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Abstract 29 
 30 
Background 31 
Many countries have moved into a new stage of managing the SARS-CoV-2 pandemic with 32 
minimal restrictions and reduced testing in the population, leading to reduced genomic 33 
surveillance of virus variants in individuals. Wastewater-based epidemiology (WBE) can 34 
provide an alternative means of tracking virus variants in the population but is lacking 35 
verifications of its comparability to individual testing data. 36 
Methods  37 
We analysed more than 19,000 samples from 524 wastewater sites across England at least twice 38 
a week between November 2021 and February 2022, capturing sewage from >70% of the English 39 
population. We used amplicon-based sequencing and the phylogeny based de-mixing tool Freyja 40 
to estimate SARS-CoV-2 variant frequencies and compared these to the variant dynamics 41 
observed in individual testing data from clinical and community settings. 42 
Findings  43 
We show that wastewater data can reconstruct the spread of the Omicron variant across England 44 
since November 2021 in close detail and aligns closely with epidemiological estimates from 45 
individual testing data. We also show the temporal and spatial spread of Omicron within London. 46 
Our wastewater data further reliably track the transition between Omicron subvariants BA1 and 47 
BA2 in February 2022 at regional and national levels. 48 
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Interpretation  49 
Our demonstration that WBE can track the fast-paced dynamics of SARS-CoV-2 variant 50 
frequencies at a national scale and closely match individual testing data in time shows that 51 
WBE can reliably fill the monitoring gap left by reduced individual testing in a more affordable 52 
way. 53 
Funding  54 
Department of Health and Social Care, UK, Natural Environmental Research Council, UK, COG-55 
UK 56 
 57 
Research in context 58 
 59 
Evidence before this study 60 
Genomic monitoring of wastewater for SARS-CoV-2 variants has been introduced in several 61 
countries and shown to effectively detect the spread of known variants in multiple studies. 62 
However, verification of its alignment with individual testing data at a national scale has so far 63 
been reported only for Austria, where sampling covered around 5.4million people. Further and 64 
larger scale verifications of the reliability of wastewater-based epidemiology (WBE) are 65 
needed to increase confidence in its use for public health monitoring. 66 

Added value of this study 67 
We provide evidence that WBE was able to closely track the spread of the emerging SARS-68 
CoV-2 variant Omicron, as well as its sub lineage dynamics, at a regional and national scale 69 
across England. Our sampling covered >70% of the English population, equivalent to 39.4 70 
million people. We thereby demonstrate the scalability of our approach to national levels. We 71 
also show how WBE is able to track dynamics in different regions of the UK and at a finer 72 
scale within London. Its close alignment, in estimated epidemiological timings, with results 73 
from intensive individual testing in the same timeframe provides evidence that wastewater-74 
based monitoring can be a reliable alternative when large scale data from individual testing is 75 
not available. 76 
 77 
Implications of all the available evidence 78 
Altogether, evidence is accumulating that WBE is a reliable approach for monitoring SARS-79 
CoV-2 variant dynamics and informing public health measures across spatial scales. 80 
 81 
Introduction 82 
As lockdowns are easing across the world, the threat from SARS-Cov-2, and especially new 83 
variants, is still considerable. Therefore reliable, sustainable, and affordable ways to monitor 84 
the ongoing evolution of the virus and spread of variants are needed. 85 
Wastewater-based epidemiology (WBE) is a method to monitor pathogens that pose a threat 86 
to public health and has been receiving much interest during the SARS-CoV-2 pandemic 1–3, 87 
exploiting the observation that around 50% of infected individuals shed the virus in faeces 88 
4,5.Through sampling of wastewater (sewage) from catchments containing large numbers of 89 
individuals, followed by detection of pathogens using molecular methods, WBE can provide 90 
regular surveillance of a high percentage of a population 6. This provides passive sampling 91 
that can encompass individuals who are asymptomatic or who have low engagement with 92 
clinical testing programmes 1,7. Many local and national WBE programs have been initiated 93 
with the prospect of providing insight into the prevalence and diversity of the virus in different 94 
communities and to detect the emergence and spread of SARS-CoV-2 variants, for example 95 
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in Spain 8, Switzerland 9, India 10 and the USA 11–13 and have informed local and national public 96 
health interventions. 97 
These programs have shown promising results, demonstrating that WBE can detect the 98 
occurrence of emerging variants, often even earlier than individual testing 9,14,15 and showing 99 
differences in the timing of the spread of SARS-CoV-2 variants at a small spatial scale, such 100 
as parts of a city 16,17. However, WBE verification studies have generally been focused on one 101 
or a few cities, with only one published example of SARS-CoV-2 variant monitoring in 102 
wastewater at a larger spatial scale across Austria 18. The wastewater monitoring program in 103 
England had expanded WBE to an unrivalled scale, covering 39.4 million people or 70% of 104 
the population by mid-2021 and providing critical insights into uncertainty factors involved with 105 
wastewater sampling and their mitigation 19. This extensive wastewater sampling coverage, 106 
combined with a comprehensive individual testing effort in the UK which can be used for 107 
validation, provides an ideal case study to verify the utility of WBE for following the spread of 108 
a new variant across a whole country. 109 
The SARS-CoV-2 Omicron variant (B.1.1.529) was first designated as a variant of concern 110 
(VOC) by The World Health Organisation on 21st November 2021, following detection in a 111 
rapidly growing cluster of South African cases 20,21. The Omicron variant is characterised by a 112 
large number of mutations, including at sites associated with functional differences on the 113 
spike protein, and appears to have arisen from a distinct lineage to that of the previously 114 
dominant Delta variant 22. Following Omicron’s emergence, it rapidly spread across the globe 115 
causing increased Covid-19 case numbers in many countries and was quickly determined to 116 
have substantially higher immune evasion than any previous variant, potentially combined with 117 
a higher transmissibility 21, leading to a strong selective advantage. By mid-January it had 118 
already accounted for more than 50% of new infections reported to GISAID and was 119 
responsible for more than 90% of new infections detected by individual testing in the UK 23. 120 
Here we use the arrival and spread of Omicron in England to test the utility of WBE in tracking 121 
SARS-CoV-2 variants at a national level. We use genome sequencing of SARS-CoV-2 from 122 
>19,000 longitudinal samples and obtained from 524 sites, including sewage treatment works 123 
and finer scale sampling from the sewer networks in cities. We use these data to test how 124 
quickly WBE was able to detect the arrival of Omicron in England and its ability to then give 125 
insight into Omicron’s geographical spread and rise in frequency through time, verifying results 126 
against data from individual testing efforts in clinical and non-clinical settings. 127 
 128 
Materials and Methods 129 
 130 
Wastewater Sample Collection and Processing 131 

Wastewater grab samples (1 L per sample) were collected from 233 locations across the 132 
sewer network in England and from 291 wastewater treatment plants between the 1st of 133 
November 2021 and the 28th of February 2022, as part of the ongoing Environmental 134 
Monitoring for Health Protection programme (part of NHS Test & Trace, now the UK Health 135 
Security Agency) in England. Samples were transported and subsequently stored at 4 - 6°C 136 
until analysis, minimising RNA degradation. Within 24h of collection, all samples were 137 
centrifuged (10,000 x g, 20°C, 10 min) in sterile PPCO bottles to remove suspended solids. 138 
The supernatant (150 ml) was transferred to 250 ml PPCO bottles containing 60 g of 139 
ammonium sulfate (Sigma-Aldrich, Cat. No. A4915). After the ammonium sulfate had 140 
dissolved, the samples were incubated at 4 °C for 1 h before further centrifugation (10,000xg, 141 
4 °C, 30 min) and supernatant removal. The pellet was resuspended in 2ml of NucliSens lysis 142 
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buffer (BioMérieux, Marcy-l'Etoile, France, Cat No. 280134 or 200292). Concentrates were 143 
stored at 4°C until nucleic acid extraction. Nucleic acids were extracted from concentrates 144 
using NucliSens extraction reagent kit (BioMérieux, Cat. No. 200293) either manually (Farkas 145 
et al. 2021) or using the KingFisher 24 Flex system (Thermo Scientific, Waltham, MA, USA) 146 
according to the manufacturer instructions 24, eluting RNA extracts with a 120 µl volume. 147 
Extracts were stored at -80°C until further processing. 148 

Wastewater Sequencing 149 

Wastewater RNA extracts were purified and sequenced with a standardised EasySeq™ RC-150 
PCR SARS-CoV-2 (Nimagen) V1.0 protocol 25. Briefly, samples were cleaned with Mag-Bind® 151 
TotalPure NGS beads (Omega Bio-Tek) and then reverse transcribed using LunaScript® RT 152 
SuperMix Kit (New England Biolabs) and the EasySeq™ RC-PCR SARS-CoV-2 (novel 153 
coronavirus) Whole Genome Sequencing kit v3.0 (NimaGen). Amplicons were pooled and 154 
libraries cleaned with Mag-Bind® Total Pure NGS beads (Omega Bio-Tek) or Ampure XP 155 
beads (Beckman Coulter) before sequencing on an Illumina NovaSeq™ 6000 or NextSeq 500 156 
platform generating 2x150bp paired end reads. Sample processing and sequencing were 157 
performed in 3 different laboratories (Exeter, Liverpool and Nottingham), validated to produce 158 
comparable results by sequencing of standardised synthetic samples (Fig. S1). In brief, 47 159 
mixes of 4 different synthetic SARS-CoV-2 RNA Controls (Twist Bioscience) in different 160 
proportions were sequenced at each of the sites. We validated reliability between sites by both 161 
comparing the frequencies of individual SNPs detected and by comparing the predicted 162 
lineage composition from our analysis pipeline from each of the sites with the expected lineage 163 
composition based on the known mix of variants. 164 

Wastewater Bioinformatics 165 

Following sequencing, the wastewater data were demultiplexed and processed using a 166 
custom Nextflow v21.04.0 26 pipeline (https://github.com/LooseLab/ww_nf_minimal). Briefly, 167 
reads were filtered using fastp v0.20.1 27 and mapped to the SARS-CoV-2 reference 168 
(accession: NC_045512.2) using BWA (v0.7.17; http://arxiv.org/abs/1303.3997). Following 169 
alignment, primer sequences were trimmed using iVar v1.3.1 28 and a bed file containing the 170 
amplicon primer positions. Bam files containing the trimmed alignments then underwent 171 
variant (SNP) calling using VarScan v2.4.4 29 and relative SARS-CoV-2 lineage abundance 172 
estimation using Freyja (v1.3.1; https://github.com/andersen-lab/Freyja; curated lineage file 173 
and UShER global phylogenetic tree downloaded on 2022-07-12). Variant calls were 174 
aggregated and subsequent analyses were conducted using custom scripts in R and Python 175 
(available on github). The specific SARS-CoV-2 variants (lineages) predicted by Freyja to be 176 
present in the samples were summarised into major lineages, i.e. defined variants of concern 177 
(VOC) and variants under investigation (VUI) according to the Pango nomenclature 178 
(https://cov-lineages.org). 179 
 180 
Sample quality control and method verification 181 

To control for variant detection issues in low quality samples, we excluded wastewater 182 
samples from further analyses if coverage depth was ≤ 100x for amplicon 121, which contains 183 
7 of the defining mutations of the Omicron variant, or if less than 100 out of 154 amplicons 184 
had at least 20x coverage depth. This reduced our dataset from 19,911 samples to 9,883 185 
samples (Fig S2b). 186 
We further checked these quality thresholds against the SARS-CoV-2 RNA concentration 187 
found in the wastewater samples initially by qPCR (Fig.S2c&d). 188 
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We used a presence/absence call on characteristic Omicron mutations to validate the results 189 
obtained with Freyja for first detection and general detection of Omicron presence in a given 190 
area (Fig S3), using the following definitions by Public Health England: The B.1.1.529-BA.1 191 
lineage has 1 synonymous and 16 non-synonymous signature SNPs of which 11 are unique 192 
amongst known VOC and VUI, detection confirmed when 11 of 16 signature SNPs and more 193 
than  6 of 11 unique SNPs detected and co-occurrence of SNPs on the same amplicon 194 
detected, or when more than 11 signature SNPs and more than 6 unique SNPs are present. 195 
The B.1.1.529-BA.2 lineage has 4 synonymous and 16 non-synonymous signature SNPs of 196 
which 12 are unique amongst known VOC and VUI, detection confirmed when more than 13 of 197 
20 signature SNPs and 6 of 12 unique SNPs detected and co-occurrence on the same 198 
amplicon detected, or when more than 13 signature SNPs and more than 6 unique SNPs are 199 
present. 200 
We also used Varscan v2.4.4 29 to call SNPs, averaging frequencies across SNPs matching 201 
the Omicron profile to validate frequency estimates obtained by Freyja (Fig S4). 202 

Individual infection sequence metadata  203 

Sequence metadata was obtained from the master COG-UK dataset on 29th March 2022, 204 
generated each day using a custom pipeline, datapipe (https://github.com/COG-UK/datapipe). 205 
As part of this pipeline, SARS-CoV-2 variants were assigned using Scorpio 206 
(https://github.com/cov-lineages/scorpio), and only sequences with sampling dates after the 207 
1st November 2021 and published less than three weeks after the sequencing date were used 208 
for Omicron sequences to avoid including incorrectly assigned sequences. The same sample 209 
date cut-off as for wastewater samples of 28th February 2021 was used. Geographical 210 
locations were also cleaned as part of the analysis pipeline, and details of geographical 211 
metadata cleaning can be found here (https://github.com/COG-UK/geography_cleaning). 212 
Individual infection data came from two pillars of testing employed in England – pillar 1 data 213 
coming from hospital patients and health and care workers, pillar 2 data coming from swab 214 
tests in the wider population. We tested the alignment of data from pillar 1 and pillar 2 with 215 
wastewater data separately and as pooled data. 216 

Statistical Analyses 217 

We used R version 4.1.2 30 and RStudio v. 1.4.1717 31 and daily data for all statistical analyses 218 
unless stated otherwise. For geographical visualisations of the data, we calculated weekly 219 
averages of variant frequencies for each site. For increased visibility on the maps, we then 220 
aggregated data by county for both the individual infection data and wastewater data. We 221 
plotted maps with complete colouring of the respective counties for better legibility, maps of 222 
only the specific areas covered by the sampled wastewater network (covering the main 223 
population aggregations) can be found in the Supplement (Fig S5). Shapefiles for mapping 224 
were obtained from gadm.org (county delineations) and the maps package in R 32. We 225 
generated maps of sampling area outlines in Python, using the libraries geopandas v0.11.0, 226 
pyplot v3.5.2 and contextily v1.2.0. These outlines are depicted as approximate, not exact 227 
outlines due to data sharing restrictions. 228 

We modelled the rise of the Omicron variant in each of the 9 regions of England separately 229 
for wastewater and individual infection data by fitting a two-parameter log-logistic function with 230 
lower limit 0 and upper limit 1 by least squares estimation using the drm function from the drc 231 
package v3.0-1 33. 232 

 	𝑓(𝑥) 	= !
!"#$%('(()*($),()*(#)))

  233 
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To compare the estimated rates of Omicron spreading in each region and according to 234 
different data types, we extracted from each model the date when Omicron was predicted to 235 
reach dominance (inflection point, e) and the growth rate during the exponential growth phase 236 
which we transformed to a more intuitive growth rate of the function from 5 days before to 5 237 
days past the inflection point as 𝑔	 = 	 -(#".),-(#,.)

!/
. 238 

To assess the time match between Omicron frequency estimates in wastewater and individual 239 
infection data, we ran Spearman’s correlation tests in the range of time delays of 5 day lags 240 
of wastewater data to 3 day lags of individual infection data, using county level daily average 241 
frequency data. 242 

 243 
Results 244 

Detection limits 245 

By comparing synthetic mixes of SARS-CoV-2 variants in each of our sequencing facilities, 246 
we could confirm that variant levels as low as 1% were detected as being present in all 247 
samples by our sequencing approaches and Freyja based analyses (Fig.S1). Samples with 248 
SARS-CoV-2 concentrations above 100,000 genome copies/L consistently yielded 249 
sequencing data above our quality criteria, however many samples with lower RNA 250 
concentration also yielded sufficient sequencing reads, including many samples where SARS-251 
CoV-2 RNA was not detected by qPCR initially (Fig.S2). 252 

Detection and frequency estimation of Omicron  253 

We first detected the Omicron variant in wastewater samples from the South East and the 254 
East Midlands on the 26th of November 2021, verified with two different approaches using a 255 
minimum number of characteristic SNPs and the phylogeny based de-mixing tool Freyja 256 
(Fig.S3). The first individual cases from clinical and community testing (referred to as individual 257 
testing from here onwards) of Omicron were confirmed by sequencing on the 20th and 22nd 258 
of November 2021 in Essex and Greater London, respectively. The following rapid sweep of 259 
the variant through England throughout December 2021 (Fig.1) was first evident in wastewater 260 
in the London area, where Omicron frequencies reached >25% in the first week of December 261 
(Fig.1d) and log-logistic growth models fitted to the regional data indicated that the Omicron 262 
variant represented the majority of virus particles in wastewater by the 12th of December 263 
(Fig.2a). By contrast, we did not detect Omicron frequencies over 25% in the South West of 264 
England until mid December (Fig.1) and dominance of the variant was only predicted from the 265 
21st of December (Fig.2a). We also found a matching decline in the Delta variant across the 266 
country, validating our results (Fig.S6). Unfortunately, reduced availability of samples over the 267 
Christmas period meant that some areas of the country had no frequency estimates from 268 
wastewater samples during the week of the 20th of December. Variant frequency estimates 269 
with Freyja were corroborated by estimates based on Varscan, with a maximum discrepancy 270 
of 4 days in the estimated date when Omicron reached dominance in any given region 271 
(Fig.S4). 272 
A closer look at the London area also revealed finer scale differences in the spread of Omicron 273 
(Fig.3). The first notable levels of Omicron appeared in the East of the city in the week of the 274 
29th of November, but subsequently the central parts of the city saw a quicker rise in Omicron 275 
prevalence to over 25% in the week of the 6th of December and also earlier full dominance 276 
(>50% frequency) of the variant in the following week. 277 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.15.23285942doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.15.23285942
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7 
 

Matching wastewater base results and individual testing results 278 

Individual testing data from clinical and community PCR testing closely matched our 279 
wastewater results, with the Omicron variant becoming the majority of detections in the 280 
London area by mid-December and the rest of England following suit about a week later 281 
(Fig.2). When modelling the logistic growth of Omicron frequencies at the region level, the time 282 
point estimates for Omicron becoming the dominant variant in wastewater varied between a 1 283 
day lead on individual testing estimates (North East) to a 6 day lag (South East) (Fig.2a). 284 
Frequency growth rate estimates for Omicron were higher in wastewater data in five of nine 285 
regions, with rates of 0.052-0.065 frequency change/day in individual testing and 0.047-0.097 286 
frequency change/day in wastewater (Fig.2b). Growth rate estimates were highest for 287 
wastewater data from the North East, however this was also the data subset with lowest 288 
sample numbers around the transition phase in December, making the rate estimate less 289 
reliable. Daily Omicron frequencies aggregated at county level correlated strongly between 290 
individual testing and wastewater data across a range of investigated timing lags (Table S1), 291 
with the strongest correlation observed when no lag was assumed between wastewater and 292 
individual testing data (Spearman’s 𝞺 = 0.905, Fig.2c). Examination of the different types of 293 
individual testing data from Pillar 1 data (collected from patients and staff in hospitals) and 294 
Pillar 2 data (collected in the community outside hospitals) revealed a good alignment with 295 
wastewater estimates in both data types (Fig.S7). Pillar 1 data yielded slightly earlier estimates 296 
of Omicron dominance, with a predicted lead time of 6 days or more on wastewater data in six 297 
out of nine regions, whereas Pillar 2 data was predicted to lead on wastewater data by 6 days 298 
in only one region (Fig.S7a). Combining data for all of England, we found the strongest 299 
correlation for a 2 day lag of wastewater based frequencies behind Pillar 1 data (Spearman’s 300 
𝞺 = 0.871, Fig.S7b). We found greater variability between regions in the estimates for Pillar 1 301 
data, which is likely related to much lower sample numbers and thereby increased 302 
stochasticity. 303 

Sublineage patterns 304 

We further tested the sensitivity of our lineage detection in wastewater by reconstructing the 305 
shift from subvariant BA1 to subvariant BA2 of the Omicron lineage and found a clear shifting 306 
pattern from BA1 to BA2 in wastewater samples for each of the nine regions through February 307 
(Fig.4). 308 
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 309 
Figure 1: a Proportions of major lineages detected in wastewater across England between 310 
November 2021 and February 2022. Proportions are shown as 3-day rolling averages 311 
weighted by sample numbers. ‘Other’ indicates data remaining unassigned by Freyja to either 312 
Alpha, Delta or Omicron. b-j Wastewater detection of Omicron variant frequency, averaged 313 
by county and calendar week, between late November 2021 and mid-January 2022. Grey 314 
areas indicate missing data, due to low sample quality or lack of sampling. 315 
 316 
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 317 
Figure 2: a Log-logistic growth models of the Omicron frequencies in 9 English regions. 318 
Vertical lines indicate the inflection points of the models which estimate the timepoints when 319 
Omicron frequencies reach 50% in wastewater (blue) and individual testing (yellow) samples. 320 
b growth rates of the log-logistic growth models in each region in wastewater (blue) and 321 
individual testing (yellow) samples, calculated as predicted frequency change between 5 days 322 
before and 5 days after inflection point. c Spearman’s correlation tests show strongest 323 
correlation between county level daily Omicron frequency in individual testing and wastewater 324 
with no time lag between frequency estimates. 325 
 326 
 327 
 328 
 329 
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 330 
Figure 3: Weekly Omicron frequencies within London. Depicted are approximate outlines of 331 
the wastewater catchment area captured by sampling. Grey areas indicate missing data, due 332 
to low sample quality or lack of sampling. 333 

 334 
Figure 4: Frequencies of the subvariants BA1 and BA2 of the Omicron variant between 335 
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November 2021 and February 2022, shown as 3 day rolling averages of frequencies out of all 336 
detected variants in wastewater samples. 337 
 338 
Discussion 339 

We show that tracking of the SARS-CoV-2 Omicron variant by WBE closely mirrors that seen 340 
by mass community surveillance (i.e., the sequencing of PCR positive individuals) and 341 
mapped the rise of Omicron through time, with the earliest rise seen in London followed by 342 
the rest of England. Estimated Omicron frequencies from the two approaches are highly 343 
correlated, with no overall lag time between WBE and community surveillance by sample date, 344 
despite small differences in estimated growth rates of Omicron and transition timings from 345 
Delta to Omicron when looking at different regions within England. If we consider only samples 346 
taken in a hospital setting, we see an even earlier rise of the Omicron variant, however this 347 
comparison is weakened by the much more sparse data from the hospital environment 348 
compared to wider community testing. Furthermore, we show that even sublineage dynamics 349 
such as the transition from Omicron subvariant BA1 to BA2 during February 2022 34 can readily 350 
be detected with our WBE approach. 351 
The ability to detect the presence of an emerging variant – regardless of frequency – may be 352 
of particular utility for local public health teams. WBE has the advantage that it is able to 353 
monitor infections in areas exhibiting low engagement with community testing programmes, 354 
or where not all PCR-positive infections are genome sequenced or from asymptomatic 355 
infections 7. On the other hand, WBE has disadvantages in a lack of individually identifiable 356 
information, which limits the potential for public health teams to investigate where cases live 357 
or work or whether they are recent travellers to an area. Here we find that initial detections 358 
differ between individual testing and WBE. For example, the first instances of detecting the 359 
Omicron variant in November 2021 in wastewater were in the East Midlands and South East 360 
whereas the first individual infections with the variant were confirmed in Essex and Greater 361 
London. This is perhaps unsurprising given that detecting the first cases of a new variant in 362 
an area, either by individual testing or WBE, is inherently stochastic. Using both techniques 363 
would therefore maximise the likelihood of capturing these early events. During late 2021, the 364 
UK also tested travellers entering the country, with the aim to detect and prevent the spread 365 
of imported variants. However, in March 2022 all travel restrictions into the UK were removed 366 
and individual testing in the wider community (Pillar 2 approach in England) reduced to 367 
minimal levels, in an approach similar to that of many other countries. Our data indicate that 368 
WBE could be used to detect the initial spread of variants from around 1% prevalence. The 369 
use of WBE could therefore represent a viable alternative for genomic surveillance with 370 
minimal bias, low costs and demonstrated sensitivity.  371 
Our demonstration of a close alignment in nation-wide WBE and individual testing data also 372 
shows that some inherent differences between these two types of samples may be less 373 
relevant than previously thought. Wastewater samples capture mostly faecal shedding of virus 374 
particles and a meta-analysis has shown that only an average of 43% of Covid-19 patients 375 
shed detectable levels of faecal SARS-CoV-2 RNA and that the duration of particle shedding 376 
in faeces exceeds that in respiratory samples by weeks 5. If this impacted the proportion 377 
between SARS-CoV-2 variants, we would expect to see different variant dynamics between 378 
individual sampling and wastewater, especially in the transition phase when a new variant 379 
spreads across a country. However, our data show a close alignment in variant dynamics 380 
nonetheless, suggesting that no major bias in shedding exists between variants at least and 381 
that WBE provides a robust measure of variant proliferation at local and national scales. 382 
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The comparative logistic requirements of community sampling and WBE merit discussion. The 383 
data presented here represent around 1k-2.3k samples per week for wastewater sampling 384 
and around 30k-48k samples per week for community sampling, which come from RNA left 385 
over from PCR testing. In the context of the UK testing programme at the time, 1-3.5m PCR 386 
tests were conducted each week, of which around 10-32% were positive. Testing at this 387 
national scale is a substantial effort that is likely impossible to sustain indefinitely as SARS-388 
CoV-2 becomes endemic and has already been abolished in many countries. Sequencing 389 
from only clinical samples, e.g. hospitalised patients, is an alternative, but this may bias 390 
sampling against younger age-groups; who are least likely to be hospitalised but among whom 391 
transmission may be highest. Furthermore, reduced individual surveillance leads to later 392 
detection of newly emerging or imported variants in a country. Wastewater sampling has a 393 
significant set up cost, in developing agreements with water companies, installation of 394 
autosamplers and logistics to transport samples to laboratories and then in overcoming 395 
technical challenges of extracting SARS-Cov-2 RNA from wastewater at scale. On the other 396 
hand, it can provide high coverage of a population using fewer resources than, and without 397 
the bias associated with, community testing. Around 70% of England was covered by the WBE 398 
analysis presented here involving sampling over 200 sewage network site and close to 300 399 
sewage treatment plants. Optimisation of sampling site distribution could potentially provide 400 
similar high coverage of the population while reducing the number of sites sampled. As shown 401 
in samples from the London sewer network, it also provides insights into the emergence or 402 
rise of new variants and how this varies across a city. This means that wastewater monitoring 403 
of SARS-CoV-2 evolution is a feasible and cost-effective option for keeping track of emerging 404 
local hotspots of the disease and the spread of new variants, even when large-scale individual 405 
testing is wound down. The wastewater samples used, and the general approach of targeted 406 
pathogen sequencing can also be used for ongoing surveillance of other pathogens to help 407 
protect public health, as evidenced already for polio and monkeypox 35,36.  408 
Overall, we have demonstrated the usefulness and reliability of WBE for tracking an emerging 409 
variant from its first detection to its spread across a whole country. This method can therefore 410 
be considered a reliable tool for monitoring large scale genetic dynamics in wide-spread 411 
diseases. 412 
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