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 31 
ABSTRACT 32 
 33 
Polygenic risk scores (PRS) are an emerging tool to predict the clinical phenotypes and 34 
outcomes of individuals. Validation and transferability of existing PRS across independent 35 
datasets and diverse ancestries are limited, which hinders the practical utility and 36 
exacerbates health disparities. We propose PRSmix, a framework that evaluates and 37 
leverages the PRS corpus of a target trait to improve prediction accuracy, and PRSmix+, 38 
which incorporates genetically correlated traits to better capture the human genetic 39 
architecture. We applied PRSmix to 47 and 32 diseases/traits in European and South Asian 40 
ancestries, respectively. PRSmix demonstrated a mean prediction accuracy improvement of 41 
1.23-fold (95% CI: [1.18; 1.29]; P-value < 2 x 10-16) and 1.19-fold (95% CI: [1.11; 1.27]; P-42 
value = 3.94 x 10-6, and PRSmix+ improved the prediction accuracy by 1.71-fold (95% CI: 43 
[1.48; 1.94]; P-value = 9.98 x 10-10 and 1.41-fold (95% CI: [1.24; 1.58]; P-value = 2.51 x 10-6) 44 
in European and South Asian ancestries, respectively. Our method provides a 45 
comprehensive framework to benchmark and leverage the combined power of PRS for 46 
maximal performance in a desired target population. 47 
 48 
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INTRODUCTION 49 
 50 
Thousands of polygenic risk scores (PRS) have been developed to predict an individual’s 51 
genetic propensity to diverse phenotypes1. PRS are generated when risk alleles for distinct 52 
phenotypes are weighted by their effect size estimates and summed2. Risk alleles included 53 
in PRS have traditionally been identified from genome-wide association studies (GWAS) 54 
results conducted on a training dataset, which are weighted and aggregated to derive a PRS 55 
to predict distinct phenotypes. The association between PRS and the phenotype of interest 56 
is subsequently evaluated in a test dataset that is non-overlapping with the training dataset3. 57 
 58 
Most PRS have been developed in specific cohorts that may vary in terms of population 59 
demographics, admixture, environment, and SNP availability. Limited validation of many 60 
PRS outside of the training datasets and poor transferability of PRS to other populations 61 
may limit their clinical utility. However, pooling of data from individual PRS generated and 62 
validated in diverse cohorts has the potential to improve the predictive ability of PRS across 63 
diverse populations. The Polygenic Score Catalog (PGS Catalog) is a publicly available 64 
repository that archives SNP effect sizes for PRS estimation. The SNP effect sizes were 65 
developed from various methods (e.g. P+T4, LDpred5,6, PRS-CS7, etc.) to obtain the highest 66 
prediction accuracy in the studied dataset. PRS metadata enables researchers to replicate 67 
PRS in independent cohorts and aggregate SNP effects to refine PRS and enhance the 68 
accuracy and generalizability in broader populations8.  However, optimizing PRS 69 
performance requires methodological approaches to adjust GWAS estimate effect sizes that 70 
take into account correlated SNPs (i.e., linkage disequilibrium) and refine PRS for the target 71 
population4,5,7,9–12. Furthermore, numerous scores are often present for single traits with 72 
varied validation metrics in non-overlapping cohorts. There is a lack of standardized 73 
approaches combining PRS from this growing corpus to enhance prediction accuracy and 74 
generalizability while minimizing bias, for a target cohort8,11,13. 75 
 76 
To address these issues, we sought to: 1) validate previously developed PRS in two 77 
geographically and ancestrally distinct cohorts, the All of Us Research Program (AoU) and 78 
the Genes & Health cohort, and 2) present and evaluate new methods for combining 79 
previously calculated PRS to maximize performance beyond all best performing published 80 
PRS. To better capture the genetic architecture of the outcome traits, we proposed PRSmix, 81 
a framework to combine PRS from the same trait with the outcome trait. Previous studies 82 
highlighted the effect of pleiotropic information on a trait’s genetic architecture14,15. 83 
Therefore, we proposed PRSmix+ to additionally combine PRS from other genetically 84 
correlated traits to further improve the PRS for a given trait.  85 
 86 
To assess the prediction improvement, we performed PRSmix and PRSmix+ for 47 traits in 87 
European ancestry and 32 traits in South Asian ancestry. We evaluated 1) the relative 88 
improvement of the proposed framework over the best-performing pre-existing PRS for each 89 
trait, 2) the efficient training sample sizes required to improve the PRS, 3) the predictive 90 
improvement in 6 groups including anthropometrics, blood counts, cancer, cardiometabolic, 91 
biochemistry and other conditions as the prediction accuracies varied in each group, and 4) 92 
the clinical utility and pleiotropic effect of the newly built PRS for coronary artery disease. 93 
Overall, we show that PRSmix and PRSmix+ significantly improved prediction accuracy. An 94 
R package for preprocessing and harmonizing the SNP effects from the PGS Catalog as 95 
well as assessing and combining the scores was developed to facilitate the combining of 96 
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pre-existing PRS scores for both ancestry-specific and cross-ancestry contexts using the 97 
totality of published PRS. The development of this framework has the potential to improve 98 
precision health by improving the generalizability in the application of PRS16. 99 
 100 
RESULTS 101 
 102 
Overview of methods 103 

 104 
 105 

 106 
Figure 1. The framework of the trait-specific and cross-trait PRS integration. In Phase 107 
1, we obtained the SNP effects from the PGS Catalog and then harmonized the effect alleles 108 
as the alternative alleles in the independent cohorts. In each independent biobank (All of Us, 109 
Genes & Health), we estimated the PRS and split the data into training (80%) and testing 110 
(20%) datasets. In Phase 2, in the training dataset, we trained the Elastic Net model with 111 
high-power scores to estimate the mixing weights for the PRSs. The training phase could 112 
include PRSs from traits corresponding to outcomes (PRSmix) or all traits (PRSmix+). The 113 
training was adjusted for age, sex, and 10 principal components (PCs). In Phase 3, we 114 
adjusted the per-allele effect sizes from each single PRS by multiplying with the 115 
corresponding mixing weights obtained in the training phase. The final per-allele effect sizes 116 
are estimated as the weighted sum of the SNP effects across different single scores. In 117 
Phase 4, we evaluated the re-estimated per-allele effect sizes in the testing dataset. 118 
 119 
A single PRS may only reflect genetic effects captured in the discovery dataset of a single 120 
study that may be only a part of the total genetic effects underlying the trait of interest. 121 
Therefore, we harmonized and combined multiple sets of PRS to establish a new set of 122 
scores, which gather information across studies and traits. Our approach leveraged multiple 123 
well-powered PRSs to improve prediction accuracy and is detailed in Fig. 1.  124 
 125 
Our combination frameworks leveraged the PGS Catalog17 as the resource of SNP effects to 126 
estimate single PRSs. To avoid overfitting, we used All of Us and Genes & Health cohorts 127 
(see Methods) due to non-overlapping samples from the original GWAS. We randomly 128 
divided the target cohort into a training set (80%) and a testing set (20%). We selected the 129 
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most common traits from the PGS Catalog which have the highest number of PRS. For the 130 
stability of the linear combination, we curated binary traits with a prevalence > 2% in the 131 
target cohort. Continuous traits were assessed using partial R2 which is estimated as the 132 
difference between the full model of PRS and covariates (age, sex, and 10 PCs) and the null 133 
model of only covariates. For binary traits, the prediction accuracy was converted to liability 134 
R2 with disease prevalence approximated as the prevalence in the corresponding cohort. 135 
 136 
To combine the scores, we employed Elastic Net18 to construct linear combinations of the 137 
PRS. We proposed two combination frameworks: 1) PRSmix combines the scores 138 
developed from the same outcome trait, and 2) PRSmix+ combines all the high-power 139 
scores across other traits. Trait-specific combinations, PRSmix, can leverage the PRSs 140 
developed from different studies and methods to more fully capture the genetic effects 141 
underlying the traits. It has also been shown that complex traits are determined by genes 142 
with pleiotropic effects15. Therefore, we additionally proposed a cross-trait combination, 143 
PRSmix+, to make use of pleiotropic effects and further improve prediction accuracy. 144 
 145 
First, we evaluated the improvement for each method, defined as the fold-ratio of the method 146 
compared to the prediction accuracy of the best single PRS. For a fair comparison with the 147 
proposed framework, we selected the best single PRS from the training set and evaluated its 148 
performance in the testing set. First, we performed simulations to assess the improvement 149 
with various heritabilities and training sample sizes. We estimated the slope of improvement 150 
of prediction accuracy by increasing training sample sizes for various heritabilities. 151 
 152 
Next, we applied the proposed frameworks in two distinct cohorts; (1) the All of Us program, 153 
in which 47 traits were tested in U.S. residents of European ancestry, and (2) the Genes & 154 
Health (G&H) cohort, in which 32 traits were tested in British South Asian ancestry 155 
(Supplementary Table 1). In each cohort, we compared the improvement of our proposed 156 
framework with the single best score from the PGS Catalog. We estimated the averaged 157 
fold-ratio as a measure of the improvement of prediction accuracy by our approach, 158 
compared to the best single score from PGS Catalog. We also classified the traits into 6 159 
categories as anthropometrics, blood counts, cancer, cardiometabolic, biochemistry, and 160 
other conditions (Supplementary Table 2 and 3). Cancer traits were not considered in the 161 
younger Genes & Health cohort due to their low prevalence (<2%). We then present 162 
additional detailed analyses for coronary artery disease focused on clinical utility 163 
improvements relative to existing PRS. 164 
 165 
Simulations were used to evaluate the combination frameworks  166 
 167 
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 168 
 169 
Figure 2. Simulations to demonstrate the predictive improvement of PRSmix and 170 
PRSmix+. The points and triangles represent the mean fold-ratio of R2 between (a) PRSmix 171 
and (b) PRSmix+, respectively, versus the best single PRS. (c) The improvement per 172 
logarithm with base 10 of sample size for various heritabilities was represented as a slope of 173 
a linear regression of fold-ratio ~ log10(N). In simulations, the correlation within simulated 174 
trait-specific PRSs was 0.8, and the correlation between trait-specific and correlated PRSs 175 
was 0.4 (see Methods). The whiskers demonstrate confidence intervals across 200 176 
replications. The dashed red lines represent the reference for fold-ratio equal 1 for (a) and 177 
(b), and equal 0 for (c). 178 
 179 
To compare the performance of PRSmix and PRSmix+ against the best single PRS and 180 
evaluate the sample sizes needed for training the mixing weights, we performed simulations 181 
with real genotypes of European ancestry in the UK Biobank given the large sample sizes 182 
available (Fig. 2). Briefly, we randomly split 7,000 individuals as a testing data set mimicking 183 
the testing size of 20% of real data. In the remaining dataset, we used 200,000 individuals 184 
for GWAS to estimate the SNP effect sizes for PRS calculations. Finally, with the rest of the 185 
data, we randomly selected different sample sizes as the training sample to evaluate the 186 
sample sizes needed to train the mixing weights. To assess the improvement of PRS 187 
performance, we computed the fold-ratio of prediction accuracy R2 between PRSmix and 188 
PRSmix+ against the best-performing single simulated PRS. 189 
 190 
Our results showed that the trait-specific combination, PRSmix, showed no improvement 191 
with the training sample smaller than 500 for most of the traits. Our simulations illustrated 192 
that traits with low heritability required a larger sample size to achieve an improvement 193 
compared to traits with high heritability (Fig. 2a and 2b). PRSmix demonstrated a better 194 
performance compared to the best single PRS with training sample sizes from Ntraining = 200 195 
samples for the high heritable trait (h2 = 0.4) to Ntraining = 5000 samples for the low heritable 196 
trait (h2=0.05) (Fig. 2a and 2b). We observed that PRSmix demonstrated a saturation of 197 
improvement from Ntraining = 10,000. PRSmix+ demonstrated negligible further improvement 198 
when the training sample size was increased from 30,000 but maintained consistent 199 
improvement relative to PRSmix and the best single PRS. Moreover, we observed that traits 200 
with higher heritability or higher best prediction accuracy of a single PRS demonstrated a 201 
smaller improvement compared to traits with a smaller heritability (Fig. 2c). 202 
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 203 
 204 
Combining trait-specific PRS improves prediction accuracy (PRSmix) 205 
 206 

 207 
 208 
Figure 3. Comparison of PRSmix and PRSmix+ versus the best PGS Catalog in 209 
European and South Asian ancestries. The relative improvement compared to the best 210 
single PRS was assessed in (a) the European ancestry in the All of US cohort and (b) South 211 
Asian ancestry in the Genes & Health cohort. PRSmix combines trait-specific PRSs and 212 
PRSmix+ combines additional PRSs from other traits. The best PGS Catalog score was 213 
selected by the best performance trait-specific score in the training sample and evaluated in 214 
the testing sample. The prediction accuracy (R2) was calculated as partial R2 which is a 215 
difference of R2 between the model with PRS and covariates including age, sex, and 10 PCs 216 
versus the base model with only covariates. Prediction accuracy for binary traits was 217 
assessed with liability-R2 where disease prevalence was approximately estimated as a 218 
proportion of cases in the testing set. The whiskers reflect the maximum and minimum 219 
values within the 1.5 × interquartile range. The bars represent the ratio of prediction 220 
accuracy of PRSmix and PRSmix+ versus the best PRS from the PGS Catalog across 47 221 
traits and 32 traits in All of Us and Genes and Heath cohorts, respectively, and the whiskers 222 
demonstrate 95% confidence intervals. P-values for significance difference of the fold-ratio 223 
from 1 using a two-tailed paired t-test. PRS: Polygenic risk scores. 224 
 225 
To determine if a trait-specific combination, namely PRSmix, would improve the accuracy of 226 
PRS prediction, we used data from European ancestry participants in the All of Us research 227 
program who had undergone whole genome sequencing, and Genes & Health participants 228 
of South Asian ancestry. We randomly split the independent cohorts into training (80%) and 229 
testing sets (20%). The training set was used to train the weights of each PRS, referred as 230 
mixing weights, that indicate how much each PRS explain the phenotypic variance in the 231 
training set, and the PRS accuracies were evaluated in the testing set (Fig. 1). We curated 232 
47 traits and 32 traits in the All of Us and Genes & Health cohorts, respectively. For binary 233 
traits, we removed traits with a prevalence of smaller than 2% (see Methods, Supplementary 234 
Table 1). Traits with the best-performance trait-specific single PRS which showed a lack of 235 
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power were also removed. Overall, we observed a significant improvement compared to 1 236 
using a two-tailed paired t-test with PRSmix. PRSmix significantly improves the prediction 237 
accuracy compared to the best PRS estimated from the PGS Catalog. PRSmix improved 238 
1.22-fold (95% CI: [1.17; 1.27]; P-value < 2 x 10-16) and 1.19-fold (95% CI: [1.11; 1.27]; P-239 
value = 1.92 x 10-6) compared to the best PRS from PGS Catalog for European ancestry and 240 
South Asian ancestry, respectively.  241 
 242 
In European ancestry, we observed the greatest improvement of PRSmix against the best 243 
single PRS for rheumatoid arthritis of 1.93-fold. Furthermore, in South Asian ancestry, we 244 
observed that PRSmix of coronary artery disease had the best improvement of 2.32-fold 245 
compared to the best-performance single PRS. Details of the prediction accuracy are shown 246 
in Supplementary Fig. 1, 2 and Supplementary Table 2, 3. This was consistent with findings 247 
in simulations since traits with a lower single PRS performance demonstrated a better 248 
improvement with the combination strategy. 249 
 250 
Cross-trait combination further improved PRS accuracy and highlighted the 251 
contribution of pleiotropic effects 252 
 253 
We next assessed the contribution of pleiotropic effects from cross-trait PRSs to determine if 254 
these would further improve the combination framework (PRSmix+), by including high-power 255 
PRSs from within 2600 PRSs in the PGS Catalog. To evaluate the power of PRS and 256 
improve computational efficiency, we employed the theoretic power and variance of partial 257 
R2 for continuous traits and liability R2 for binary traits (see Methods). We observed that 258 
PRSmix+ further improved the prediction accuracy compared to the best PGS Catalog in 259 
European ancestry (Fig. 3a) and South Asian ancestry (Fig. 3b). We observed an 260 
improvement of 1.70-fold (95% CI: [1.47; 1.93]; P-value = 2.13 x 10-9 and 1.42-fold (95% CI: 261 
[1.25; 1.59]; P-value = 8.01 x 10-7) higher compared to the best PGS Catalog for European 262 
ancestry and South Asian ancestry, respectively. PRSmix+ significantly improved the 263 
prediction accuracy compared to PRSmix, in both European and South Asian ancestry with 264 
1.42-fold (95% CI: [1.22; 1.62]; P-value = 2.32 x 10-5) and 1.19-fold (95% CI: [1.07; 1.32]; P-265 
value = 0.001), respectively (Supplementary Fig. 3). 266 
 267 
Consistent with our simulation results, a smaller improvement was observed for traits with a 268 
higher baseline prediction accuracy from PGS Catalog (Supplementary Fig. 4), noting that 269 
the baseline prediction accuracy depends on the heritability and genetic architecture (i.e. 270 
polygenicity). In contrast, more improvement was observed for traits with lower heritability, 271 
thus lower prediction accuracy, when comparing the single best PRS (Fig. 1c). 272 
 273 
Prediction accuracy and predictive improvement across various types of traits 274 
 275 
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 276 
 277 
Figure 4. Prediction accuracy and improvement across various types of traits in the 278 
European and South Asian ancestry. We classified the traits into 6 main categories for 279 
European ancestry in the All of Us cohort and 5 categories for South Asian ancestry in the 280 
Genes & Health cohort due to the low prevalence of cancer traits in Genes & Health. The 281 
prediction accuracies, (a) and (c), are estimated as partial R2 and liability R2 for continuous 282 
traits and binary traits, respectively. The relative improvements, (b) and (d), are estimated as 283 
the fold-ratio between the prediction accuracies of PRSmix and PRSmix+ against the best 284 
PGS Catalog. The order on the axis followed the decrease in the prediction accuracy of 285 
PRSmix+. The boxplots in (a) and (c) show the first to the third quartile of prediction 286 
accuracies for 47 traits and 32 traits in European and South Asian ancestries, respectively. 287 
The whiskers reflect the maximum and minimum values within the 1.5 × interquartile range 288 
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for each group. The bars in (b) and (d) represent the mean prediction accuracy across the 289 
traits in that group and the whiskers demonstrate 95% confidence intervals. The red dashed 290 
line in (b) and (d) represents the ratio equal to 1 as a reference for comparison with the best 291 
PGS Catalog score. The asterisk (*) and (**) indicate P-value < 0.05 and P-value < 0.05 / 292 
number of traits in each type with a two-tailed paired t-test, respectively. 293 
 294 
We next compared PRSmix and PRSmix+ with the best PRS estimated from the PGS 295 
Catalog across 6 categories, including anthropometrics, blood counts, cancer, 296 
cardiometabolic, biochemistry, and other conditions (see Methods). PRSmix demonstrates a 297 
higher prediction accuracy across all types of traits in both European and South Asian 298 
ancestries (Fig. 4). We observed a similar trend in the predictive performance of PRSmix+ 299 
across different types of traits. In European, the smallest improvement was in 300 
anthropometric traits of 1.20-fold (95% CI: [1.11; 1.28]; P-value = 3.4 x 10-6) and “other 301 
conditions” (including depression, asthma, migraine, current smoker, hypothyroid, 302 
osteoporosis, glaucoma, rheumatoid arthritis, and gout) obtained the highest mean 303 
predictive improvement of 2.08-fold (95% CI: [1.25; 2.89]; P-value = 9.9 x 10-3) 304 
(Supplementary Table 4). In South Asian ancestry, the mean predictive improvement was 305 
highest but also with high variance in “other conditions” (including asthma, migraine, current 306 
smoker, and rheumatoid arthritis) type. Biochemistry demonstrated the smallest 307 
improvement of 1.23-fold (95% CI: [1.15; 1.31]; P-value = 5.8 x 10-9).  308 
 309 
Clinical utility for coronary artery disease 310 

 311 
 312 

 313 
Figure 5. Comparison of prediction accuracies with PRSmix, PRSmix+ and CAD PRS 314 
from PGS Catalog. PRSmix was computed as a linear combination of CAD PRS and 315 
PRSmix+ was computed as a linear combination of all significant PRS obtained from the 316 
PGS Catalog. The PRSs were evaluated by liability R2 in the (a) European ancestry from the 317 
All of Us cohort and b) South Asian ancestry from the Genes & Health cohort. The bars 318 
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indicate the mean prediction accuracy and the whiskers show 95% confidence intervals. 319 
CAD, coronary artery disease. 320 
 321 

 322 
Figure 6. Net reclassification improvement (NRI) for coronary artery disease with the 323 
addition of polygenic risk scores to the baseline model in European and South Asian 324 
ancestries. The baseline model for risk prediction includes age, sex, total cholesterol, HDL-325 
C, systolic blood pressure, BMI, type 2 diabetes, and current smoking status. We compared 326 
the integrative models with PGS Catalog, PRSmix, and PRSmix+ in addition to clinical risk 327 
factors versus the baseline model with only factors. The points indicate the mean estimate 328 
for continuous NRI and the whiskers indicate 95% confidence intervals estimated from 500 329 
bootstraps. HDL-C: High-density lipoprotein; BMI: Body mass index. NRI: Net 330 
Reclassification Improvement. 331 
 332 
 333 
To evaluate the utility of the proposed methods, we assessed the PRSmix and PRSmix+ for 334 
coronary artery disease (CAD), which is the leading cause of disability and premature death 335 
among adults19–21. The single best CAD PRSs (PRSCAD) s from the PGS Catalog in the 336 
training sample was from Koyama S. et al22. and Tamlander M. et al.23 in European and 337 
South Asian ancestries, respectively (Supplementary Fig. 5). Liability R2 in the testing 338 
sample with Koyama S et al. for European ancestry was 0.019 (95% CI: [0.013; 0.025]; P-339 
value = 1.87 x 10-9) and with Tamlander M. et al. for South Asian ancestry was 0.006 (95% 340 
CI: [0.003; 0.009]; P-value = 2.39 x 10-4) (Fig. 5). 341 
 342 
Subsequently, we assessed the clinical utility of the integrative model with PRS and 343 
established clinical risk factors, including age, sex, total cholesterol, HDL-C, systolic blood 344 
pressure, BMI, type 2 diabetes, current smoking status versus the traditional model with 345 
clinical risk factors. (Fig. 6 and Supplementary Table 5). In European ancestry, the CAD 346 
PRSmix+ integrative score improved the continuous net reclassification of 35% (95% CI: 347 
[22%; 48%]; P-value = 7.08 x 10-8) compared to PRSmix (30%; 95% CI: [18%; 42%]; P-value 348 
= 9.11 x 10-7) and the best PRS from the PGS Catalog (19%; 95% CI: [5%; 33%]; P-value = 349 
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0.007). In South Asian ancestry, the integrated score with PRSmix+ showed significant 350 
continuous net reclassification of 27% (95% CI: [16%; 38%]; P-value = 6.07 x 10-7) 351 
compared to PRSmix (15%; 95% CI: [9%; 20%]; P-value = 7.18 x 10-6) and the best PGS 352 
Catalog (7%; 95% CI: [1%; 13%]; P-value = 0.02). Our results also demonstrated an 353 
improvement in net reclassification for models without clinical risk factors (Supplementary 354 
Table 5). 355 
 356 
We assessed the incremental area under the curve (AUC) between the full model of PRS 357 
and covariates and the null model with only covariates (Supplementary Table 6). PRSmix+ 358 
demonstrated an incremental AUC of 0.02 (95% CI: [0.018; 0.02]; P-value < 2.2x10-16) and 359 
0.008 (95% CI: [0.007; 0.009]; P-value<2.2x10-16) in European and South Asian ancestries, 360 
respectively. PRSmix obtained an incremental AUC of 0.013 (95% CI: [0.013; 0.014]; P-361 
value < 2.2x10-16) and 0.006 (95% CI: [0.005; 0.007]; P-value < 2.2x10-16) in European and 362 
South Asian ancestries, respectively. The best PGS Catalog had the smallest incremental 363 
AUC of 0.007 (95% CI: [0.007; 0.008]; P-value<2.2x10-16) and 0.003 (95% CI: [0.002; 0.003]; 364 
P-value < 2.2x10-16) in European and South Asian ancestries, respectively. 365 
 366 
We also compared the risks for individuals in the top decile versus the remaining population 367 
(Supplementary Table 7). For European ancestry, an increased risk with OR per 1-SD of the 368 
best PGS Catalog, PRSmix and PRSmix+ were 1.39 (95% CI: [1.27-1.52]; P-value < 1.52 x 369 
10-16), 1.52 (95% CI: [1.39-1.67]; P-value < 2.2x10-16) and 1.66 (95% CI = [1.51; 1.82]; P-370 
value < 2.2x10-16), respectively. The top decile of PRSmix+ compared to the remaining 371 
population demonstrated an increased risk of OR = 2.54 (95% CI: [1.97; 3.25]; P-value = 372 
3.91 x 10-13). The top decile for the best PGS Catalog versus the remainder was OR = 2.14 373 
(95% CI: [1.66; 2.74]; P-value = 2.27 x 10-9). For South Asian ancestry, an increased risk 374 
with OR per 1-SD of the best PGS Catalog, PRSmix and PRSmix+ was 1.24 (95% CI: [1.13; 375 
1.37]; P-value < 1.52x10-16), 1.39 (95% CI: [1.33; 1.46]; P-value < 2.2 x 10-16), 1.40 (95% CI: 376 
[1.27; 1.55]; P-value < 2.2x10-16) and 1.50 (95% CI = [1.36; 1.66]; P-value < 2.2x10-16), 377 
respectively. In South Asian ancestry, PRSmix+ demonstrated an OR of 2.34 (95% CI: [1.79; 378 
3.05]; P-value = 4.22 x 10-10), and with the best PGS Catalog, OR was 1.73 (95% CI: [1.30; 379 
2.28]; P-value = 1.31 x 10-4) for the top decile versus the remaining population. 380 
 381 
Moreover, we observed that there is a plateau of improvement for PRSmix from the training 382 
size of 5000 in both European and South Asian ancestries (Supplementary Fig. 6), which 383 
aligned with our simulations (Fig. 2a and 2b). Our results demonstrated the generalization of 384 
our combination methods across diverse ancestries to improve prediction accuracy. With 385 
PRSmix+, our empirical result showed that there was a modest improvement with training 386 
sample sizes larger than 5,000. 387 
 388 
Finally, we conducted phenome-wide association studies (PheWAS) in All of Us between 389 
PRSCAD with 1815 phecodes to compare the pleiotropy of PRS and assess the relationship 390 
between CAD PRS and disease phenotypes given the inherent use of pleiotropy in 391 
development (Supplementary Table 8). As expected, PRSmix+ had a stronger association 392 
for ischemic heart disease relative to the single best PRS from the PGS Catalog. Despite 393 
extensive use of pleiotropy in performance, PRSmix+ associations with cardiometabolic risk 394 
factors were only mildly greater in risk increase (Supplementary Table 8). The PheWAS 395 
result for PRSmix+ aligned with the list of traits from the selected PRS (Supplementary Fig. 396 
7, and Supplementary Table 8) 397 
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 398 
DISCUSSION 399 
 400 
In this paper, we propose a trait-specific framework (PRSmix), and cross-trait framework 401 
(PRSmix+) to leverage the combined power of existing scores. We performed and evaluated 402 
our method using the All of Us and Genes & Health cohorts showcasing a framework to 403 
develop the most optimal PRS for a given trait in a target population leveraging all existing 404 
PRS. Across 47 traits in All of Us cohort and 32 traits in the Genes & Health cohort with 405 
either continuous traits or binary traits with prevalence > 2%, we demonstrated substantial 406 
improvement in average prediction R2 by using a linear combination with Elastic Net. The 407 
empiric observations are concordant with simulations. To our knowledge, there has been a 408 
number of emerging studies to combine PRS, but there is a limited number of frameworks 409 
that comprehensively evaluate, harmonize, and leverage the combination of these 410 
scores8,13,24. Our studies permit several conclusions for the development, implementation, 411 
and transferability of PRS. 412 
 413 
First, externally derived and validated PRS are generally not the most optimal PRS for a 414 
given cohort. Consistent with other risk predictors, recalibration within the ultimate target 415 
population improves performance25. By leveraging the PGS Catalog, our work carefully 416 
harmonizes the risk alleles to estimate PRS across all scores and provides newly estimated 417 
per-allele SNP effects (provided to the PGS Catalog) to assist the interpretability of the 418 
models. 419 
 420 
Second, previous studies selected an arbitrary training sample size to estimate the mixing 421 
weights, which may lead to a poor power of the combination frameworks and inaccurate 422 
estimate of sampling variance10. We assessed the expected sample sizes to estimate the 423 
mixing weights via simulations and real data. Our results demonstrated that while low 424 
heritability traits benefit the most, they require a greater training sample size.  425 
 426 
Third, we leveraged all PRS, including those not trained on the primary trait, to 427 
systematically optimize PRS for a target cohort. We showed that PRSmix improved the 428 
prediction by combining the scores matching the outcome trait. In addition, we showed that 429 
PRSmix+ was able to leverage the power of cross-traits, which highlighted the contribution 430 
of pleiotropic effects to enhance PRS performance. We leverage prior work demonstrating 431 
the effects of pleiotropy on complex traits15,26,27. It is noted that our proposed framework is 432 
related to the metaPRS approach advanced by Abraham et al. for stroke, however, selected 433 
with prior knowledge8. Our framework utilizes all PRSs available in the PGS Catalog. 434 
Additional summary statistics could be added to further enhance the models. We let our 435 
model penalize the high-power PRS without the need for prior knowledge. We also observed 436 
that our method could identify more related risk factors to include compared to previous work 437 
conducted on stroke (Supplementary Fig. 8). Therefore, our method is more comprehensive 438 
in an unbiased way in terms of choosing the risk factors and traits to include with empirically 439 
improved performance.  440 
 441 
Fourth, greater performance is observed even for non-European ancestry groups 442 
underrepresented in GWAS and PRS studies. We empirically demonstrate the value of 443 
training and incorporating pleiotropy with all available PRS to improve performance, 444 
including multiple metrics of clinical utility for CAD prediction in multiple ancestries. In South 445 
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Asian ancestry, we observed that PRSmix and PRSmix+ demonstrated a significant 446 
improvement with the best improvement for CAD. Of note for CAD, the relative 447 
improvements in South Asian ancestry were higher than in European ancestry for PRSmix 448 
and equivalent for PRSmix+. Transferability of PRS has been shown to improve the clinical 449 
utility of PRS in non-European ancestry16,28. Although the prediction accuracy for South 450 
Asian ancestry is still limited, our results highlighted the transferability of predictive 451 
improvement with PRSmix and PRSmix+ to South Asian ancestry. We anticipate that 452 
ongoing and future efforts to improve our understanding of the genetic architecture in non-453 
European ancestries will further improve the transferability of PRS across ancestry. 454 
 455 
Lastly, traits with low heritability or generally low-performing single PRS benefit the most 456 
from this approach, especially with PRSmix+, such as migraine in both European and South 457 
Asian ancestries. Additionally, our results showed that pleiotropic effects play an important 458 
role in understanding and improving prediction accuracies of complex traits. However, 459 
anthropometric traits, which are highly polygenic29 and have good predictive performance 460 
using the best PGS Catalog, also showed improvement with the combination framework in 461 
both European and South Asian ancestries.  462 
 463 
Given that PRSmix+ outperformed PRSmix, one might consider if there is a reason to use 464 
PRSmix instead of PRSmix+.  We observed that in cases of highly heritable traits or high 465 
performance with a single PRS, there was only marginal improvement of PRSmix+ over 466 
PRSmix. In this scenario, PRSmix could provide similar predictive performance while being 467 
less time-consuming because trait-specific PRS inputs only are required. However, for traits 468 
with lower heritability PRSmix+ shows a marked improvement over PRSmix and would be 469 
preferred. Wang et al.30 showed that the theoretical prediction accuracy of the target trait 470 
using the PRS from the correlated trait is a function of genetic correlation, heritability, 471 
number of genetic variants and sample size. Future directions could include defining the 472 
minimum parameters required for the performance of the PRSmix+ model to improve on 473 
single trait-specific PRS. 474 
 475 
Our work has several limitations. First, the majority of scores from PGS Catalog were 476 
developed in European ancestry populations. Further non-European SNP effects will likely 477 
improve the single PRS power, which may in turn, also improve the prediction accuracy of 478 
our proposed methods. Second, the Elastic Net makes a strong assumption that the 479 
outcome trait depends on a linear association with the PRS and covariates. However, a 480 
recent study demonstrated there is no statistical significance difference between linear and 481 
non-linear combinations for neuropsychiatric disease13. Third, we did not validate the mixing 482 
weights in an independent cohort. We expect that in the future, there will be emerging large 483 
independent biobanks, but prior non-genetic work demonstrates the value of internal 484 
calibration for optimal risk prediction. Fourth, we estimated the mixing weights for each 485 
single SNP as a mixing weight of the PRS. Future studies could consider linkage 486 
disequilibrium between the SNPs and functional annotations of each SNP. Fifth, our 487 
frameworks were conducted on binary traits with a prevalence > 2%. Additional combination 488 
PRS models are emerging that seek to use preexisting genotypic data from genetically 489 
related, but low prevalence conditions, to improve the prediction accuracy of rare 490 
conditions13. Sixth, the baseline demographic characteristics (i.e., age, sex, social economic 491 
status) in the target cohort might limit the validation and transferability of PRS31. Although 492 
these factors were considered by using a subset of the target cohorts as training data, it is 493 
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necessary to have PRS developed on similar baseline characteristics. Lastly, with the 494 
expanding of all biobanks, there might be no perfect distinction between the samples 495 
deriving PRS and the testing cohort, future studies may consider the potential intersection 496 
samples to train the linear combination.  497 
 498 
In conclusion, our framework demonstrates that leveraging different PRS either trait-specific 499 
or cross-trait can substantially improve model stability and prediction accuracy beyond all 500 
existing PRS for a target population. Importantly, we provide software to achieve this goal in 501 
independent cohorts. 502 
 503 
METHODS 504 
 505 
Data 506 
 507 
The All of Us Research Program  508 
 509 
The All of Us Research Program is a longitudinal cohort continuously enrolling (starting May 510 
2017) U.S. adults ages 18 years and older from across the United States, with an emphasis 511 
on promoting inclusion of diverse populations traditionally underrepresented in biomedical 512 
research, including gender and sexual minorities, racial and ethnic minorities, and 513 
participants with low levels of income and educational attainment.32  Participants in the 514 
program can opt-in to providing self-reported data, linking electronic health record data, and 515 
providing physical measurement and biospecimen data.33  Details about the All of Us study 516 
goals and protocols, including survey instrument development,34 participant recruitment, data 517 
collection, and data linkage and curation were previously described in detail.33,35  518 
 519 
Data can be accessed through the secure All of Us Researcher Workbench platform, which 520 
is a cloud-based analytic platform that was built on the Terra platform.36  Researchers gain 521 
access to the platform after they complete a 3-step process including registration, 522 
completion of ethics training, and attesting to a data use agreement attestation.37 All of Us 523 
uses a tiered approach based on what genomic data is accessible through the Controlled 524 
Tier, and includes both whole genome sequencing (WGS), genotyping array variant data in 525 
multiple formats, as well as variant annotations, access to computed ancestry, and quality 526 
reports.38 This study includes data on the 98,600 participants with (WGS) data in the All of 527 
Us v5 Curated Data Repository release.  Participant data in this data release was collected 528 
between May 6, 2018 and April 1, 2021. This project is registered in the All of Us program 529 
under the workspace name “Polygenic risk score across diverse ancestries and biobanks.” 530 
 531 
The Genes & Health Biobank  532 
 533 
Genes & Health is a community-based genetics study enrolling British South Asian, with an 534 
emphasis on British Bangladeshi (two-thirds) and British Pakistani (remaining) people, with a 535 
goal of recruiting at least 100,000 participants. Currently, over 52,000 participants have 536 
enrolled since 2015. All participants have consented for lifelong electronic health record 537 
access and genetic analysis. The study was approved by the London South East National 538 
Research Ethics Service Committee of the Health Research Authority. 97.4% of participants 539 
in Genes & Health are in the lowest two quintiles of the Index of Multiple Deprivation in the 540 
United Kingdom. The cohort is broadly representative of the background population with 541 
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regard to age, but slightly over-sampled with females and those with medical problems since 542 
two-thirds of people were recruited in healthcare settings such as General Practitioner 543 
surgeries39. 544 
 545 
The Polygenic Score (PGS) Catalog 546 
 547 
Polygenic risk scores were obtained from the Polygenic Score (PGS) Catalog17, which is a 548 
publicly accessible resource cataloging published PRS, including the metadata. The 549 
metadata provides information describing the computational algorithms used to generate the 550 
score, and performance metrics to evaluate a PRS17. At the time of this study, over 2,600 551 
PRS were cataloged in the PGS Catalog (version July 18, 2022) designed to predict 538 552 
distinct traits. 553 
 554 
Clinical Outcomes 555 
 556 
Clinical phenotypes were curated using a combination of electronic health record data, direct 557 
physical measurements, and/or self-reported personal medical history data, from the All of 558 
Us v5 Data Release as detailed in Supplementary Table 13. Individuals in the Genes and 559 
Health cohort were also curated with similar definitions based on electronic health record 560 
and ICD10 (Supplementary Table 14). Traits with the best performing single trait-specific 561 
PRS with power < 0.95 such as hemoglobin, sleep apnea, and depression were removed. 562 
Binary traits with a prevalence < 2% were removed. 563 
 564 
A linear combination of scores 565 
 566 
We proposed PRSmix to combine PRS of outcome traits and PRSmix+ to combine high-567 
power PRS (defined in the following subsection) from all traits obtained from PGS Catalog. 568 
The linear combination was conducted by using an Elastic Net algorithm from the “glmnet” R 569 
package (version 4.1) to combine the estimated PRS. First, we randomly split the 570 
independent cohorts into 80% of training and 20% testing. The PRS in the training set was 571 
standardized with mean 0 and variance 1. Before conducting linear combination, we first 572 
evaluated the performance of each individual PRS by their power and P-value (see below). 573 
An Elastic Net algorithm was used with 5-fold cross-validation and default parameters to 574 
estimate the mixing weights of each PRS. The mixing weights were then divided by the 575 
corresponding original standard deviation of the PRS in the training set. 576 
 577 

��� � ���  / ��  
 578 

Where ��� and ��  is the mixing weight estimated from the Elastic Net and standard deviation 579 
of PRSi in the training set, respectively. ��� is the adjusted mixing weight for PRSi. To derive 580 
the per-allele effect sizes from the combination framework, we multiplied the SNP effects 581 
with the corresponding adjusted mixing weights:  582 

	�� � 
 ��� � ���
�

���

  
Where 	��  is the adjusted effect size of SNPj and ���   is the original effect sizes of SNPj in 583 

PRSi. We set ��� � 0 if SNPj is not in PRSi. The adjusted effect sizes were then utilized to 584 

calculate the final PRS.  585 
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 586 
The mixing weights for PGS Catalog scores for PRSmix and PRSmix+ in European ancestry 587 
are provided in Supplementary Table 9 and Supplementary Table 10, respectively. For 588 
South Asian ancestry, the mixing weights for PRSmix and PRSmix+ in European ancestry 589 
are provided in Supplementary Table 11 and Supplementary Table 12, respectively. 590 
 591 
Power and variance of PRS accuracy 592 
 593 
We selected high-power PRS to conduct the combination by assessing the power and 594 
variance of prediction accuracy. The power of PRS can be estimated based on the power of 595 
the two-tailed test of association as follow3,40: 596 
 597 

1 � ������1 � �/2� � √�� � �������/2� � √��   (1) 598 
 599 
where � is the Chi-squared distribution function, � is the significance level, and � is the non-600 
centrality parameter which can be estimated as 601 

 602 

� � ���

����
    (2) 603 

 604 
where N, �	 is the sample size and estimated prediction accuracy in the testing set, 605 
respectively. �	 can be estimated as partial �	 or liability �	 for continuous traits and binary 606 
traits, respectively. Briefly, partial �	 compared the difference in goodness-of-fit between a 607 
full model with PRS and covariates including age, sex, and first 10 PCs, and a null model 608 
with only covariates. Additionally, for binary traits, liability �	 was estimated with the disease 609 
prevalence approximated as the prevalence in the samples. The theoretical variance and 610 
standard error of �	 can be estimated as follow41–43: 611 
 612 

����	� � ������	� � �
�����������	��

��������
��
   (3) 613 

 614 
Therefore, we can analytically estimate the confidence interval of prediction accuracy for 615 
each of the score. We selected high-power scores defined as power > 0.95 with P-value > 616 
0.05 or P-value > 1.9 x 10-5 (0.05/2600) for the combination with Elastic Net. 617 
 618 
To compare the improvement, for instance between PRSmix and the best PGS Catalog, we 619 
estimate the mean fold-ratio of R2 across different traits with its 95% confidence interval and 620 
evaluated the significance difference from 1 using a two-tailed paired t-test. 621 
 622 
Simulations 623 
 624 
We used UK Biobank European ancestry to conduct simulations for trait-specific and cross-625 
trait combinations. Overall, we simulated 7 traits with heritability �	 equal to 0.05, 0.1, 0.2, 626 
and 0.5. We randomly selected M=1000 causal SNPs among 1.1 million HapMap3 variants 627 
with INFO > 0.6, MAF > 0.01 and P-value Hardy-Weinberg equilibrium > 10-7. We removed 628 
individuals with PC1 and PC2 > 3 standard deviation from the mean. We randomly remove 629 
one in a pair of related individuals with closer than 2nd degree. The genetic components 630 
were simulated as PRSs where PRS1, PRS2, and PRS3 are considered trait-specific scores 631 
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with genetic correlations are 0.8 and 0.4 for cross-trait scores. PRS4, PRS5 and PRS6 are 632 
simulated as pleiotropic effects on the outcome traits with genetic correlation equal to 0.4. 633 
The SNP effects for PRSs are simulated by a multivariate normal distribution MVN(0,  ) 634 
where   is the covariance matrix between PRSs. The main diagonal contains the heritability 635 
of the traits as �	 / ! and the covariance between PRSs are simulated as ��  �  �	 / ! where 636 

�� is the genetic correlation between PRSs (0.8 for trait-specific scores and 0.4 for cross-trait 637 
scores). The PRSs of the outcome are estimated by the weighted combination of PRS where 638 
the weights follow U(0,1). 7 phenotypes were simulated as " � # � �, � ~ &�0,1 � �	� where 639 
g is PRS and e is the residuals.  640 
 641 
We split the simulated cohort into 3 data sets for: 1) GWAS 2) training set: training the 642 
mixing weights with a linear combination and 3) testing set: testing the combined PRS. We 643 
incorporated PRS1, PRS2 and PRS3 to assess the trait-specific PRSmix framework. We 644 
combined all 6 single PRS to evaluate the cross-trait PRSmix+ framework. We compared 645 
the fold-ratio of the R2 of the combined PRS to the R2 of best single PRS to assess the 646 
improvement of the combination strategy. To evaluate the improvement across different 647 
heritabilities, we estimated the slope of improvement per log10(N) increase of training 648 
sample sizes on the fold-ratio of predictive improvement. 649 
 650 
Sample and genotyping quality control 651 
 652 
The AoU data version 5 contains more than 700 million variants from whole genome 653 
sequencing33. We curated European ancestry by predicted genetic ancestry with a 654 
probability > 90% provided by AoU yielding 48,351 individuals in the AoU. For variant quality 655 
control beyond AoU central efforts, we further filtered SNPs to include MAF > 0.001 which 656 
retained 9,538,437 SNPs. We performed a similar quality control for imputed genotype data 657 
for South Asian ancestry in the Genes & Health cohort with additional criteria of INFO score 658 
> 0.6 and genotype missing rate < 5%. Individuals with a missing rate > 5% were removed. 659 
Eventually, 44,396 individuals and 8,935,207 SNPs remained in Genes & Health. 660 
 661 
Assessment of clinical utility 662 
 663 
We applied PRSmix and PRSmix+ for coronary artery disease as a clinical application. The 664 
phenotypic algorithm includes at least one ICD or CPT code below: ICD9 410x, 411x, 412x; 665 
ICD10 I22x, I23x, I24.1, I25.2 CPT 92920-92979 (PCI), 33533-33536, 33517-33523, 33510-666 
33516 (CABG) or self-reported personal history of MI or CAD. CAD in Genes and Health 667 
cohort was defined with at least one ICD10 I22x, I23x, I24.1, I25 or operation codes K401, 668 
K402, K403, K404, K411, K451, K452, K453, K454, K455, K491, K492, K499, K502, K751, 669 
K752, K753, K754, K758, K759 or SNOMED codes 1755008, 22298006, 54329005, 670 
57054005, 65547006, 70211005, 70422006, 73795002, 233838001, 304914007, 671 
401303003, 401314000. 672 
 673 
The category-free NRI was used to evaluate the clinical utility. NRI was calculated by adding 674 
the PRS to the baseline logistic model including age, sex, the first 10 principal components, 675 
and clinical risk factors. The clinical risk factors include total cholesterol, HDL-C, BMI, type 2 676 
diabetes, and current smoking status or model includes only age, sex, and 10 principal 677 
components. NRI was calculated as the sum of NRI for cases and NRI for controls:  678 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 26, 2023. ; https://doi.org/10.1101/2023.02.21.23286110doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.21.23286110
http://creativecommons.org/licenses/by/4.0/


 

18 

 679 
&�' � (�)*|,���� � (�-./0|,���� � (�-./0|,.01�.2� � (�)*|,.01�.2� 

 680 
(�)*|,���� and (�-./0|,���� estimate the proportion of cases that had higher or lower risk 681 
after classification with logistic regression, respectively. The confidence interval for NRI was 682 
estimated with 500 bootstraps. We also compared the risk increase between individuals in 683 
the top decile of PRS versus those remaining in the population. In addition to liability R2 to 684 
compare the PRS performance, we also used the incremental area under the curve (AUC) to 685 
compare the PRS. The incremental AUC was estimated as the difference between the AUC 686 
of models with the integrative score versus the model with only clinical variables. 687 
 688 
Phenome-wide association study 689 
 690 
We obtained the list of 1815 phecodes from the PheWAS website (last accessed December  691 
2022)44. The phecodes were based on ICD-9 and ICD-10 to classify individuals. PheWAS 692 
was conducted on European ancestry only in AoU. For each phecodes as the outcome, we 693 
conducted an association analysis using logistic regression on PRS and adjusted for age, 694 
sex, and first 10 PCs. The significance threshold for PheWAS was estimated as 2.75 x 10-5 695 
(0.05/1815) after Bonferroni correction.  696 
 697 
Data availability 698 
 699 
The PGS Catalog is freely available at https://www.pgscatalog.org/. Our new scores are 700 
deposited in the PGS Catalog. The All of Us and Genes & Health individual-level data is a 701 
controlled access dataset and may be granted at https://www.researchallofus.org/ and 702 
https://www.genesandhealth.org/, respectively.  703 
 704 
The weights from the PRSmix and PRSmix+ scores in this manuscript have been returned to 705 
the PGS Catalog. The R package to implement PRSmix and PRSmix+ in independent 706 
datasets is at https://github.com/buutrg/PRSmix. 707 
 708 
Software/analyses: 709 
Analyses were performed on the AoU Researcher Workbench in Jupyter Notebook 14 using 710 
R version 4.0.0 programming language. Results are reported in compliance with the AoU 711 
Data and Statistics Dissemination Policy.   712 
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