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Abstract. Lung Cancer is the leading cause of cancer mortality in
the U.S. The effectiveness of standard treatments, including surgery,
chemotherapy or radiotherapy, depends on several factors like type and
stage of cancer, with the survival rate being much worse for later cancer
stages. The National Lung Screening Trial (NLST) established that pa-
tients screened using low-dose Computed Tomography (CT) had a 15 to
20 percent lower risk of dying from lung cancer than patients screened
using chest X-rays. While CT excelled at detecting small early stage
malignant nodules, a large proportion of patients (> 25%) screened pos-
itive and only a small fraction (< 10%) of these positive screens actually
had or developed cancer in the subsequent years. We developed a model
to distinguish between high and low risk patients among the positive
screens, predicting the likelihood of having or developing lung cancer at
the current time point or in subsequent years non-invasively, based on
current and previous CT imaging data. However, most of the nodules
in NLST are very small, and nodule segmentations or even precise loca-
tions are unavailable. Our model comprises two stages: the first stage is a
neural network model trained on the Lung Image Database Consortium
(LIDC-IDRI) cohort which detects nodules and assigns them malignancy
scores. The second part of our model is a boosted tree which outputs a
cancer probability for a patient based on the nodule information (lo-
cation and malignancy score) predicted by the first stage. Our model,
built on a subset of the NLST cohort (n = 1138) shows excellent per-
formance, achieving an area under the receiver operating characteristics
curve (ROC AUC) of 0.85 when predicting based on CT images from all
three time points available in the NLST dataset.
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1 Introduction

The National Lung Screening Trial (NLST) [9] screened more than 50,000 high
risk patients between 55 and 74 years of age with long smoking history and
showed that patients screened with low-dose CTs had 15 to 20% lower risk of
dying from lung cancer than patients who were screened using chest X-rays [8,
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10]. Although this resulted in a higher false positive rate (> 90%) in the NLST,
complications from invasive diagnostic evaluation procedures were uncommon,
leading to better overall outcomes for participants.

The high false positive rate (with corresponding low positive predictive val-
ues) does, however, lead to more diagnostic procedures, biopsies and other in-
vasive procedures. This raises the cost as well as the risk of over-diagnosis. The
recent advent and successes of quantitative imaging [5, 6] presents a tempting op-
portunity: quantitative imaging or radiomics may be able to identify and leverage
subtle morphological features of the lung nodules and/or the surrounding tissue
to assess the risk of lung cancer, and provide a cost-effective and non-invasive
alternative to other commonly used followup procedures.

Using a conventional radiomics approach to tackle this issue, however, poses
significant challenges, including the unavailability of nodule segmentation for
the NLST cohort, which is required for a radiomics approach to be successful.
Convolutional Neural Networks (CNN) on the other hand have proven very
effective in various image-based tasks including lung nodule segmentation [12]
and lesion detection[13, 7]. They do not require handcrafted features and, given
enough data, can automatically extract high-level abstract features and capture
non-linear classification boundaries.

In this work, we used a two-stage model to predict if a patient with lung
nodules is likely to develop cancer in the future based on their lung CTs only.
In the context of the NLST, we considered patients who screened positive due
to the presence of lung nodules > 4 mm in diameter, and trained a model to
predict whether they had or would develop cancer in the subsequent years. We
used a CNN in the first step in order to detect nodules and predict malignancy,
and used a boosted tree in the second stage to predict per-patient risk of cancer
based on the nodule information in the first stage. The second stage also takes
into account available longitudinal data from previous time-points while making
predictions. Our model shows promising predictive performance when predicting
on CT images from all three time-points available in the NLST dataset.

2 Materials and Methods

2.1 Overview of the NLST dataset

The NLST [9] is a randomized, multi-site trial conducted in collaboration be-
tween Lung Screening Study (LSS) and American College of Radiology Imaging
Network (ACRIN), that examined lung cancer-specific mortality among partici-
pants in a high-risk cohort. The aim was to determine whether screening for lung
cancer with low-dose helical computed tomography (CT) reduces mortality from
lung cancer in high-risk individuals relative to screening with chest radiography.
To that end, over 53,000 high risk individuals between 55 and 74 years of age
with heavy smoking history were enrolled between 2002 and 2004, and approxi-
mately half of them were screened with low-dose CT, while the remaining were
screened with chest X-rays. Each participant underwent three annual screenings
from 2002–2007, with follow-up post-screening through 2009.
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Out of 26732 patients in the low-dose CT arm of the study, cancer was con-
firmed in only 1083 (≈ 4%) patients during the course of the study. On the other
hand, at each of three screening time-points, say T0, T1, and T2, respectively,
a relatively large proportion–27%, 26% and 16%–of patients screened positive,
based on the presence of non-calcified nodules or masses ≥ 4 mm in diameter
or any other abnormalities judged suspicious for lung cancer by the radiologist.
About 9%, 6% and 8% of the patients who screened positive at time-points T0,
T1, and T2, respectively, were confirmed with cancer either during screening or
the subsequent follow-up within the duration of the study.

2.2 Study Cohort

For this study, the patients were chosen from the NLST as follows: In the CT
arm of NLST (n = 26732), 7191 patients screened positive at T0. Most of them
(n = 7096) had lung nodules greater than 4 mm in diameter. Let us call this
set of patients P. Out of P, only 620 patients were diagnosed with cancer at
either T0, or T1, or T2 or in the subsequent years while which the patients were
followed. We considered these 620 cancer patients as the cancer-positive cohort.
Next, we selected 620 patients from P who were never diagnosed with cancer
during the duration of the study and were demographically matched with the
cancer-positive cohort, defined as the control cohort. The demographic matching
was implemented as follows: for each patient in the case cohort, we picked one
patient from P with the matching gender, and at minimum distance (in the l2
sense) with respect to age, smoke-years and pack-years (the number of packs
per day times the number of years smoked). The resulting control cohort was
well-matched with respect to race and ethnicity as well. Finally, we excluded
patients for whom either CT scans were unavailable for any time point or if the
slice thickness was larger than 3 mm for any of the time points, and ended up
with a total of 1138 patients comprising 553 cancer patients and 585 no-cancer.

2.3 Available Data

For the selected case and control cohorts, CT imaging data for all three screening
time-points was downloaded from The Cancer Imaging Archive (TCIA)[3] with
approval from the National Cancer Institute. We also downloaded additional
clinical data including demographic data, as well as lung cancer data such as the
time of cancer confirmation and size of the lesion at the time of diagnosis. Precise
location information for the detected lung nodules was, however, unavailable.

2.4 Learning Model

Model Description Our model has two stages: 1. a CNN model for generating
lung nodule candidates and assigning them malignancy scores, and 2. a gradient
boosted tree that combines the nodule information output by the first stage, for
each patient and outputs a probability of cancer.
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The architecture of the CNN model in the first stage is similar to the archi-
tecture adopted in [11, 4]. Essentially, it has five sequential convolutional layers
(Conv3D), each with ReLU activation and followed by a 3D MaxPool layer. The
output of the fifth convolution block is fed to two branches: one for predicting
nodule probability and the other for predicting nodule malignancy. The branch
predicting nodule probability is a convolutional layer with sigmoid activation
function, while the branch for malignancy prediction is a convolutional layer
with ReLU activation, representing the predicted malignancy score. The input
to model is a 3D patch 32 × 32 × 32 pixels in size. Nodule probability repre-
sents the probability that the input 3D patch contains a nodule. The second
output, malignancy is the predicted ‘malignancy score’ of the nodule. Given a
preprocessed (Section 2.4) CT volume, 3D patches of 32 × 32 × 32 pixels are
extracted using a sliding window and fed to the CNN model. If the predicted
nodule probability is greater than a threshold (chosen to be 0.6 in our case), the
location of the patch, along with the predicted nodule probability and predicted
malignancy is recorded and used for cancer risk prediction in the second stage.

The second stage of our model consists of a xgboost[2] classifier. For each
CT scan, the input feature set comprises the number of predicted nodule can-
didates (nodule probability > 0.6) as well as the candidate location (x, y and
z coordinates), nodule probability and predicted malignancy for the top k = 5
candidates with highest predicted malignancy. We built three different stage 2
classifiers: the first for predicting cancer using T0 scans, the second using T0 and
T1 scans and the third using T0, T1 and T2 scans. When using scans from more
than one time-point, we picked one CT volume uniformly at random (if multiple
volumes were present) from each time-point and concatenated the correspond-
ing input feature sets. The classifier was trained using binary labels: cancer vs
no-cancer. The output represents the probability of cancer for the patient.

Training Data The CNN model in the first stage was trained on the LUng
Nodule Analysis (LUNA) ’16 dataset, which itself is a subset of the Lung Image
Database Consortium (LIDC-IDRI) dataset [1]. The LUNA16 dataset includes
888 CT scans with slice thickness less than 2.5 mm, along with precise location
information in world coordinates and diameter for a total of 1186 nodules≥ 3 mm
in diameter. For each of these nodules, we obtained corresponding malignancy
scores assigned by four radiologists on scale of 1 to 5 (1 being benign and 5
malignant) from the LIDC-IDRI dataset. As negative examples, we used the
extended candidate set provided by the LUNA16 dataset for the ‘false positive
reduction’ track, and assigned them malignancy scores of 0.

Training and Evaluation

Image preprocessing: Given a scan, the pixel intensities are converted to standard
Hounsfield units (HU). Next, a window level of −400 HU and window width of
1600 HU is applied. Finally, the CT volume is resampled to isotropic 1 mm ×
1 mm× 1 mm voxel dimensions.
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Fig. 1: ROC and PR plots for predictor based on all three time-points, obtained
using 1000 independent 50 : 50 train-validation splits.

Training the nodule detector: The CNN model for nodule detection and malig-
nancy prediction was trained on the LUNA16 dataset. After CT image prepro-
cessing, we extracted 3D cube patches to be input to the CNN. During training,
the number of negative samples far exceeded the number of positive samples
(≈ 400 : 1); therefore, we used majority downsampling to create balanced train-
ing set. We used binary crossentropy and mean absolute error losses for the
nodule probability and malignancy outputs respectively. We used random trans-
lations and random flips for data augmentation during training. The model was
trained using stochastic gradient descent with step decay for the learning rate.
We used a 80 : 20 train-validation split, and monitored the validation loss, saving
the best models. The training was run for 20 epochs without any early-stopping.

Nodule detection for the NLST cohort: The trained CNN model is then used to
generate nodule candidates for the NLST cohort. After preprocessing the CT
scans, we used a 3D sliding window with a step size of 12 pixels in x, y and z
directions, extracting 3D patches and feeding it to the CNN. If the predicted
nodule probability exceeded a chosen threshold (0.6 in our case), we recorded
the the predicted nodule probability and malignancy and treated the center of
the 3D patch as the predicted nodule location.

Cancer prediction: For training the xgboost model for cancer prediction, as
described we used the predicted nodule information as input and binary cancer
vs no-cancer labels as output. For evaluation, we used a 50 : 50 train-test split
and evaluated performance on the testing split. We repeated this for 1000 random
splits to obtain a robust estimate of the performance metrics we report here.
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Fig. 2: Performance comparison of predictors at T0, T1 and T2

3 Results

Our cancer prediction model shows significant performance as summarized in
Table 1. Each row summarizes the performance metrics of the predictor obtained
at the corresponding time-point. Note that the predictor at a given time-point
uses the scans at that and all previous time-points for prediction. Fig. 1 shows the
ROC and the precision-recall curves for our predictor at T2 (which uses the scans
at all three time-points T0, T1 and T2). A key observation is the improvement in
performance as more time-points are included for the prediction. For example, as
shown in Fig. 2(b), the AUC increases from 0.75 at T0, to 0.80 at T1 to 0.85 at
T2. Similar observations hold for the other performance metrics as well. Fig. 2(a)
shows the sensitivity of our predictors broken down by cancer years; for a given
year, we consider the patients who were confirmed cancers by that year and
evaluate the recall of the predictor among these patients. As expected, for each
predictor, the sensitivity decreases as it is, in general, more difficult to predict
cancers that is diagnoses at the farther point in time. A second observation is
the fact the sensitivity of the predictor at T1 for year t is greater than the
sensitivity of the predictor at T0 for year t− 1, for t = 1, . . . , 6. The same holds
for the predictors at time-points T2 and T1. This suggests that there is benefit
to combining scans from more than one time-point for prediction, even if the
scan time-points are in the past.

We also built clinical only models based on the following features: age, gen-
der, smoke-years, pack-years, race and ethnicity. We experimented with both
tree based models such as xgboost and random forests, as well as linear models
like logistic regression, and used a 10 fold crossvalidation strategy to evaluate
performance. None of the models were successful in predicting cancer, with av-
erage cross-validated test AUCs around 0.5 in each case. This is not unexpected,
as our cohort was chosen while controlling for these features.
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Table 1: Performance of our model (PPV: Positive predictive value, NPV: Neg-
ative predictive value). The 95% confidence intervals of the form (mean-delta,
mean+delta) are shown as mean (delta) in the table.

Time-point AUC Sensitivity Specificity PPV NPV

T0 0.75 (0.03) 0.61 (0.05) 0.78 (0.06) 0.72 (0.05) 0.70 (0.03)
T1 0.80 (0.03) 0.67 (0.06) 0.80 (0.06) 0.76 (0.05) 0.72 (0.03)
T2 0.85 (0.02) 0.75 (0.05) 0.84 (0.04) 0.82 (0.03) 0.78 (0.03)

4 Discussion

In this study, we have shown that it is possible to predict whether a patient with
lung nodules > 4 mm has or will develop cancer in subsequent years based on lung
CT scans only. The first stage of our model was trained on LIDC-IDRI dataset to
detect nodules and predict their malignancy scores in the NLST dataset. Next,
these nodule characteristics were combined in a xgboost model to predict cancer
on a per patient basis. This showed that using up to three scans had the best
performance with AUC of 0.85 to predict cancer.

Our study has limitations. We used only the lung CTs for predicting cancer;
indeed, we controlled for other demographic and clinical features such as age,
sex, and smoking history, which themselves may be predictive of cancer. Doing
so allowed us to show that the lung CTs alone are predictive of cancer, lending
credence to our hypothesis that features in the nodule or lung tissue may predict
cancer, even years before it is confirmed. However, in a clinical setting, we would
likely want to incorporate predictive demographic and clinical features as well,
and that may improve the predictive performance as well. Additionally, in the
second stage of our model, when multiple CT sequences are present in a single
time-point, we chose one of them at random, and used its nodule information
predicted by the first stage, for prediction of cancer. We did this without taking
into account the variability of CT acquisition parameters such as convolution
kernel, and we did not assess the impact of this variability on the prediction per-
formance. This heterogeneity across CT scans may have degraded performance
of nodule detection in the first stage of our model as well.

Finally, our current model just predicts cancer on a per patient basis, without
pinpointing which nodules were most responsible for the prediction. In the future,
we plan to incorporate such per nodule analysis in our model to improve its
interpretability and trustworthiness for clinical usage.
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