tissue sections. We train a weakly 

supervised method on OED (n= 137) cases with transformation (n= 50) status and mean malignant 

transformation time of 6.51 years (±5.35 SD). Performing stratified 5-fold cross-validation 

achieves an average AUROC of ~0.78 for predicting malignant transformations in OED. Hotspot 

analysis reveals various features from nuclei in the epithelium and peri-epithelial tissue to be 

significant prognostic factors for malignant transformation, including the count of peri-epithelial 

lymphocytes (PELs) (p < 0.05), epithelial layer nuclei count (NC) (p < 0.05) and basal layer NC 

(p < 0.05). Progression free survival using the Epithelial layer NC (p < 0.05, C-index = 0.73), 

Basal layer NC (p < 0.05, C-index = 0.70) and PEL count (p < 0.05, C-index = 0.73) shown 

association of these features with a high risk of malignant transformation. Our work shows the 

application of deep learning for prognostication and progression free survival (PFS) prediction of 

OED for the first time and has a significant potential to aid patient management. Further evaluation 

and testing on multi-centric data is required for validation and translation to clinical practice. 

Keywords: Oral dysplasia, oral pre-cancer, oral cancer, malignant transformation, computational 

pathology, deep learning, artificial intelligence, early detection. 
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Introduction 

Oral cancer is amongst the most common cancers in the world and is considered a major health 

problem due to the significant associated morbidity and mortality 1. The 5-year survival rate has 

not improved over the last few decades regardless of improvements in surgical and oncological 

treatments. A large majority of oral cancers (>90%) are oral squamous cell carcinoma (OSCC) 

with one of the biggest obstacles to improvement in prognosis being delayed presentation of 

disease, as evidenced by the fact that survival for stage-I OSCC is 80% which reduces to 20-30% 

for stage IV disease 2, 3. OSCC is caused by a multitude of genetic and environmental factors and 

is preceded in a majority of cases by a potentially malignant state with proliferation of atypical 

epithelium known as oral epithelial dysplasia (OED) 4. Dysplastic lesions have been shown to have 

an increased risk of malignant transformation 5. Unfortunately, at present, there are no specific 

clinical tools, biological or molecular markers routinely used or recommended in clinical practice 

for prognostication of dysplastic lesions. Some clinical risk predictors have been suggested to be 

helpful including size, clinical site (e.g., floor of mouth, lower gums, lateral tongue), and clinical 

appearance (i.e. leukoplakia, erythroplakia etc.) and can be found in a wide range of conditions 

collectively referred to as oral potentially malignant disorders (OPMDs) in clinical practice 6.  

In practice, OED diagnosis and grading are done on a tissue biopsy using histological assessment 

and light microscopy. The current gold standard grading system (the 2017 WHO grading system 

that uses three tiers of grading as mild, moderate or severe dysplasia) is subjective, taking into 

account at least 15 different cytological and architectural features as well as the extent of epithelial 

thickness involvement to determine the OED grade which guides treatment decisions 4. However, 

the cytological and architectural features are ill defined and lack in prognostic value e.g., mild or 

moderate OED can progress to malignancy while severe OED may not 6. In addition, OED grading 
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suffers from significant inter- and intra-observer variation due to its subjective nature and 

interpretation can be hugely dependent upon the observer’s experience and training. To improve 

diagnostic reproducibility and prognostication, Kujan et al. 7 introduced the idea of a binary 

grading system, categorising cases as either low or high risk depending on the number of 

architectural and cytological features seen. Although reports have suggested improvement of 

diagnostic agreement and prognosis using the binary system, it also has shortcomings and has not 

been widely adapted for clinical use, highlighting the need for novel approaches 6,8 with objectivity 

and better prognostic value to inform patient management and aid treatment decisions 9. 

Advances in the field of digital pathology and artificial intelligence (AI) have shown potential for 

improving histopathological diagnosis and prognosis, leveraging AI for objective and quantitative 

scoring of features. With wider adaptation of digital pathology in clinical practice, AI algorithms 

have also evolved and have shown promise in automated detection and quantification of 

histological features for classification 10–14, detection 15–18, segmentation 19–21 and survival analysis 

18,22. Digitisation of histology slides generates digitised multi-gigapixel whole slide images (WSI), 

which can be used to develop algorithms to assist pathologists in diagnostic decision-making and 

better prognostication for improved patient management. To the best of our knowledge, there has 

been limited research on computational analysis of OED histology images for prediction of 

malignant transformation. Existing methods in the literature have used relatively small cohorts, 

manual elements, or region of interest (ROI) based analyses 14,23–30. All these methods have 

focused mainly on OED identification or grading and lack predictive or prognostic ability. Limited 

computational pathology work has been reported at the WSI level for predictive analysis of OED 

including recurrence and malignant transformation potential. There has also been variation in 

findings from studies reporting the correlation between OED grade, clinical and histological 
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features, and malignant transformation. Dost et al. 30 examined 368 OED patients where 7.1% 

progressed to carcinoma and showed that there was no association of OED grade with malignant 

transformation. Gilvetti et al. 31 reported a study including 120 patients with a mean follow-up of 

47.7 months (±29.9 SD) and showed that recurrence rate was significant in patients with 

erythroplakia with p = 0.023 with a mean time to recurrence of 62 months (±31.5 SD). Malignant 

transformation was also shown to have significant association with age (p = 0.034), clinical 

appearance (p = 0.030), lesion site (p = 0.007) and some other clinical features with a mean 

transformation time of 50 months (±32.5 SD). A recent study by Mahmood et al. 32 examined the 

correlation between individual histological features and OED prognosis. They examined OED 

biopsies from 108 patients with a minimum of five-year follow-up to analyse histological features 

predictive of recurrence and malignant transformation. Two different prognostic models based on 

presence of specific histological features (bulbous rete processes, hyperchromatism, loss of 

epithelial cohesion, loss of stratification, suprabasal mitoses and nuclear pleomorphism- 

irrespective of grade) were proposed with an area under the receiver-operator characteristic curve 

(AUROC) value of 0.77 for malignant transformation and 0.72 for recurrence. This highlights the 

usefulness of individual (grade-independent) histological features for OED prognosis prediction. 

A significant proportion of OED lesions can transform into malignancy (OSCC) and at present 

there are no tools available for objective and reproducible prediction of malignant transformation. 

Early prediction of malignant transformation is, therefore, crucial to aid patient care and inform 

appropriate treatment to improve prognosis and reducing the need for radical and disfiguring 

surgery at a later date.  
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In this study, we investigate the effectiveness of deep learning algorithms and nuclear features for 

prognostication from digitised WSIs of routine Haematoxylin & Eosin (H&E) stained OED 

histology sections in an end-to-end manner.  

Materials and Methods 

Data 

The dataset used for this study comprised 163 Haematoxylin and Eosin (H&E) stained and scanned 

whole slide images (WSIs) of OED cases between 2005 to 2016. WSIs were scanned at ×20 using 

an Aperio CS2 scanner (n = 66) and at ×40 using a Hamamatsu scanner (n = 97) after ethical 

approval (REC Reference- 18/WM/0335, NHS Health Research Authority West Midlands). 

Amongst 163 cases, 137 were OED cases and 50 cases which had transformed into malignancy. 

The remaining cases were non-dysplastic oral mucosal biopsies including benign hyperkeratosis 

or mild epithelial hyperplasia. The mean average age in the dataset of OED cases was 64.64 (range 

25-97) with mean age for men (n = 84) was ~66.3 and the mean age of women (n = 53) was ~64.5. 

The main clinical sites of involvement were the tongue, floor of mouth and buccal mucosa. The 

mean time for malignant transformation was 6.51 years (±5.35 SD). The inclusion criteria for WSIs 

were decided upon the following conditions: 

• A histological diagnosis of OED 

• Sufficient availability of tissue 

• Minimum five-year of follow-up data (including treatment, recurrence and transformation 

information) from the initial diagnosis 

• Review of the pathology by two independent pathologists 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 22, 2023. ; https://doi.org/10.1101/2023.02.14.23285872doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.14.23285872
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

 
Figure 1 Overall workflow of the study is shown in different sections. A) the process of getting the tissue biopsies 

from dysplastic lesions and corresponding WSIs with their associated labels assigned by a pathologist. B) patches of 

size M×N were extracted from the epithelium region of WSIs. C) fully supervised pipeline where the patches were 

assigned the WSI level labels and trained using CNNs for the downstream tasks. D) weakly supervised pipeline 

where positive (+tive) and negative (-tive) batch of features/images was created and used for training. E) heatmaps 

were generated using IDaRS to explore the hotspot areas and their contribution towards the malignant 

transformation prediction using nuclear analysis. Nuclear features from the hotspot and cold spots were used for 

progression free survival. 
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More information about the cohort can be as seen in Table 1. Epithelium masks were obtained 

using HoVer-Net+ 9 and then refined manually for some cases, whereas slide-level labels were 

obtained for each case from patient records (i.e., clinical notes and biopsies) including histological 

grades, recurrence status, and malignant transformation status (i.e., OED has progressed into 

OSCC at the same diagnosed location within the follow-up time). The WSIs were split into train 

and test sets using 3 different stratified 5-folds on transformation status for all experiments. Patches 

of size 512 × 512 were extracted using the epithelium mask with an overlap of 50% from all the 

WSIs at 0.50µ per pixel (mpp). For extracting the deep features, ResNet-50 33 was used as a feature 

extractor pre-trained on ImageNet. A feature vector of size 1024 was extracted for each patch 

resulting in a bag of shape 𝑥 ∈ ℝ𝑛×1024 for all WSIs (where 𝑛 is the number of patches extracted). 

Table 1. Characteristic of the cohort used for the study with clinical and demographic information of 

OED cases. 

Characteristic Number (%) 

OED cases 137 

Cases with malignant transformation 50 (36.4%) 

WHO grade 

Mild 

Moderate 

Severe 

41 (29.9%) 

53 (38.6%) 

43 (31.3%) 

Binary Grade 

Low risk 

High risk 

80 (58.3%) 

57 (41.6%) 

Mean age [min-max] 64.64 [25-97] 

Gender 

Male 

Female 

84 (61.3%) 

53 (38.6%) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 22, 2023. ; https://doi.org/10.1101/2023.02.14.23285872doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.14.23285872
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

Clinical (intra-oral) site 

Tongue 

Floor of mouth 

Buccal mucosa 

Others 

53 (38.6%) 

27 (19.7%) 

17 (12.4%) 

38 (27.7%) 

Survival Mean (Standard Deviation) 

Survival (Months) 

Survival (Year) 

84.75 (63.03) 

6.51 (5.35) 

 

Malignant Transformation Prediction 

Figure 1 shows the overall pipeline, which involves initially extracting 𝑋 patches of size 𝑀 × 𝑁 

with slide level labels 𝑌 from WSIs with an overlap of 𝑂 using the epithelium mask. Extracted 

patches were utilised for training the deep learning models for predicting malignant 

transformation. In this study, we used iterative draw-and-rank sampling (IDaRS) 34 which works 

by ranking and selecting the top and random patches from a WSI assuming that not all patches are 

equally important and predictive of the outcome. IDaRS selects two subsets of patches for training 

including random patches 𝑟 and top-ranked patches 𝑘 for each WSI. Both subsets are then pre-

processed using the standard set of augmentations and train a CNN with weak labels. We have 

also compared the IDaRS with other fully supervised and weakly supervised algorithms e.g., multi-

layer perceptron (MLP), Attention-MIL (A-MIL) 35, clustering constrained attention multiple 

instance leaning (CLAM) 36, and CNN based benchmark classification models (ResNet 33, 

DenseNet 37 and Vision Transformers 38 with max pooling as an aggregator for the final WSI label). 

Cellular Composition Analysis 

To further analyse and validate the hotspots being identified by the IDaRS model cellular 

compositions of top tiles (i.e., hotspots and coldspots) from transformed and non-transformed 
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cases were analysed. Nuclear features were extracted from each layer (i.e., keratin, epithelial, 

basal) and associated connective tissue in an automated manner using the nuclear segmentation 

and classification. For this purpose, input patches were first stain normalised using a sample from 

The Cancer Genome Atlas (TCGA) cohort before being fed into HoVer-Net 15 which was pre-

trained on the PanNuke dataset 21 for nuclear instance segmentation and classification. For 

segmentation of the keratin, epithelial and basal layers within the epithelium, HoVer-Net+ 9 was 

used. Table 2 shows a range of morphological and proximity features extracted from the segmented 

image patches and aggregated statistically using the minimum ∧ , maximum ∨, mean μ, median 𝑚 

and standard deviation σ. Here, ordinary least square (OLS) was used with post-hoc t-tests for 

calculating the statistical significance with Benjamini/Hochberg adjustment 39. Cellular 

composition helps understanding/interpreting the results of IDaRS and differentiate transformed 

cases from non-transformed ones in an objective manner. 

Table 2 Nuclear features extracted from layer wise nuclei and their explanations. 

Feature Explanation 

Extent (𝐸𝑋) Ratio of bounding box pixels to total region 

Equivalent diameter (𝐸𝐷) Diameter of the circle in the bounding box 

Eccentricity (𝐸𝐶𝐶) Ratio of focal distance over major axis 

Convex area (𝐶𝐴) Number of pixels in the convex hull 

Centroid (C) Centre location of bounding box 

Major axis length (𝑀𝐽𝐿) Length of the major axis 

Nuclei count (𝑁𝐶) Total number of nuclei in the patch 

Cellularity per micron (ϕ) Nuclei density in patch per micron 

Nearest neighbour distance (𝑁𝑁𝐷) Nearest nucleus distance from nucleus of interest 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 22, 2023. ; https://doi.org/10.1101/2023.02.14.23285872doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.14.23285872
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

 

Peri-epithelial Lymphocytes (PELs) Count 

Elevated PEL counts can be linked to a higher risk of malignant transformation in oral epithelial 

dysplasia (OED) and in order to further explore the role of PEL count in transformed and non-

transformed cases, a Wilcoxon rank-sum test was performed where p < 0.05 was considered 

significant. Moreover, we also analysed the distributions of PEL count in subgroups based on two 

clinical features i.e., gender and age. Gender was divided into male and female groups, the age 

subgroups were separated into ranges between 0-50, 51-70, and 71-100.  

Survival Analysis 

To investigate the prognostic significance of the clinical, pathological, and nuclear features for 

progression free survival (PFS), Kaplan–Meier (KM) curves and Cox proportional hazard (CPH) 

model were used for univariate and multivariate analysis. To distinguish between the high risk 

(short term survival) and low risk (long term survival) groups the optimal cut off value was 

calculated by taking the mean of hazard value for each instance using CPH model where the 

statistical significance is large between the high and low risk groups. Furthermore, a long-rank test 

was performed to determine the statistical significance and p < 0.05 was considered statistically 

significant. 

Experiments 

For IDaRS, we set the random patches 𝑟 = 30, top-patches 𝑘 = 5 and trained a pretrained ResNet-

34 on ImageNet with a batch size of 16 and patch size of 256. IDaRS is trained for 30 epochs with 

binary cross-entropy loss and optimised using the Adam optimiser. For training, MLP and CLAM 

deep features were then fed as an input to the models for generating WSI-level outputs. MLP and 
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CLAM were trained for 1000 epochs using the default configurations from the CLAM 36. For A-

MIL and CNN models’ the same input and configurations as IDaRS were used for the training and 

test purposes. All models were trained and tested on a system with two Nvidia Titan-X with 12 

GB of memory, dedicated RAM of 128GB, and an Intel® Core i9 processor. 

To validate the results, stratified on transformation status 5-fold cross validation was performed 

three times with different random seeds. AUROC and F1-score (macro) were used as performance 

metric and are averaged across the folds. F1-score can be though as weighted mean between the 

precision and recall known as harmonic mean, and is calculated as: 

F1 =
2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
 

F1-score (macro) computes the arithmetic mean of F1-score per class treating all classes equally 

and regardless of their number. AUROC evaluates the binary problems by plotting true positive 

rate (TPR) against the false positive rate (FPR) at various thresholds. The area under the ROC 

curve (AUROC) measures the ability of the classifier to differentiate between the two classes 

where the TPR and FPR are calculated as: 

TPR =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑎𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

FPR =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑎𝑔𝑎𝑡𝑖𝑣𝑒𝑠
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Results 

Malignant Transformation 

Our experiments shown in Table 3 indicate that the performance of IDaRS is comparatively better 

than the other weakly and fully supervised algorithms with an AUROC of 0.78 (±0.07 SD) and 

F1-score of 0.69 (±0.05 SD) as compared to MLP, CLAM, and A-MIL. It can also be observed 

from the ROC plots in Figure 2 that the standard deviation across different folds for IDaRS is 

smaller as compared to the other weakly supervised algorithms. It is worth noting that the 

performance of CLAM is competitive to IDaRS as compared to the MIL in terms of F1-score. The 

reason for poor performance of CLAM can be attributed to less confident predictions as a 

consequence to the fixed input feature representations leaving small room for optimal thresholding. 

The fully supervised networks performed worse compared to other weakly supervised models due 

to the inherent nature of the problem which introduces noise in the labels corrupting the model’s 

training.  

Table 3. Performance of IDaRS model as compared to other weakly supervised and fully supervised 

models with deep features where IDaRS is achieving high performance in terms of AUROC. 

Model top-k AUC ± SD F1-score ± SD 

MLP 

1 0.65 ± 0.09 0.56 ± 0.11 

5 0.64 ± 0.11 0.55 ± 0.01 

Attention-MIL 35 - 0.54 ± 0.07 0.44 ± 0.03 

CLAM 36 

1 0.65 ± 0.04 0.64 ± 0.04 

5 0.65 ± 0.05 0.63 ± 0.01 

IDaRS 34 5 0.78 ± 0.07 0.69 ± 0.05 
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ResNet-50 33 - 0.54 ± 0.10 0.43 ± 0.11 

ViT 38 - 0.55 ± 0.01 0.45 ± 0.08 

DenseNet 37 - 0.56 ± 0.05 0.44 ± 0.01 

 

 
Figure 2 ROC curve plots on 5-fold cross validation for OED malignant transformation prediction 

using (A) MIL (B) A-MIL (C) CLAM and (D) IDaRS. 
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Exploring the visual patterns 

To validate and further investigate the features learnt by the top performing IDaRS, we explored 

the top tiles from the heatmaps of transformed and non-transformed WSIs. For correlating the 

hotspot/coldspots with the clinical features, heatmaps were also analysed manually for 

corroboration purposes by an expert pathologist SAK. Figure 3 shows the heatmap for a 

histologically high risk case where the red (hotspot) colour represents a region with higher 

probability of malignant transformation while the blue (coldspot) colour corresponds to a region 

with a low probability of transformation. Closer examination of hotpots shows evidence of 

disordered stratification, dyskeratosis as well as nuclear and cellular pleomorphism with a dense 

lymphocytic infiltrate in the adjacent peri-epithelial connective tissue. The dense lymphocytic 

infiltrate is referred to as peri-epithelial lymphocytes (PELs) for the rest of the analysis. 

Cellular Composition Analysis 

Following the manual analysis of the heatmaps, automated cellular composition analysis was 

performed to uncover significant hidden patterns/features in transformed vs non-transformed 

cases. Table 4 shows the prognostic significance of the extracted nuclear features for predicting 

malignant transformation. For epithelial layer, variation in eccentricity (p = 0.048), bounding box 

(p = 0.0487) and total nuclei count (p < 0.0001) showed significance along with basal layer NC (p 

< 0.0001). An increase in cell count (hyperplasia or crowding) is an important feature observed in 

high risk dysplasia in both the central epithelium layer and specifically within the basal layer. 

Other features in epithelium e.g., variation in nuclei count (100µ per pixel) and nearest nuclei 

distance corresponds congestion in spatial arrangements of epithelial nuclei and requires more data 

for validation. Similarly, changes in basal layer nuclei minor axis, equivalent diameter corresponds 

to the nuclear pleomorphism and are observed in high risk OED cases. Interestingly, the nuclei 
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count in the connective tissue area also showed significance for predicting the transformation (p = 

0.0004) which corresponds to the previous observation regarding the dense lymphocytic infiltrate 

in the adjacent peri-epithelial connective tissue. 

 
Figure 3 Heatmap for the malignant transformation predicting using IDaRS. The red region shows the 

high probability of malignant transformation in those areas. 
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Table 4 Ordinary least square regression for malignant transformation with t-test significance of nuclear 

features with Benjamini/Hochberg 39 adjustment. Significant p value is is highlighted using *. 

Feature p > | t | p > | t | (adjusted) 

Tissue NC 0.0013 0.0481* 

Tissue σ Nuclei in 100 mpp 0.0289 0.2755 

Tissue max ECC 0.0428 0.3491 

Basal μ minor axis length 0.0436 0.3491 

Basal σ ED 0.0090 0.1672 

Basal NC < 0.0001 < 0.0001* 

Epithelium μ ECC 0.0015 0.0487* 

Epithelium μ NND 0.0099 0.1672 

Epithelium μ Nuclei in 100 mpp 0.0125 0.1273 

Epithelium σ ECC 0.0028 0.0729 

Epithelium σ Bounding Box 0.00106 0.0487* 

Epithelium NC < 0.0001 < 0.0001* 
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Figure 4 Patches extracted from the hotspot (red) and coldspots (blue) of the WSIs with their layer 

wise nuclear composition. Most of the coldspot regions have dominant epithelial nuclei as compared to 

the hotspots where PEL can be seen dominating the overall ratio. 

 

Peri-Epithelial Lymphocytes (PELs)  

Figure 4 shows examples patches from both hotspots (red) and coldspots (blue) regions of the 

transformed and non-transformed cases with their corresponding layer-wise cellular compositions. 

For most of the coldspots, the epithelium and basal nuclei are dominant whereas in the hotspots 

(red) PELs are in abundance in the transformed cases compared to non-transformed cases. As a 
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whole, PELs were statistically significant (p = 0.02) for differentiating between the transformed 

vs non-transformed cases. Gender based subgrouping showed no significance between male and 

female groups. However, for age, 0-50 group showed prognostic significance with respect to 

malignant transformation with p = 0.001. Figure 5 shows the boxen plots for (A) the overall 

distribution of PEL ratio in transformed cases versus non-transformed cases and (B) the 

distribution of PEL ratio in transformed cases versus non-transformed cases including age 

subgrouping. 

 
Figure 5 (left) Shows the boxen plot for the ratio of PELs present in both transformed and non-

transformed patches and (Right) Shows the further breakdown of the PEL ratio in age groups where 

the 0-50 age group has distinct difference in PEL ratio as compared to the other groups. 

Survival Analysis 

Table 5 shows the univariate analysis of the aforementioned nuclear features mention in Cellular 

Composition Analysis with clinical and pathological features, where it can be seen that both 

clinical features, age (p > 0.05, C-index = 0.59 [95%, 0.59 – 0.60]) and gender (p > 0.05, C-index 
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= 0.52 [95%, 0.52 – 0.53]) are nonsignificant. Conversely, the pathological features showed 

significance for binary grading (p = 0.004, C-index = 0.68 [95%, 0.67 – 0.69]) and WHO based 

grading when moderate and severe cases were combined against mild grade (p = 0.04, C-index = 

0.68 [95%, 0.67 – 0.68]). When mild and moderate cases were combined and compared against 

severe, and they showed the same significance as (p = 0.04, C-index = 0.68 [95%, 0.67 – 0.68]). 

The nuclear features extracted from the epithelial layer, basal layer and connective tissue area also 

showed significance for minimum number of nuclei count (NC) in basal layer (p < 0.05 , C-index 

= 0.70 [95%, 0.69 – 0.71]), epithelial layer (p < 0.05 , C-index = 0.73 [95%, 0.73 – 0.74]) and in 

PELs (p < 0.05, C-index = 0.73 [95%, 0.72 – 0.73]). Figure 6 (B) shows the KM curves for PEL 

count and (C) epithelium layer NC where it can be seen that both features are statistically 

significant in differentiating the high risk and low risk lesions with a clear separation between the 

two groups. Figure 6 (A) shows the hazard ratio (HR) for variation in basal layer NC and 

epithelium layer NC appears to be associated with improved survival whereas the minimum PEL 

count, epithelium layer NC and basal layer NC are the adverse predictors of PFS. Furthermore, 

Table 6 shows the multivariate analysis of most significant nuclear and pathological features (i.e., 

binary grading, ∧ epithelial layer NC, ∧ basal layer NC and ∧ PEL count) to examine their 

combined effect on the PFS. When these features are combined, the C-index improves by reaching 

0.79 [95%, 0.78 – 0.80] with binary grading, epithelium layer NC and PEL being most significant 

prognostic features for malignant transformation. In the absence of binary grading, the C-index 

achieved using nuclear features only is competitive, reaching 0.78 [95%, 0.77 – 0.78]. Similarly, 

combined binary grading with PEL counts reached the same C-index of 0.78 [95%, 0.77 – 0.78] 

as compared to the other two feature with binary grading i.e., epithelium layer NC 0.76 [95%, 0.75 

– 0.77] and basal layer NC 0.77 [95%, 0.76 – 0.77]. This highlights the importance of using PEL 
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counts as a prognostic feature for predicting the malignant transformation. Further, the combined 

performance of basal layer NC and epithelium layer NC with PEL count also shows the 

significance of using PEL in conjunction with other clinical and nuclear features.  

 
Figure 6 (A) Univariate analysis of different features (blue) pathological (green) clinical and (red) 

nuclear. For each feature the dot represents the hazards ratio, and the filled line shows the lower and 

upper confidence interval of 95%. p-values were shown at the right, calculated using the Wald test. (B) 

Kaplan–Meir (KM) curve for progression free survival of OED using PEL count and (C) represents the 

KM curve using the epithelium layer nuclei count. 
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Table 5. Univariate analysis of the clinical, pathological and digital features where p is calculated using 

the log-rank method and C-index is calculated using the Cox Proportional Hazard model bootstrapped 

1000 times for lower and upper confidence interval. 

Feature Aggregation p C-index 

Lower 

95% 

Upper 

95% 

Clinical Parameters 

Gender - > 0.05 0.52 0.52 0.53 

Age - > 0.05 0.59 0.59 0.60 

Pathological Parameters 

WHO Grading [Mild vs Mod + 

Severe] 

- 

< 0.05 0.68 0.68 0.69 

WHO Grading [Mild + Mod vs 

Severe] 

- 

< 0.05 0.68 0.68 0.68 

Binary Grading - < 0.05 0.68 0.68 0.69 

Nuclear Features 

PEL count 

μ > 0.05 0.45 0.45 0.46 

σ < 0.05 0.60 0.59 0.60 

𝑚 > 0.05 0.57 0.56 0.58 

∧ < 0.05 0.73 0.72 0.73 

∨ > 0.05 0.53 0.52 0.54 

Basal NC 

μ > 0.05 0.45 0.44 0.46 

σ < 0.05 0.66 0.65 0.67 

𝑚 > 0.05 0.52 0.51 0.53 
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∧ < 0.05 0.70 0.69 0.71 

∨ > 0.05 0.53 0.52 0.54 

Epithelium 𝑁𝐶 

μ < 0.05 0.65 0.64 0.65 

σ < 0.05 0.72 0.71 0.73 

𝑚 < 0.05 0.66 0.65 0.67 

∧ < 0.05 0.73 0.73 0.74 

∨ > 0.05 0.46 0.45 0.47 

 

 

Table 6. Multivariate analysis of the pathological and digital features where p is calculated using the 

Wald test and C-index is calculated using the Cox Proportional Hazard model bootstrapped 1000 times 

for lower and upper confidence interval. 

Feature p HR Lower 95% Upper 95% 

C-index = 0.79, 95% CI [0.78 – 0.80] 

Binary Grading < 0.05 2.43 1.30 4.54 

Basal NC > 0.05 1.04 0.79 1.37 

PEL count < 0.05 1.72 1.24 2.37 

Epithelium NC < 0.05 1.48 1.07 2.05 

C-index = 0.78, 95% CI [0.77 – 0.78] 

Basal NC > 0.05 1.08 0.81 1.43 

PEL count < 0.05 1.72 1.23 2.39 

Epithelium NC < 0.05 1.67 1.20 2.32 

C-index = 0.77, 95% CI [0.76 – 0.77] 
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Binary Grading < 0.05 2.97 1.62 5.43 

Basal NC < 0.05 1.54 1.31 1.81 

C-index = 0.78, 95% CI [0.77 – 0.78] 

Binary Grading < 0.05 3.10 1.70 5.65 

PEL count < 0.05 1.81 1.50 2.18 

C-index = 0.76, 95% CI [0.75 – 0.77] 

Binary Grading < 0.05 2.76 1.44 4.93 

Epithelium NC < 0.05 1.84 1.27 2.66 

C-index = 0.73, 95% CI [0.72 – 0.74] 

Basal NC > 0.05 1.13 0.84 1.52 

PEL count < 0.05 1.68 1.20 2.34 

C-index = 0.77, 95% CI [0.77 – 0.78] 

Epithelium NC < 0.05 1.67 1.19 2.35 

Basal layer NC < 0.05 1.54 1.29 1.83 

C-index = 0.78, 95% CI [0.77 – 0.78] 

Epithelium NC < 0.05 1.68 1.21 2.34 

PEL count < 0.05 1.83 1.50 2.25 

 

Discussion and Conclusions 

In this study, we explored the potential of deep learning for predicting the malignant 

transformation from digitised OED histology slides. We trained a weakly supervised learning 

framework for malignant transformation prediction and further analyse the predictive “hostpots” 

in epithelial and peri-epithelial tissue regions. We have demonstrated that deep learning based 
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weakly supervised IDaRS can predict malignant transformation with an AUROC of ~0.78 (±0.07 

SD) on stratified 5-fold cross-validation using three different random seeds. Mahmood et al. 32 

also reported the AUROC of 0.77 for transformation using a similar but smaller cohort with the 

nuclear features subjectively assessed by three pathologists. The higher performance of IDaRS is 

because it dynamically learns important feature representations from the patches internally, as 

compared to fixed feature representation of a patch as an input limiting the learning possibilities 

of the model.  

We have also explored the cellular compositions (i.e., nuclear features) and their role in potentially 

malignant areas (i.e., hotspots) of transformed cases and comparing them to the non-transformed 

areas (i.e., coldspots). Nuclear features from the epithelial layer and associated connective tissue 

area were found to be most significant prognostic features for predicting malignant transformation. 

Other important features found in epithelial and basal layer during the experiments were variation 

in number of layer nuclei in 100µ per pixel (mpp), standard deviation in cell eccentricity, mean 

major and minor axis length etc. These nuclear features also correspond to the aberration of nuclei 

(i.e., variation in size of nuclei captured as a variation in the minor axis of the nuclei and convexity 

of the nuclear shape) and congestion due proliferation of nuclei in the epithelial and basal layer. 

However, in order to verify the significance of these features further we require more data to 

validate these features for their prognostic significance for malignancy. It has also been reported 

in the literature that the PELs can play an important role in transforming dysplasia into carcinoma 

40. There is a possible explanation for transformation, that the epithelium is affected by the PEL. 

This can be due to the release of cytokines linked with oxidative stress, transforming the epithelial 

cells into premalignant ones 41–44 as we have seen that PELs showed significance for predicting 

the transformation with p < 0.05. 
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For progression free survival, we analysed the clinical, pathological, and nuclear features and 

found that apart from binary grading in OED, the variation in basal and epithelial layer NC to be 

associated with improved PFS while minimum number of in basal layer NC, epithelial layer NC 

and PEL to be associated with increased risk of malignant transformation or poor survival. Gan et 

al. 40 has also shown similar finding of PELs using the RNA sequencing of the immune infiltrating 

sites within the moderate and severe OED. They have stated in their work that the lack of CD8 T-

cells in non-cytotoxic subtype and non-immune reactive subtype can lead to progression in 

moderate and severe dysplasia. It is also interesting to note that our study has found binary grading 

to be a significant indicator for malignant transformation whereas the study performed by Dost et 

al. 30 has shown no association between grading and transformation whereas Mahmood et al. 32 

showed associate between nuclear features and transformation. However, the nuclear features used 

corresponds to OED grading e.g., bulbus rete pegs, loss of epithelial cohesion etc., and upon adding 

histological grades into the mix they observed improvements in their results. Similarly, Gilvetti et 

al. 31 has shown the significance of different clinical feature specially the age which we have found 

for one of the sub groups i.e., 0-50 showed prognostic significance with p = 0.001. We have also 

found that in our multivariate analysis that when we combined these pathological and nuclear 

features for PFS it improved the results specifically due to the addition of epithelium layer NC and 

PEL count. However, an interesting avenue would be to analyse and investigate the role of 

dysplasia infiltrating lymphocytes (DILs) in malignant transformation. Although the cohort is 

small and uni-centric, the department in question is a regional and national referral centre in the 

UK. Nonetheless, for the practical application and adaptation of these methods in clinical practice 

requires substantially large and truly multicentric cohort data allowing more rigorous validation of 

the proposed algorithms.  
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To best of our knowledge this is the first study to propose and show the role of peri-epithelial 

lymphocytes (PELs) count in malignant transformation along with other digital biomarkers e.g., 

epithelium layer NC and basal layer NC. Our multivariate feature analysis has shown that PELs 

and epithelial NC have shown to improve the prognostic value in conjunction with binary OED 

grading for predicting malignant transformation. Our proposed methodology for predicting 

malignancy in an end-to-end manner has the potential play an important role in precision medicine 

and personalised patient management for early prediction of malignancy risk with the potential to 

guide treatment decisions and risk stratification.  
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