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Abstract 

Understanding the COVID-19 severity and why it differs significantly among patients is a thing of concern to 

the scientific community. The major contribution of this study arises from the use of a voting ensemble host 

genetic severity predictor (HGSP) model we developed by combining several state-of-the-art machine learning 

algorithms (decision tree-based models: Random Forest and XGBoost classifiers). These models were trained 

using a genetic Whole Exome Sequencing (WES) dataset and clinical covariates (age and gender) formulated 

from a 5-fold stratified cross-validation computational strategy to randomly split the dataset to overcome 

model instability. Our study validated the HGSP model based on the 18 features (i.e., 16 identified candidate 

genetic variants and 2 covariates) identified from a prior study. We provided post-hoc model explanations 

through the ExplainerDashboard - an open-source python library framework, allowing for deeper insight into 

the prediction results. We applied the Enrichr and OpenTarget genetics bioinformatic interactive tools to 

associate the genetic variants for plausible biological insights, and domain interpretations such as pathways, 

ontologies, and disease/drugs. Through an unsupervised clustering of the SHAP feature importance values, we 

visualized the complex genetic mechanisms. Our findings show that while age and gender mainly influence 

COVID-19 severity, a specific group of patients experiences severity due to complex genetic interactions. 
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1. Introduction  
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to pose a great threat to 

humanity ever since its first outbreak in late 2019. The SARS-CoV-2 viral strand causes the new coronavirus 

of 2019 popularly known as COVID-19 which has claimed millions of lives. The disease is widely 

characterized by a spectrum of clinical severity, suggesting a complex and highly dynamic host response in 

patients1. Host (human) genetic variation associated with severity susceptibility or infection might provide 

clues to effective points to develop therapy or even preventive measures to intervene to develop medicine and 

vaccine against SARS-CoV-2 infection2. Most especially, the scientific community is of kin interest that such 

findings provided by genetic human variations could give important clues where existing drugs may be 

repurposed for effective therapy against SARS-CoV-2 infection and life-threatening COVID-19 disease3. 

Also, we might be able to spot groups of individuals in the human population that might be at unusually high 

risk and need to be protected or might have innate protection against the SARS-CoV-2 infection4–7. The SARS-

CoV-2 genetic severity and susceptibility can also manifest themselves in rare genetic mutations which can 

cause healthy individuals to have a life-threatening response to COVID-19 disease6. Comorbidities such as 

diabetes, hepatitis, HIV, kidney-related problems, age, and gender have been observed in several clinical 

studies to have strong ties with patients' severity and susceptibility to the disease7,8. Some hosts are more 

susceptible to developing a severe disease probably due to modulated influence of genetics, environment, and 

risk factors. 

There is a knowledge gap as to why the response to COVID-19 infection varies so much from patient to patient. 

The study of human genetics to diseases from several studies has pointed out some links to the severity of the 

disease among some groups of patients 9. For example, in some cases healthy and young patients with no prior 

existing medical conditions when exposed to the disease developed severe symptoms and some even 
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succumbed to death from the disease. Emerging evidence suggests that asymptomatic patients mount a weaker 

immune response to the COVID-19 virus10–12. There are some complex genetic interactions with the disease 

on the host side that can help to explain the variability in COVID-19 severity susceptibility and outcomes 

among patients13. Vital information as to why the disease differs greatly between people might lie in their DNA 

(e.g., variations in immune-related genes). Gene expression identifies patterns within human immune cells and 

may also play a key role in determining how the host immune system interacts with the virus. Examining 

genomes of patients who have a severe response to COVID-19 becomes necessary to further understand these 

complex interactions that are crucial to shed more light on understanding the biology of the disease, selecting 

drugs for repurposing – and knowing patients who are most at risk or providing some sorts of protection against 

the infection14,15.  

Most scholarly works so far utilized the Geno-Wide Association studies (GWS) approach to identify pointer 

chromosome loci, variants, and genes that linked COVID-19 susceptibility severity in patients16,17. These 

studies have been vital in establishing crucial genetic variants linked to the disease, for example, the study of 

Q. Zhang et al.,18 used a candidate gene approach to identify patients with severe COVID-19 who have 

mutations in genes involved in the regulation of type I and III IFN immunity. Their studies found enrichment 

of these genes in patients and concluded that genetics may determine the clinical course of the infection. 

However, the GWS approach usually adopts more stringency measures for filtering genetic variants associated 

with a disease. For example, the threshold of small p-values is usually lowered to identify highly significant 

genetic variants with a disease19. Additionally, there is currently a lack of an organic model explaining how 

genetic factors concur with COVID-19 susceptibility in patients and possibly predict the genetic severity of 

the disease20. At the time of writing this report, there is still a lack of Machine learning (ML) techniques 

available to experts working on Whole-exome sequencing (WES) datasets related to predicting genetic severity 

and providing explanations for the interaction of identified genetic variants linked to the severity of SARS-

CoV-2 among patients. Explainable ML techniques that link identified genetic variant predictors can provide 

biological insights and interpretation that can assist experts in the field of medical sciences in understanding 

the complex genetic interactions that may lead to or hinder therapeutic approaches toward a trajectory to 

personalized medicine21–23. Model interpretability approaches have been adopted in several studies to discover 

new knowledge and testable hypotheses 24–26. 

This study, therefore, sheds new light on genetic variants discovered from a previous study linked to the 

severity of COVID-19 in patients of European descent. This study provides a host genetic severity prediction 

and post-hoc model explanations using 16 identified candidate genetic variants and clinical covariates (age 

and gender) from a prior study using a 2000 cohort patients’ WES dataset20. The post-hoc explanation of the 

HGSP model predictions using the ExplainerDashboard. The ExplainerDashboard is an open-source python 

library used by social scientists to explain global or local prediction results of their model. We adopt this 

approach to interpret plausible complex genetic interactions that may alongside patients’ clinical covariates, 

interplay with the host severity of the disease outcome. The HGSP model was developed by combining several 

trained decision tree-based models (Random Forest and XGBoost classifiers) across a 5-fold cross-validation 

(CV) splitting computational strategy we employed on the original problem dataset to improve the model 

stability abilities 20. We further carried out domain interpretations of the genetic variants linked to the severity 

of the disease via an enrichment database (Transcription, Pathways, Ontologies, Diseases/Drugs, and Cell 

Types)27. We also linked the genetic variant via association mapping studies using the Phenome-wide 

Association (PheWAS) technique by leveraging an open-source bioinformatics PheWAS tool called 

OpenTarget to associate the 16 identified genetic variants with disease traits that could lead to plausible clinical 

trajectories of the COVID-19 disease severity in patients 28. 

To this end, this study aimed to use the HGSP model developed from a previous 2000 cohort study of COVID-

9 severity among European patients using their WES and covariates information 20 for out-of-sample prediction 

(3000 cohort WES and covariates information) and importantly, to provide post-hoc model interpretations and 

explanations that linked disease traits and COVID-19 severity in patients using a genetic dataset.  

The rest of this paper is organized as follows: In Section 2 we explore related works, Section 3 discusses the 

methods, Section 4 details the methods employed, Section 5 presents the results, Section 6 discusses the results, 

and Section 7 concludes the study.  
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2. Related Work 
Several studies have established the roles of genetic risk factors and susceptibility to COVID-19 disease, for 

example, the study of Choudhary & Sreenivasulu et al.,8 observed that the host genetic factors, along with 

other risk factors may help determine susceptibility to respiratory tract infections. It is hypothesized that the 

Angiotensin Converting Enzyme 2 (ACE2) gene, encoding ACE2, is a genetic risk factor for SARS-CoV-2 

infection and is required by the virus to enter cells 29. Together with ACE2, Transmembrane Protease Serine 2 

(TMPRSS2) and Dipeptidyl Peptidase-4 (DPP4) also play an important role in disease severity. According to 

Debnath, & Banerjee et al.,4  considering the implications of host genes in the entry and replication of SARS-

CoV-2 and in mounting the host immune response, it showed that multiple genes might be crucially involved 

in shaping COVID-19 patients’ severity dynamics. Their study proposed three potential genetic gateways: 

variations within the ACE2 gene influencing the spatial transmission dynamics of the disease, the Human 

Leukocyte Antigen locus, a master regulator of immunity against infection which in turn seems to influence 

the susceptibility and severity of the disease in patients, and the genes regulating Toll-like receptor and 

complement pathways. This subsequently triggers the cytokine storm which induced exaggerated 

inflammatory pathways that seem to underlie the severity of COVID-19 in patients.  

According to a study carried out by Lassau, et al..,30 observed that the SARS-CoV-2 pandemic has continued 

to overwhelm hospitals’ intensive care units, and the need to identify predictors of disease severity is a priority. 

They conducted a study on 58 clinical and biological variables, and collected a chest CT scan dataset, from 

1003 coronavirus-infected patients from two French hospitals. They trained a deep learning model based on 

CT scans to predict SARS-Cov-2 severity in patients. Constructing a multimodal AI-severity score that 

includes 5 clinical and biological variables (age, sex, oxygenation, urea, platelet) coupled with the deep 

learning model developed an AI-severity model that improves prognosis performance. The findings of their 

study demonstrated that AI approaches such as neural network analysis of CT scans can bring unique prognosis 

information to help clinicians. The work of Muhammad et al.,24 utilizes supervised ML algorithms (Logistic 

Regression, Decision trees, Support Vector Machine, Naïve Bayes, and Artificial Neural Networks) using an 

epidemiological labeled dataset from positive and negative COVID-19 patients in Mexico. The results of their 

studies showed that the decision tree model outperformed all the other models in predicting the disease 

outcome. Yan et al.,31 utilize interpretable ML approaches to model COVID-19 patients’ mortality, and the 

results of their findings identified crucial predictive biomarkers of disease mortality. For this purpose, the ML 

tools selected three biomarkers that predict the mortality of individual patients more than 10 days in advance 

with more than 90% accuracy: lactic dehydrogenase (LDH), lymphocyte, and high-sensitivity C-reactive 

protein (hs-CRP). Relatively high levels of LDH alone seem to play a crucial role in distinguishing most cases 

that require immediate medical attention. 

Patel, Kher, et al.,12 uses socio-demographic data, clinical data, and blood panel profile data to develop ML 

algorithms for predicting the need for intensive care and mechanical ventilation. The findings of their study 

established that the three categories of information are crucial for intensive care and mechanical ventilation 

allocation to patients by healthcare systems in planning for surge capacity for COVID-19. The study of 

Doewes, & Sharma32, combined an ensemble genetic algorithm and ML classifier to filter relevant features 

and perform classification to diagnose COVID-19 through patients’ blood samples. Their findings showed that 

ML techniques can augment current medical practices and tools, and improve modern methods deployed in 

the fight against the disease. The work of Albadr, et al.,33 employs an Optimised Genetic Algorithm-Extreme 

Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) 

to detect COVID-19 using X-ray images. The results from their findings showed that the OGA-ELM can be 

used to achieve 100.00% accuracy with fast computation time. This demonstrated that OGA-ELM is an 

efficient method for COVID-19 detection using chest X-ray images.  

The study by Marcos, Belhassen-García, et al.,34 demonstrated that efficient and early triage of hospitalized 

Covid-19 patients is crucial to detect those with a higher risk of severe Covid-19 infection. Their study trained, 

validated, and externally tested an ML model to early identify patients who will die or require mechanical 

ventilation during hospitalization from clinical and laboratory features obtained at admission. Their findings 

strongly supported evidence that ML models could be useful in medical emergencies such as pandemics in 

determining patients for hospital admission and predicting the risk of severe Covid-19 infection. Different ML 

techniques have been utilized by researchers in response to mitigating the SARS-Cov-2 virus threat since the 

onset of the pandemic some of which have been useful in the diagnosis of COVID-19 and prediction of 

mortality risk and severity, using readily available clinical and laboratory data7,30. Fallerini, et al.35 studied 
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common and rare variants from WES data of about 4000 SARS-CoV-2-positive patients. This was utilized to 

define an interpretable machine-learning model for predicting COVID-19 severity. The variants were 

converted into separate sets of Boolean features, depending on the absence or the presence of variants in each 

gene. They developed an ensemble model of LASSO logistic regression which was used to identify the most 

informative Boolean features concerning the genetic bases of severity. Their study formed the basis of our 

study, however, in our study, we took a different approach to the development, interpretations, and 

explanations of the HGSP model. First, we used a computational strategy of a 5-fold CV to split the clinical 

phenotype information of the patients (i.e., each of the folds in the 5-fold CV has 80% training and 20% testing 

sets) and screened the 80% training sets in each fold for genetic variants (from our prior study 19) linked with 

the disease using an odd-ratio statistics approach other than the GWAS. We then remapped the identified 

significant variants for each of the folds for the 20% unscreened testing sets in each fold. We developed our 

count matrices (training and testing for each fold) following the identified variants and employed several 

traditional ML algorithms (Logistic Regression, Support Vector, Random Forest, and XGBoost classifiers) to 

identify genetic variants via feature importance from the decision tree models (i.e., Random Forest and 

XGBoost classifiers) that provided the highest support (i.e., non-zero feature importance weighted scores 

across the 5-fold). 16 genetic variants and the clinical covariates (age and gender) were identified with the 

highest support, and we retrain the models using these features. An ensemble voting classifier was used to 

combine the 5-fold decision tree models to develop the HGSP model. We validated the HGSP model on an 

external dataset and provided further domain interpretations and post-hoc explanations.  

3. Materials and Methods 

Data Resources and Description  

The genetic and clinical data type we used for this study was extracted from an observational study dataset 

coordinated by the GEN-COVID Multicenter Study group led by the University of Siena with an estimated 

enrolment of 2000 participants which constitutes the basis of the sample from which the genetic information 

was obtained (https://clinicaltrials.gov/ct2/show/NCT04549831). The initial 2000 cohort WES and covariates 

(age and gender) dataset were used to train and develop the HGSP model. The HGSP model was developed 

based on 16 identified candidate genetic variants and clinical covariates (age and gender)20. The out-of-sample 

dataset used for external prediction in this study was a follow-up dataset information provided by the same 

GEN-COVID group to validate the HGSP model and this formed the basis of this study. In this study, we 

maintained the same data preparation procedures we used for the training dataset study 1920. To perform the 

downstream analyses (external model validation and post-hoc interpretations), we considered the two 

classification grading schemes: adjusted-by-age and unadjusted-by-age. The adjusted-by-age grading 

classification scheme refers to a refinement made on the grading classification based on an ordinal logistic 

model which uses age as an input feature for sex-stratified patients3,11,35, while the unadjusted-by-age grading 

classification scheme was not refined. To build the feature matrices for the external model validation, we 

curated the allele frequencies from the WES dataset (out-of-sample) for the 16 identified genetic variants 

together with their clinical covariates.  

We binarized the patients' COVID-19 outcome severity grading classifications: gradings 5, 4, and 3 were 

grouped as “severe” and coded as 1; grading 0 was grouped as “asymptomatic” and coded as 0. We excluded 

patients’ information whose severity grading was classified as 1 & 2. This exclusion was done purposefully to 

minimize noise signals during the filtering of genetic variants that are linked with the disease severity or 

protection in patients. We further refined the grading classification based on an ordinal logistic model which 

uses age as an input feature for sex-stratified patients 36 and we retained only those patients whose grading 

classification was concordant with the one adjusted by age. The age distribution of the participants ranges from 

18 years and older (Adult, Older Adult). The Gender this study considered were all sexes.  Patients' genotypic 

information contains a reference (Ref) or alternative (Alt) alleles in either severe or control groups which were 

defined by employing an additive model, whereby homozygous genotype (1/1) has twice the risk (or 

protection) of the heterozygous type (0/1 or 1/0).  
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Figure 1: Classification of patients’ SARS-CoV-2 severity adjusted by age grading scheme. 
We considered the most severe cases patients in groups 3, 4, and 5 versus control cases patients in group 0.  
 

Further details and descriptions of the WES dataset and preprocessing can be found in our prior study of the 

2000 cohort dataset20. A total of 618 patients met the filtering and selection criteria from the out-of-sample 

dataset and were therefore used for the external model validation. The feature matrix for the external validation 

of the HGSP model contained 18 features (16 genetic variants and covariates). Each of the 16 variants that 

constituted the feature matrix has allelic frequency counts for each patient’s genotype information assigned 

(0/0 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑎𝑠 0, 0/1 𝑜𝑟 1/0 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑎𝑠 1, 𝑎𝑛𝑑 1/1 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑎𝑠 2). The covariates were further merged 

into the feature matrix from the patients’ phenotype information. The outcome variable (grouping) is binarized 

as 0 and 1, where 0 represents asymptomatic and 1 depicts the severity of the disease as shown in figure 1.  

 
Figure 2: Patient phenotype information (adjusted-by-age grading scheme) in the follow-up WES dataset. 

We employed a four-scenario approach to validate the HGSP model using the out-of-sample dataset. The 

baseline scenario was mainly focused on validating the model using the adjusted-by-age grading classification 
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scheme feature matrix. While scenarios 1 – 3 focused on validating the model using the unadjusted-by-age 

grading classification scheme. 

Adjusted by age grading dataset: this refers to training and testing data coming from a refinement made on 

the grading classification based on an ordinal logistic model which uses age as an input feature for sex-stratified 

patients. 

Unadjusted by age grading dataset: this refers to the training and testing data coming from an unrefined 

grading classification.  

Baseline training dataset: this refers to the dataset used for internal validation of the HGSP model i.e., the 

20% testing set from each of the 5-fold CVs. There are 841 sampling units in this category and they belong to 

the adjusted-by-age grading scheme category. 

Testing set: this refers to the dataset used for external validation of the HGSP model, and the belongs to the 

adjusted-by-age grading scheme category. Note the sampling unit in this category their WES were filtered for 

the 16 genetic variants following the same criteria employed in the baseline training dataset. There are 618 

sampling units in this category. 

Remarks: the baseline training set dataset was the initial cohort from the prior study of 2000 European descent 

patients WES dataset provided to us from the GEN-COVID multicenter group. They further carried out a 

follow-up and included additional 1000 patients making 3000 patients in all. This resulted in some overlapping 

and the reason for the exclusion of some samples in this study.  

Excluded samples testing set: all samples classified as severe or asymptomatic based on the unadjusted-by-

age grading scheme included in the follow-up dataset. There are 235 samples in this category. 

Excluded samples training set: all samples classified as severe or asymptomatic based on the unadjusted by 

age grading scheme included in the baseline training dataset but excluded in the adjusted by age grading 

scheme baseline training dataset. There are 357 sampling units in this category.  

Aggregated excluded samples: all the samples were classified as severe or asymptomatic using the 

unadjusted-by-age grading scheme. They were the union of the excluded baseline training and testing samples. 

There are 495 sampling units in this category.  

Post-Hoc Model Explanations  

For us to achieve the aim and objectives of this study, we utilized the following methodological approaches. 

We used the adjusted-by-age information to provide a post-hoc model explanation using the explainer 

dashboard framework. 
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Figure 3: Proposed methodological design of COVID-19 HGSP model post-hoc explanations. 
We first load the saved HGSP model developed by training fully supported variants and covariates (age and gender) identified from a 

simple stratified 5-fold CV splitting strategy adopted from the 2000 cohort dataset study. We proceeded to validate the model on the 

out-of-sample dataset. Our method used the HGSP for prediction purposes and employed the ExplainerDashboard python library to 

provide a post-hoc model explanation of the prediction outcome at an individualistic level using the adjusted by-age information 

(baseline scenario). Note full details on how the HGSP model was developed and trained are provided in a study by Onoja et al. 19. 
 

Host Genetic Severity Predictor Model Development  

We developed the HGSP model by combining trained decision tree-based models (Random Forest and 

XGBoost classifiers) from a 5-Fold CV split of the original problem dataset. See a prior study from Onoja et 

al., 19 for further details. The HGSP combined these models via an ensemble “VotingClassifier” approach from 

the “sklearn.ensemble” python library module to aggregate the individual classifiers based on their prediction 

probabilities (soft margin) of the outcome.  

Prediction Metrics  

The performance models were evaluated by assessing the following classification metrics; accuracy score, 

recall score, precision score, precision-recall curve, Matthew Correlation Coefficient (MCC), and ROC-AUC 

curve performance evaluation metrics to measure how well our developed covid-19 severity prediction HGSP 

model extrapolates the external dataset (out-of-sample dataset).   

Accuracy score   

In the ML classification task, the accuracy score is a metric used to evaluate the performance of a model on a 

given dataset. It measures the proportion of correct predictions made by the model over all the predictions it 

made. In your context, the saved HGSP model was used to make predictions on an external dataset. The 

accuracy score was then used to evaluate how well the model performed on this dataset by calculating the 

proportion of correct predictions made by the model. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑠𝑐𝑜𝑟𝑒 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
                                    (1) 

Recall score  

The recall score is a performance evaluation metric that measures the sensitivity of a model in identifying 

positive cases correctly. In your context, the HGSP model was validated on a new dataset using the recall score 

metric. This metric measures how well the model can correctly identify true positives, i.e., the number of 

correct positive predictions made by the model over the total number of actual positive instances in the dataset. 

Output SHAP feature importance 
Visualize via clustering Heatmap 
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𝑅𝑒𝑐𝑎𝑙𝑙 𝑠𝑐𝑜𝑟𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                               (2) 

Precision score  

The precision score is a performance evaluation metric used to measure the positive predictive value of a 

model. It measures the proportion of true positive predictions made by the model and overall positive 

predictions made by the model. The precision score evaluated the performance of the HGSP model on the 

external validation dataset. Specifically, it was used to measure how well the model could correctly identify 

positive instances without producing many false positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                          (3) 

Where;  

𝑇𝑃 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠, 𝑇𝑁 =  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠, 𝐹𝑃 =  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠, 𝐹𝑁 =  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

Confusion matrix  

The confusion matrix is a performance evaluation metric that shows how well a model is performing in terms 

of making correct and incorrect predictions on a given dataset. The confusion matrix was used to evaluate the 

quality of the output of the HGSP voting classifier on the dataset. The confusion matrix is a square matrix that 

displays the number of correct and incorrect predictions made by the model across distinct categories or labels. 

The diagonal elements of the matrix represent the number of points for which the predicted label is equal to 

the true label, while the off-diagonal elements represent those that were mislabeled by the classifier. 

f1-score  

The f1-score is a performance evaluation metric that measures the model's accuracy in binary classification 

tasks. The f1-score is the harmonic mean of precision and recall. The f1-score ranges from 0 to 1, where 1 

represents perfect precision and recall, while 0 represents the worst possible performance. The f1-score is often 

used as a benchmark to compare the performance of different binary classification models. 

Precision-Recall Curve  

The Precision-Recall (PR) curve is a performance evaluation metric that is commonly used to assess the quality 

of a binary classification model. The precision-recall curve is generated by plotting the precision and recall 

values of a binary classifier for different probability thresholds.  

Matthew Correlation Coefficient 

The MCC is a performance evaluation metric that measures the quality of binary classification models. MCC 

is a value between -1 and +1, where +1 represents perfect classification, 0 represents random classification, 

and -1 represents the worst classification. MCC considers all four elements of the confusion matrix (True 

Positive, True Negative, False Positive, and False Negative) and is therefore considered to be a more robust 

measure than other binary classification metrics, such as accuracy or F1 score. 

The MCC is calculated using the formula: 

𝑀𝐶𝐶 =  
(𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁)

√((𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁))

                                      (4) 

where TP, TN, FP, and FN represent the number of true positives, true negatives, false positives, and false 

negatives, respectively. 

 

Log-loss  

This is a crucial classification metric we used to assess the performance of the ensemble voting classifier. Log-

loss is indicative of how close the prediction probability is to the corresponding actual/true value (0 or 1 i.e., 

binary classifier). The more the predicted probability diverges from the actual value, the higher the log-loss 

value. 
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ROC Curve  

The Receiver Operator Characteristic (ROC) curve is a graphical representation plot that is used to show the 

diagnostic ability of binary classification tasks. The ROC curve was used to visualize how well the saved 

HGSP model used for the study extrapolates the external dataset 37. 

Interpreting the ROC curve 

The ROC curve was used to show the trade-off between sensitivity (True Positive Rate (TPR)) and specificity 

(1 – FPR) of the HGSP model. If the voting classifier produces curves closer to the top-left corner indicates a 

better performance. For baseline purposes, a random classifier is expected to give points lying along the 

diagonal (FPR = TPR). The closer the curve comes to the 45-degree diagonal of the ROC space, the less 

accurate the test could be. 

ExplainerDashBoard Visualization  

This is an open-source python package 38 that makes it convenient to quickly deploy a dashboard web app that 

explains the inner workings of a (scikit-learn compatible) machine learning model. The dashboard provides 

interactive plots on model performance, SHAP feature importance, feature contributions to individual 

predictions, "what if" analysis, partial dependence plots, feature importance, SHAP (interaction) values, 

visualization of individual decision trees, etc.  

SHAP Feature Importance 

The ExplainerDashboard python library has an inherent feature importance criterion built into the explainer 

model 39,40. This helps to calculate a score for all the 16 fully supported variants and covariates (age and gender) 

input features and is displayed as bar plots. In this context, the scores represent the “importance” of each 

feature. A higher score means that the specific feature has a larger effect on the model that is being used to 

predict a COVID-19 genetic severity. In this study, we further investigated the SHAP feature importance 

output from the explainer dashboard by visualizing complex host genetic interactions with covariates via a 

clustering heatmap. 

Domain Interpretation 

Phenowide Disease-Variants Association studies  

The phenome-wide Association studies (PheWAS) is an approach we used to analyze many phenotypes to 

compare with the genetic variants we used for the supervised ML modeling. By utilizing comprehensive 

Genome information (DNA dataset) one can link the disease status or other traits of an individual such as 

disease complications or adverse drug events. In this study, we used the OpenTarget web tool for a disease-

variant association, and the PheWAS p-value cut-off was set to (α < 0.001)28. We considered only positive 

PheWAS association (odds-ratio > 1) where the trait was associated with severe cases and not asymptomatic 

(case > 1). We focused on the 16 genetic variants used to develop the HGSP model for external prediction. 

The PheWAS profile information for each of the 16 variants was integrated into the “explainerdashboard” 

SHAP feature importance bar plots and SHAP feature importance heatmap visualizations of the prediction 

outcome.    

The Enrichr is a web-based interactive software tool that integrates various gene-set libraries and provides 

alternative approaches to rank enriched terms. It also includes interactive visualization methods to display 

enrichment results using the D3 library. Enrichr can be embedded into gene list analysis tools to provide 

domain knowledge interpretations such as Transcription, Pathways, Ontologies, Diseases/Drugs, and Cell 

Types. In this case, Enrichr was used to further link the 16 genetic variants used in the HGSP model for 

biological implications. 

 

4. Results  
We present results from a validation of the trained HGSP model we developed using the 16 identified genetic 

variants and clinical covariates (age and gender) considering the adjusted-by-age grading scheme (see Fig. 1). 

We further provided post-hoc model interpretations for the HGSP model prediction outcome considering the 

unadjusted-by-age grading scheme.  
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External Model Validation 

We consider the following case studies for model validation using the 16 identified candidate genetic variants 

and two clinical covariates (age and gender). 1) Baseline training dataset, 2) Testing set, 3) Excluded samples 

Testing set, 4) Excluded samples Training set, 5) Aggregated excluded samples,  

Table 1: Summary of Performance Metrics external model validation of all case studies 

Case study Accuracy  f1-score  Precision  Recall  MCC  

Testing set 82.85 88.09 99.49 79.03 64.08 

Excluded samples Testing set 83.83 88.82 95.57 82.97 62.12 

Excluded samples Training set 82.35 85.52 88.15 83.04 63.17 

Aggregated excluded samples 84.44 88.14 90.51 85.89 65.79 
 

 

 

 
Figure 4:  HGSP model performance considering out-of-sample model validation in all case studies.  

In this study, we utilized the HGSP model we developed from a prior study of training decision tree-based 

models (Random Forest and XGBoost classifiers) combined from across a 5-fold CV (see further details in 

Onoja et al., 19 ) The HGSP model voting classifier was developed from high-performance machine learning 

algorithms that have some interpretability abilities due to their recursive tree-based decision system. We used 

this approach rather than adopting a complex model such as a deep neural network model to minimize the risk 

of overfitting and avoid the black box approximation of the problem considering their internal model 

mechanisms are difficult to interpret. The model explanation was further done using the explainer dashboard 

approach to assess and visualize vital metrics at a local level such as the SHAP permutation feature importance 

and dependence plots. The SHAP feature importance weight in our ensemble model is determined by its 

accumulated use in each decision step and permutation of each feature, shuffled and sorted based on their 

absolute values. Visualizing the 18 features via the bar plot helps us to further understand the relative 

importance of each of the 18 features in estimating the most discriminative COVID-19 outcome severity 

prediction in patients. Table 1 summarizes the performance of the ensemble model on the external validation 

set.  

The results show that our developed HGSP model voting classifier accurately recapitulates vital information 

that predicts the severity outcome in COVID-19 patients, regardless of their cohort. It is also worth noting that 

the performance of the external dataset is similar to that of the training and validation sets obtained in the 

training cohort dataset. This implies that the HGSP model voting classifier can capture the key relevant 

information that predicts patients' severity outcome of COVID-19 disease.  
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Results of Analysis Post-hoc HGSP Model Interpretations and Explanation  
Next, we performed the post-hoc model agnostic interpretations and explanations at a local level for the HGSP 

predictions. We employed the ExplainerDashboard interpretation and explanation approach focusing on the 

SHAP dependence plots, and feature importance plots, results to further shed new light on understanding 

complex interactions of genetics with clinical covariates. Here we seek to unravel hidden insights such as 

patients whose COVID-19 severity predictions are not driven by covariates (age and gender) but as a result of 

some complex genetic interactions from the 16 identified consistent features. The HGSP does not perform 

basic EDA approaches such as descriptive statistics summary and bar or histogram plots. The 

ExplainerDashboard provides options to view different post-hoc interpretation results. The 

ExplainerDashboard results can be saved in PDF, HTML, JPEG, or PNG file formats. Displayed in Figure 5(a) 

– 5(e) are the results of the HGSP model from the ExplainerDashboard interactive interface.  

 

Figure 5(a): ExplainerDashboard displayed SHAP feature importance plot. 

The plot shows the features sorted from most important to least important. The features were sorted based on 

the absolute SHAP values (average absolute impact of the 18 features on the final prediction outcome). The 

features can also be shuffled and sorted based on their permutation importance. 
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Figure 5(b): ExplainerDashboard displayed Classification Stats. 
In figure 5(b) we show the ExplainerDashboard displayed the classification statistics results of the HGSP 

prediction: confusion matrix plot; precision plot and classification plot. The observations were binned together 

in a group of roughly equal predicted probabilities and the percentage of positives is calculated for each bin. 

A perfectly calibrated model would show a straight line from the bottom left corner to the right corner. A 

strong model would classify most observations correctly and close to 0% or 100% probability the classification 

plot displayed the fraction of each class above and below the probability cut-off of 0.50: the ROC curve 

performance of the ensemble model on an external prediction dataset. 
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Figure 5(c): ExplainerDashboard displayed Classification Stats 
The plots displayed the Precision-Recall Area Under Curve (AUC) performance on an external follow-up cohort dataset; 

the lift curve plot is used to depict the percentage of positive classes when one selects only observations with a score 

above the cut-off Vs selecting the observations randomly. It aimed to help us evaluate how much better our developed 

ensemble voting classifier is than a random (the lift). 
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Figure 5(d): ExplainerDashboard Individual predictions plot 

The dialogue box is pulled down to select a sample_ID directly by choosing it from the dropdown list or hitting 

the random sample_ID button to randomly select a sample_ID that fits the constraints. This aimed to help us 

assess in general the false positives and false-negative rates of our prediction. The doughnut prediction plot 

shows the predicted probability for each grouping label for the selected sample_ID of interest.  
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Figure 5(e): ExplainerDashboard Feature dependence plot 

The SHAP dependence plot displays the relationship between feature values and SHAP values. This aimed to 

allow us to investigate the general relationship between feature value and impact on the prediction. One can 

ascertain whether the model uses features as expected or uses the plots to learn more about the relationships 

that the model has learned between the input feature and the predicted outcome. 

 

Domain Interpretations and Explanations  

We linked the genetic variants used to validate the HGSP model and ExplainerDashboard with the OpenTarget 

genetics and Enrichr bioinformatic web-based tools. The PheWAS results from OpenTarget genetics are 

presented in table 2 while Figure 6 presented a snapshot interface of the Enrichr results for the top 15 genetic 

variants.  
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Table 2: Feature importance description associated with PheWAS analysis 
Feature Description  

gender Gender 

age Age (Years) 

HDGFL2 HDGFL2(rs146793578) [Hint - cardiovascular disease: Hypertension, Phenotype: Fasciitis, Cell 

proliferation disorder: Prostate cancer| illnesses of siblings] 

TRIM72 TRIM72 ( ) 

PLEC PLEC (rs140300753) [Hint - Phenotype: Abnormalities of breathing, Cardiovascular disease: Heart 

attacks] 

PCSK5 PCSK5 (rs72745135) [Hint - Phenotype: Abnormalities of breathing, Mouth breathing, 

Cardiovascular disease: Epistaxis or throat haemorrhage, Infectious disease: Other acute lower 

respiratory infections] 

CNTFR CNTFR () 

BMS1P1_FRMPD2B BMS1P1_FRMPD2B ( ) 

GFM1 GFM1(rs370496368) ( ) 

LOC100996720 LOC100996720 ( ) 

ZBETB3 ZBETB3 (rs544641) [Hint - Infectious disease: Viral heptitis] 

MIR933 MIR933 (rs79402775) 

SPATA6 SPATA6 (rs77303590) [Hint - Immune system disease: Autoimmune disease, Infectious disease: 

Infectious mononucleosis / glandular fever / epstein barr virus (ebv), Viral hepatitis, Cardiovascular 

disease: Hypertension] 

GOLGA6L3 GOLGA6L3(rs367838829) ( ) 

ZBED3 ZBED3 (rs531117283) [Hint - Biological process: Frequent intake of alcohol, Infectious disease: 

Meningitis | non-cancer illness code] 

CEP131 CEP131 (rs2659015) [Hint - Biological process: Current smoking status, Cardiovascular disease: 

Esophageal bleeding (varices/haemorrhage)] 

SECISBP2L SECISBP2L(rs75595801 )[Hint - Genetic, familial or congenital disease: Disorder of lipoprotein 

metabolism, Phenotype: Haemorrhage from gastrointestinal ulcer] 

ZRANB3 ZRANB3(rs1465146591) 

In table 2, we linked the 16 genetic variants (see Fig. 5 (a)) with associated disease traits from a PheWAS 

analysis we carried out using the OpenTarget genetics platform. Some of the genetic variants were identifying 

reported disease specific disease-traits linked to COVID-19 severity e.g., abnormality of breathing and 

cardiovascular disease linked to PLEC (rs140300753), and PCSK5 (rs72745135). 
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Figure 6: Snapshot of Enrichr web-based results linking the genetic variants used for the HGSP Model.  
The detailed results of the Enrichr domain interpretations can be found using the link below: 

https://maayanlab.cloud/Enrichr/enrich?dataset=26f3365c99e0255115dd818c11aba294# 

 

 

 

Next, we presented the results of the SHAP value feature importance from the ExplainerDashboard 

visualizing it via the hierarchical clustering heatmap (See Fig. 7).
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Figure 7: ExplainerDashboard clustering heatmap visualizations of SHAP features importance output. 
The covariates and variants (Fully supported variants) at the local explanations level we visualized the SHAP feature 

importance output for plausible interactions interplaying with COVID-19 severity predictions. The Shapley values for 

each feature's important interpretations and explanations range from negative to positive. Negative values were colored 

blue while positive were colored red. A positive value means the feature is pushing the prediction output in a forward or 

positive direction while a negative value means the feature is pushing the output backward. Meaning features with positive 
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pull force will favor grouping 1 (severe) while features with backward pull force (negative) will favor grouping 0 

(asymptomatic).  

 

5. Discussion 
There is still a lot we are yet to unravel when it comes to the severity manifested by different SARS-CoV-2 

patients. For example, why are certain patients even though not advanced in age and with no comorbidity 

susceptible severity to the disease while others are not?  The significance of our study is three folds, first, we 

identified 16 candidate genetic variants that are likely determinants of COVID-19 severity outcomes in patients 

from a prior study we carried out using the 2000 cohort WES and clinical datasets. We further developed by 

combining several traditional interpretable ML algorithm models (decision tree-based models – Random 

Forest and XGBoost classifiers across a simple stratified trained 5-fold split CVs) to form the HGSP model 

and carried out an external validation using a follow-up dataset. Secondly, we utilized the explainer dashboard 

open-source python library to carry out a post-hoc explanation of our model predictions particularly 

considering the out-of-sample dataset. We employed the domain knowledge of the Phenome-wide Association 

technique by leveraging the OpenTarget web tool to associate the 16 identified genetic variants with disease 

traits that could lead to plausible clinical trajectories of the COVID-19 disease in patients. Lastly, we used the 

hierarchical clustering visualization heatmap to unravel hidden insights from the SHAP feature importance 

values from the explainerdashboard.  

From the heatmap (see Fig. 7) the covariates of age and gender were separated along two lines of magnitude 

impacts (positive and negative directions). This means they can be a push forward (severe) or pull back 

(asymptomatic) to the model severity prediction. This is in line with existing findings from the literature that 

the male gender is more at risk of severe COVID-19 disease than the female gender. More so, research has 

shown that as one advance in age, they are more likely at risk of severe COVID-19 than younger patients. 

Visualizing the SHAP value feature importance via a hierarchically clustered heatmap helps us to further 

understand the directionality contributions of the features at an individualistic level for each patient’s severity 

predictions. For example, the variants PLEC & PCSK5 (see Fig. 7) are strongly associated with abnormalities 

of breathing, symptoms, and signs involving the circulatory and respiratory systems. Most of the patients’ 

genetic severity prediction is strongly linked to age and gender, however, there is a small portion of patients 

whose severity predictions are topmost contributed by genetic variants; for example, patients with sample IDs 

S46_hg38, COV3908-1549_hg38, COV5958-2221_hg38, COV6351-2318_hg38, COV6807-2447_hg38, 

COV7658-2744_hg38, COV7878-2817_hg38 and COV8603-3159_hg38, whose severity contribution is 

coming from the variant PLEC, and not gender or age covariates. The variant PLEC has been linked with 

abnormalities in breathing phenotype traits and may be a suspected candidate disease variant whose 

interactions may interplay with the disease outcome in the identified patients. This implies that not all the 

patients’ severity is purely driven by the covariates' age and gender, some of which come from the genetic 

interactions of the host with the disease. This is in line with our previous study which utilizes the Principal 

Component Analysis (PCA) on the training dataset and identified a small cluster group of patients (about 29 

in number with 98% homogeneous COVID-19 severity). When these patients’ gene lists were further 

investigated for biological implications via the pathway enrichment, biological processes such as the JAK-

STAT signaling pathway, Cytokine-cytokine receptor interaction, and Interleukin-6 family signaling were 

detected. This revealed that genetics may have inter-play with the severity of the SARS-CoV-2 virus of patients 

in this cluster grouping.  

Also, the HGSP model is further deployed as a web application to assist experts working with WES datasets 

of COVID-19 patients and seek to evaluate their model based on the 16 identified genetic variants and clinical 

covariates. For example, an individual patient (see Fig. 5) can zoom in to understand how genetics is interacting 

with clinical covariates in predicting the severity outcome of the disease. The patient even though young and 

possibly healthy could be at susceptible risk to the disease if exposed to the virus.  However, it is worth noting 

that the HGSP model tends to favor severity outcome predictions compared to the asymptomatic cases, 

partially due to inherent imbalanced class distributions in the problem dataset. This reflects the reality that 

during the pandemic's first and second waves, there was a high surge of patients infected by the disease which 

led to a high influx of admitted severe patients and the collapse of healthcare facilities in many countries. The 

HGSP model, therefore, could serve as a good decision tool to lessen healthcare cost burdens by decision-

makers to identify patients with true COVID-19 severity. Also, the HGSP model can be used to explain the 
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rationale behind the patients’ severity prediction outcomes as to why they were selected or not. Developing a 

user-friendly explanation ML system can augment the efforts of healthcare decision-makers and clinicians to 

further build trustworthy and explainable models that will promote efforts toward personalized medicine.  

6. Conclusion 
Providing explanations and insights to the 16 identified genetic candidate variants we used to develop the 

HGSP model and validated it on an external follow-up dataset is crucial and formed the major contribution of 

this study. The findings from this study shed more insights into our understanding of the complex genetic 

interactions that the 16 identified genetic variants may be interplaying in the host genetic severity of COVID-

19 disease. Most of the patients’ severity has been contributed by age, gender covariates, and other modulated 

factors such as comorbidities, however, there is a small portion of the patients whose severity is purely driven 

by genetics. This group of individual patients spotted in the population might be at unusually high risk and 

need to be protected against the SARS-CoV-2 infection. In the future, we seek to investigate the WES patients’ 

dataset using statistical and bioinformatic tools such as linear regression SKAT-O analysis, polygenic variant 

scoring, and deep neural knowledge prior networks to provide domain experts with biologically inspired 

interpretability abilities for robust data-driven solutions. 

 

Data and code availability 

We confirmed that all materials used for this study are readily available from the authors upon request. Further 

information, sample feature count matrix, codes, and figures are available in the Supplementary Information. 

The code implementation is available at https://github.com/raimondilab/COVID-19-severity-host-genetic-

predictor-model-explanation   

Enrichr results: https://maayanlab.cloud/Enrichr/enrich?dataset=26f3365c99e0255115dd818c11aba294#  
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