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 2 

ABSTRACT 16 

Breast and ovarian cancers harboring homologous recombination deficiencies (HRD) can benefit 17 

from platinum-based chemotherapies and PARP inhibitors. Standard diagnostic tests for 18 

detecting HRD utilize molecular profiling, which is not universally available especially for 19 

medically underserved populations. Here, we trained a deep learning approach for predicting 20 

genomically derived HRD scores from routinely sampled hematoxylin and eosin (H&E)-stained 21 

histopathological slides. For breast cancer, the approach was externally validated on three 22 

independent cohorts and allowed predicting patients’ response to platinum treatment. Using 23 

transfer learning, we demonstrated the method’s clinical applicability to H&E-images from high-24 

grade ovarian tumors. Importantly, our deep learning approach outperformed existing genomic 25 

HRD biomarkers in predicting response to platinum-based therapies across multiple cohorts, 26 

providing a complementary approach for detecting HRD in patients across diverse 27 

socioeconomic groups. 28 

 29 

One-Sentence Summary: A deep learning approach outperforms molecular tests in predicting 30 

platinum response of HRD cancers from histological slides.  31 
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MAIN TEXT 32 

Precision oncology aims to personalize cancer therapy by first identifying and, subsequently, 33 

targeting molecular defects in tumors within each individual (1). Many cancers harbor failures of 34 

specific DNA repair pathways and utilizing synthetic lethal relationships amongst peripheral 35 

pathways has proven an effective treatment approach (2). Previous mechanistic studies and 36 

clinical trials have shown that breast and ovarian cancers harboring homologous recombination 37 

DNA repair deficiency (HRD) are highly sensitive to platinum salts and poly (ADP-ribose) 38 

polymerase (PARP) inhibitors (3). Historically, HRD has been associated with germline 39 

mutations in specific genes leading to an increased cancer risk with the most notable 40 

susceptibility genes being BRCA1 (4) and BRCA2 (5). In addition to germline variants, somatic 41 

mutations and epigenetic dysregulation can also lead to HRD (6). Importantly, HRD cancers 42 

exhibit characteristic patterns of somatic mutations (6-10) and gene expression (11, 12), and 43 

these patterns have been leveraged as predictive biomarkers for targeted response to platinum 44 

therapy and PARP inhibitors. Notably, the pattern of single-base substitution signature 3 (SBS3), 45 

part of the Catalogue of Somatic Mutations in Cancer (COSMIC) catalog of mutational 46 

signatures (13), was previously utilized as a clinical biomarker for detecting HRD (7, 14). 47 

 48 

In the United States, the FDA has approved two HRD companion diagnostic (CDx) tests for 49 

patients with ovarian and metastatic breast cancer (15). Myriad myChoice® CDx and 50 

FoundationOne® CDx determine HRD by quantifying overall genomic instability in 51 

combination with BRCA1/2 status (16, 17). Additionally, multiple research and CLIA-certified 52 

HRD diagnostic tests have been developed (18) and utilized to characterize the prevalence of 53 

HRD across different solid tumors (19-21). These studies have identified HRD as commonly 54 
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found in multiple refractory human cancers, including triple-negative breast cancer, high-grade 55 

serous ovarian cancer, and pancreatic adenocarcinoma, as well as established the role of HRD-56 

targeted therapies with platinum salts and PARP inhibitors (16, 22-24). Currently, all existing 57 

HRD diagnostic tests intrinsically rely on DNA and/or RNA profiling leading to clinical-58 

workflow bottlenecks largely attributed to the availability of sufficient tissue samples for 59 

molecular assays as well as to time to decision making and overall cost (25-27). For example, the 60 

cost of an FDA-approved or a CLIA-certified HRD test is several thousand dollars (27) and 61 

results can take from 3 to 6 weeks (25). In turn, this has precluded the widespread utilization of 62 

molecular diagnostics in standard therapy and clinical trials (1) with a disproportionately high 63 

effect on patients from underserved populations (15). 64 

 65 

While the utilization of sequencing-based diagnostics is limited, tumor biopsies are routinely 66 

processed in clinical practice for the diagnosis of solid-tumors by light-microscopic 67 

morphological review of tissue stained with hematoxylin and eosin (H&E) (26). Combined with 68 

recent advances in computational pathology, deep learning artificial intelligence (AI)-based 69 

models allow for both prognostic and diagnostic predictions using only digital H&E slides (28). 70 

Here we introduce DeepHRD, a deep learning AI platform for detecting HRD from digitalized 71 

H&E slides. We train and validate DeepHRD models on data from The Cancer Genome Atlas 72 

(TCGA) project and demonstrate their ability to detect HRD using external datasets. Importantly, 73 

using independent samples, we demonstrate that DeepHRD outperforms existing clinical 74 

genomic biomarkers in predicting response to platinum-based therapies. 75 

76 
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RESULTS 77 

We implemented DeepHRD, a weakly supervised convolutional neural network architecture that 78 

uses multiple instance learning (MIL; Fig. 1) for predicting HRD status from digital H&E slides 79 

(29-31). Specifically, for training DeepHRD, a soft label is assigned to each digital whole-slide 80 

H&E image (WSI) based on an HRD score derived using sequencing or genotyping data from 81 

the same cancer sample (Supplementary Materials). Further, all partitioned regions of that 82 

WSI, termed, tiles, are assigned a weak label based upon the sample’s classification. It is 83 

assumed that all tiles within a negatively labeled sample are homologous recombination 84 

proficient (HRP), whereas at least one tile must exhibit an HRD phenotype within a positively 85 

labeled sample. These assumptions allow the model to be trained using only a single 86 

classification label for an entire WSI without the need for detailed manual annotations from a 87 

pathologist, which currently do not exist for characterizing HRD. 88 

 89 

DeepHRD is based on a multi-resolution decision designed to mimic the standard diagnostic 90 

protocol used by pathologists, which performs an initial prediction on a low magnification (i.e., 91 

5x magnification) and then automatically selects regions of interest (ROI) to perform a 92 

secondary prediction on an enhanced magnification within ROIs (i.e., 20x magnification; Fig. 93 

1a) (30). Once fully trained, the model generates HRD predictions directly from digital tissues 94 

slides without the need for genomic profiling (Fig. 1b). Further, DeepHRD maps individual tile 95 

predictions back to the original WSI, which allows visualizing the relative importance of tissue 96 

regions for the obtained predictions (Fig. 1b). The final model encompasses an ensemble of five 97 

identical architectures, with each producing multi-resolution prediction scores. The average of 98 

these scores is used to make a final prediction for each tissue slide. Importantly, DeepHRD 99 
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 6 

estimates epistemic uncertainty using Bayesian dropout during inference of a tissue slide to 100 

calculate confidence intervals for the final model prediction (Supplementary Materials). The 101 

confidence intervals are subsequently used to provide a computational diagnostic 102 

recommendation (Fig. 1b).  103 

 104 

DeepHRD models were trained and internally validated using data from 1,008 TCGA breast 105 

cancers (32) with flash frozen (FF) slides and 1,055 TCGA breast cancers with formalin-fixed 106 

paraffin-embedded (FFPE) slides (fig. S1). All samples had whole-exome sequencing and 107 

microarray genotyping data for calculating a genomic HRD score (fig. S1). We trained 108 

DeepHRD breast cancer models by separating the samples with: (i) 70% used for training; (ii) 109 

15% for adjusting training parameters; and (iii) 15% held-out for testing the final model (Fig. 1a; 110 

fig. S1). Two independent models were trained, one for FF and one for FFPE tissue slides 111 

(Supplementary Materials). Prior to training, the number of HRD and HRP samples per breast 112 

cancer subtype were balanced to prevent learning subtype specific histological features (fig. S1). 113 

Each trained DeepHRD breast cancer model allows making a patient-level prediction using only 114 

a single FF or FFPE digital slide. Specifically, DeepHRD predicts whether a breast cancer is 115 

HRD or HRP, and it overlays an HRD probability mask to the digital slide, thus, allowing 116 

subsequent pathological investigations (Fig. 1b). 117 

 118 

The DeepHRD breast cancer FF model exhibited an overall performance with an AUC of 0.81 119 

([0.77-0.85] 95% Confidence Interval (CI); Fig. 2a) on the held-out TCGA samples. The 120 

generalizability of the FF model was externally validated by applying it to 116 primary breast 121 

cancer slides from the Clinical Proteomic Tumor Analysis Consortium (37) and 419 primary 122 
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breast tumors from the Molecular Taxonomy of Breast Cancer International Consortium (38) 123 

(fig. S2a) resulting in an AUC of 0.76 ([0.71-0.82] 95% CI; Fig. 2a). Notably, while HRD is 124 

enriched in luminal B, basal-like, and Her2 enriched breast cancers (fig. S1a), DeepHRD was 125 

able to distinguish HR deficiency and proficiency across all subtypes (Fig. 2b). The DeepHRD 126 

breast cancer FFPE model exhibited an AUC of 0.81 ([0.77-0.86] 95% CI; Fig. 2c) on the held-127 

out TCGA samples, which was identical to the flash frozen model. These results indicate that the 128 

fixation procedure and differences in staining coloration have minimal effects on the 129 

performance of predicting HRD status directly from breast cancer tissue slides.  130 

 131 

Importantly, the FFPE model was capable of distinguishing metastatic breast cancers (MBCs), 132 

part of an independent clinical cohort, that had a complete response to platinum chemotherapy 133 

(n=9) from MBCs having only a partial or no response to treatment (n=68) with an AUC of 0.76 134 

([0.54-0.93] 95% CI; Fig. 2c; fig. S2b). Additionally, clinical response to platinum-based therapy 135 

and progression-free survival were assessed using the Response Evaluation Criteria in Solid 136 

Tumors, version 1.1 (RECIST 1.1; fig. S2b) (36). Separating the MBCs treated with platinum 137 

based upon DeepHRD’s prediction revealed a median progression-free survival of 14.4 months 138 

for HRD patients and 3.9 months for HRP patients (p-value=0.0019, log-rank test). The model’s 139 

predictive value was consistent after correcting for breast cancer subtype, age of diagnosis, and 140 

the genomic HRD score with a hazard ratio of 0.47 ([0.27-0.83] 95% CI; q-value=0.0087; Fig. 141 

2d). Further, DeepHRD captured 7 of the 9 complete responders to platinum treatment. In 142 

comparison, neither the separation based upon BRCA1/2 mutations nor detecting the HRD-143 

associated signature SBS3 resulted in a significant difference in progression-free survival (q-144 

value=0.13 and q=0.34, respectively; Fig. 2d). While the small sample size of BRCA1/2 mutated 145 
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tumors (~8% of MBCs) influenced the significance levels compared to wild-type tumors, the 146 

predictions from DeepHRD captured 4-fold more platinum sensitive samples. Lastly, the tissue 147 

slides from the MBC were digitalized using a Hamamatsu Photonics Nanozoomer system, while 148 

all other cohorts were digitalized using an Aperios ScanScope system, further demonstrating the 149 

generalizability of DeepHRD. 150 

 151 

Ovarian cancer patients have traditionally received first-line platinum chemotherapies making 152 

them ideal to evaluate whether HRD predictions from tissue slides may have a direct clinical 153 

benefit. To test whether DeepHRD can be used for other cancer types, we trained an independent 154 

FF ovarian cancer model by performing transfer learning on the TCGA ovarian cancer cohort 155 

(n=589) using the pretrained weights and biases generated from the FF breast cancer model with 156 

the convolutional weights and biases frozen during training (Fig. 3a; fig. S1). A similar training 157 

approach employed for the breast cancer models was utilized for the ovarian cancer model 158 

(Supplementary Materials). To assess the ability of the DeepHRD ovarian model to separate 159 

individuals benefiting from treatment with platinum chemotherapy, the model was applied to a 160 

held-out set of 66 high-grade serous ovarian cancers that received treatment with first-line 161 

platinum chemotherapy. Patients predicted to be HRD had a median survival of 4.6 years, while 162 

those predicted to be HRP had a median survival of 3.2 years with a hazard ratio of 0.45 ([0.22-163 

0.90] 95% CI; q-value=0.024) after correcting for the stage of the cancer, age, and the genomic 164 

HRD score (Fig. 3b). In comparison, we observed a worse separation when using a base model 165 

without transfer learning (HR=0.53 [0.26-1.07] 95% CI; q-value=0.076; Fig. 3c), suggesting that 166 

the transfer learning provides a benefit when attempting to train AI-based approaches on smaller 167 

datasets. Consistent with the breast cancer cohort, neither separation based on mutations in 168 
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BRCA1/2 nor detecting the HRD-associated signature SBS3 resulted in a significant difference in 169 

survival (q-values>0.10; Fig. 3c). 170 
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DISCUSSION 171 

The development of DeepHRD prediction models for breast and ovarian cancers demonstrates 172 

the practicality of deploying AI-based guidance into clinical diagnostics and precision medicine 173 

workflows. Results across multiple external cohorts indicate that the platform is applicable to 174 

routinely sampled tissue blocks and generalizable across different cancers, digital scanning 175 

systems, and tissue fixation procedures. DeepHRD’s performance was consistent across primary 176 

and metastatic breast cancers and, by incorporating transfer learning, the model was also 177 

applicable to serous ovarian cancer. Since HRD is a complementary biomarker guiding the use 178 

of platinum therapies and an FDA-approved companion diagnostic for the use of PARP 179 

inhibitors (15-17), the performance of our DeepHRD platform has direct implications for the 180 

treatment of other cancer types with known HR-deficiencies (19), notably within pancreatic 181 

adenocarcinomas. Despite clear benefit from first-line platinum therapy in HRD-positive patients 182 

with this refractory disease, there is a 3 to 6 week turn-around for genomic testing which is not 183 

appropriate for an advanced pancreatic cancer with a median progression-free survival of 6 184 

months (25). Further, access to HRD genomic testing is even more limited in developing 185 

countries (15). With increasing clinical evidence for the treatment of HRD tumors with platinum 186 

salts and PARP inhibitors and the limitations of existing genomic tests, there is a need to develop 187 

novel frameworks to guide the current standard-of-care for HRD tumors (23). 188 

 189 

Recently, deep learning AI approaches have demonstrated the ability to detect genomic 190 

alterations directly from H&E images, including biomarkers related to patient outcome, which 191 

could be leveraged for pre-screening tests. While demonstrating a high-concordance in 192 

predicting genomic HRD, DeepHRD was also capable of directly predicting individual patient 193 
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outcome to HRD-targeted therapy using response and progression-free survival based on 194 

RECIST criteria. Furthermore, DeepHRD provided better prediction of clinical response and 195 

progression-free survival to platinum therapies than existing genomic biomarkers. Notably, our 196 

approach captured patients with BRCA1/2 wild-type tumors who responded to platinum therapy, 197 

thus, identifying 4-fold more responders than BRCA1/2 mutation-testing alone (Fig. 2d). These 198 

results demonstrate that molecular assays, traditionally used for assessing HRD in a clinical 199 

setting, can be substituted and/or complemented with AI-based deep learning models for 200 

predicting clinical response from conventional diagnostic histopathological slides. 201 

 202 

While there has been a recent explosion of deep learning methods applied to digital pathology 203 

(28), the immediate translation into clinical practice has been limited by the high costs associated 204 

with acquiring infrastructure for routinely capturing digital H&E slides (27, 39). With the 205 

development of tertiary scanning services seeking to alleviate these overhead costs, a recent 206 

study has shown a potential alternative approach for utilizing analogous deep learning AI-models 207 

to make predictions from photographs taken directly by hand-held devices (40). In coordination 208 

with the optimization of lightweight deep learning architectures, using images from a 209 

smartphone attached to the ocular lens of a conventional light microscope promises inexpensive, 210 

efficient, and accurate deep-learning read-outs within seconds of preparing an H&E slide. By 211 

relying on smartphone microscopy images, this transition would provide AI-based diagnostic 212 

solutions for equitable and efficient clinical management for cancer patients across globally 213 

diverse socioeconomic groups. 214 

215 
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FIGURE LEGENDS 216 

Fig. 1. Multi-resolution convolutional neural network architecture to detect homologous 217 

recombination deficiency from histopathological tissue slides. a) Training a DeepHRD model 218 

for detecting homologous recombination deficiency (HRD) from whole-slide images (WSIs). For 219 

each WSI, a single prediction score is estimated based on the detection of HRD. Specifically, 220 

each WSI undergoes preprocessing and quality control (1). This module consists of tissue 221 

segmentation, filtering for non-focused tissue, and final tiling of regions that contain tissue at 5x 222 

magnification. All tiles for a single image are processed through the first multiple instance 223 

learning (MIL) ResNet18 convolutional neural network (2). This architecture uses the average of 224 

the top 25 predicted tile scores as the WSI predicted score. Dropout is incorporated into the fully 225 

connected layers in the feature extraction module to reduce overfitting during training. The same 226 

dropout technique is also incorporated during inference to simulate Monte Carlo dropout used to 227 

calculate confidence intervals in the final WSI prediction. The tile feature vectors from the 228 

penultimate layer of the feature extraction are used to automatically select regions of interest 229 

(ROI) from the original WSI for additional assessment (3). The feature vectors are reduced in 230 

dimensions using principal component analysis and a custom k-means clustering module is used 231 

to determine the optimal number of clusters per sample. The selected tiles are then resampled at 232 

a 20x magnification (4). These sets of tiles are used to train a second MIL-ResNet18 model (5) 233 

using an identical architecture to the one previously used in (2). The average predictions across 234 

both models are aggregated for a single WSI (6). The resulting distribution of scores are used to 235 

calculate confidence intervals and establish a threshold of confidence for a final prediction. b) 236 

Using a trained DeepHRD model for HRD prediction from a single whole-slide image. 237 
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DeepHRD produces a final prediction score for individual patient biopsies, with a 238 

computational-based diagnosis for subsequent clinical action. 239 

 240 

Fig. 2. DeepHRD for detecting homologous recombination deficiency and predicting 241 

response to treatment in primary and metastatic breast cancer. a) The receiver operating 242 

characteristic curves (ROCs) for classifying homologous recombination deficiency (HRD) in the 243 

TCGA held-out set and the independent set of primary breast cancers, encompassing the 244 

independent CPTAC and METABRIC primary breast cancer cohorts. b) Representative TCGA 245 

tissue slides are shown for both HRD and homologous recombination proficient (HRP) samples 246 

across multiple breast cancer subtypes along with the resulting predictions for each segmented 247 

tile at 5x and 20x resolutions. c) ROCs for formalin-fixed paraffin-embedded (FFPE) diagnostic 248 

model in the TCGA held-out set and for classifying metastatic breast cancer (MBC) patients who 249 

are complete responders to platinum therapy. d) Kaplan-Meier survival curves for MBC patients 250 

treated with platinum chemotherapy separated by DeepHRD model predictions (left), BRCA1/2 251 

mutation status (middle), and SBS3 activity as detected by SigMA (right). Q-values are corrected 252 

after considering breast cancer subtype, age at diagnosis, and the standard-of-care binary HRD 253 

classification score >42 (i.e., HRD score). Cox regression showing the log10-transformed hazard 254 

ratios are shown with their 95% confidence intervals (bottom). Q-values less than or equal to 255 

0.05 are annotated with * while q-values above 0.05 are annotated with n.s. (i.e., non-256 

significant). 257 

 258 

Fig. 3. DeepHRD transfer learning in ovarian cancer for predicting response to platinum 259 

treatment. a) Schematic demonstrating the transfer learning method to train an ovarian 260 
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homologous recombination deficiency (HRD) model from whole-slide H&E image (WSI) using 261 

a pretrained breast DeepHRD model. The pretrained flash-frozen breast model is used to initiate 262 

the weights and biases of all parameters in the ovarian model. HRD-scores are calculated from 263 

SNP6 genotyping microarray by deriving loss of heterozygosity (LOH), large-scale transitions 264 

(LST), and telomeric allelic imbalance (TAI). b) Kaplan-Meier survival curves comparing the 265 

outcomes of patients treated with platinum chemotherapy split by the prediction of the 266 

DeepHRD transfer learning model. c) Kaplan-Meier survival curves comparing the outcomes of 267 

platinum-treated patients split by the base model predictions with no transfer learning applied 268 

(left), BRCA1/2 mutation status (middle), and SBS3 activity as detected by SigMA (right). Q-269 

values are corrected after considering ovarian cancer stage, age at diagnosis, and the standard-of-270 

care binary HRD classification score >63 (i.e., HRD score). Cox regression showing the log10-271 

transformed hazard ratios are shown with their 95% confidence intervals (bottom). Q-values less 272 

than or equal 0.05 are annotated with * while q-values above 0.05 are annotated with n.s. (i.e., 273 

non-significant).  274 

275 
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