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Abstract

Given the potential consequences of infectious diseases, it is important to understand
how broad scale incidence variability influences the probability of localized outbreaks.
Often, these infectious disease data can involve complex spatial patterns intermixed
with temporal trends. Archetypal Analysis is a method to mine complex spatiotemporal
epidemiological data, and can be used to discover the dynamics of spatial patterns. The
application of Archetypal Analysis to epistemological data is relatively new, and here we
present one of the first applications using COVID-19 data from March 13, 2020 to April
26, 2022, in the counties of Montana, USA. We present three views of the data set with
Archetypal Analysis. First, we evaluate the entire 56 county data set. Second, we
compute mutual information of the 56 counties’ time series to remove counties whose
dynamics are mainly independent from most of the other counties. We choose the top
17 counties ranked in terms of increasing total mutual information. Finally, to compare
how population size might influence results, we conducted an analysis with 10 of the
largest counties. Using the Archetypal Analysis results, we analyze the disease
outbreaks across Montana, comparing and contrasting the three different cases and
showing how certain counties can be found in distinct sets of archetypes. Using the
reconstruction time series, we show how each outbreak had a unique trajectory across
the state in terms of the archetypes.

Author summary

Archetypal Analysis provides an additional tool for the study of spatio-temporal
epidemiological data. We apply Archetypal Analysis to COVID-19 data and reveal how
this approach can be used to analyse the dynamics of each COVID-19 outbreak across
the state.

Introduction 1

The COVID-19 pandemic launched an intensive effort to understand the processes and 2

drivers of infectious disease outbreaks, with a growing emphasis on improving 3

predictions and providing information to help mitigate public health threats. [12] The 4

unprecedented collection of spatially dense data from across the world, along with 5

increased computing power and new implementations, has made spatio-temporal 6
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approaches tractable. Combining spatial with temporal methods allows an investigator 7

to not only study the persistence of patterns over time, but study the evolution of these 8

pattern. The patterns themselves may be unexpected and the methods can detect 9

spatial clustering could may reveal environmental causatives or potential data recording 10

errors. 11

Archetypal Analysis (AA) is a promising data mining tool for epidemiological data 12

and the analyses of the spatio-temporal spread of disease. AA attempts to capture 13

patterns within such multivariate data sets, and use these to represent the time 14

evolution of the spatial data. The archetypal patterns are convex combinations of the 15

data points themselves, and as such resemble the data, making interpretation much 16

more transparent than linear decompositions like principal component analysis 17

(PCA) [1]. Cutler and Breiman introduced AA as variant of PCA that could capture 18

‘archetypal patterns’ in the data [7]. More specifically, each time-based observation can 19

be constructed as a convex combination of the archetypes, representing the set with a 20

limited number of points on the convex hull. PCA provides the best way to compress 21

data, but the eigenvectors produced are not and should not be interpreted as actual 22

data points, they are directions in the high dimensional space being decomposed. The 23

archetypes, along with the reconstruction time series, represent the data as moving from 24

one representative observation to another as the epidemic evolves. In clustered data, 25

AA typically finds the centroids of clusters, and represents data as convex combinations 26

of the clusters, so it can indicate if a point lies between several clusters. Therefore, AA 27

combines the strengths of other commonly used techniques for data decomposition; 28

providing the interpretability that PCA lacks and more flexibility than many clustering 29

algorithms (i.e. it is a soft clustering algorithm). 30

AA applications have spanned many fields, and include the analysis of weather and 31

climate patterns [6, 11,22,24], machine learning [16], market analysis [13], and 32

biomedical and industrial engineering [9, 26]. Mokhtari et al. [4] use AA in one of the 33

first applications to epidemiological data, reconstructing the spatio-temporal patterns in 34

an influenza time series, and showing how prominent outbreaks developed across space 35

and for each influenza season (2010-2019). Here, we follow their approach and apply AA 36

to COVID-19 county-level data in Montana. Our goal is to further evaluate the use of 37

AA and attempt to reconstruct the spatial patterns for each COVID-19 outbreak from 38

March 2020 to April 2022. The full 56 dimension data set is decomposed by AA, along 39

with 2 reduced dimension sets, one reduced using a mutual information metric 40

(17-dimensional), and another considering only counties with large population centers 41

(10-dimensional). We apply AA to decompose them into a limited number of spatial 42

patterns of disease counts in each county for the specific outbreaks. The patterns found 43

in each outbreak can be compared, and a reconstruction coefficient time series allows 44

examination of the spread of COVID-19 from one pattern to another. 45

We would like to note here a common misconception in the later papers applying 46

Archetypal Analysis. The Archetype algorithm finds points that are convex 47

combinations of the data points that minimize the error in a reconstruction of the data 48

in terms of convex combinations of the archetypes. Recent publications use the term 49

“extremes” [6] to mean archetypes, which is indeed the case if there are significant 50

outliers in the data set. Archetypal decomposition is sensitive to outliers, so “extremes” 51

may be found first. However, this depends strongly on how the data are distributed, 52

especially in high dimensional spaces. The error is the residual sum of squares, so if a 53

point occurs often in a data set, the error in reproducing it will be multiplied by the 54

number of occurrences of that point, and the algorithm will use it as an archetype, 55

necessarily. It may or may not be an ”extreme” in the data set. Calling Archetypes 56

“extremes” is a muddy issue, and we discuss this in detail for our data set in what follows. 57
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Methods 58

COVID-19 data for Montana, USA 59

For our analysis, we are presented with COVID-19 data from counties (m = 56; i.e., 60

spatial attributes) in Montana, USA, courtesy of Montana Department of Health and 61

Human Services from March 13, 2020 - April 26, 2022. This covers 110 full weeks or 62

n = 776 daily time observations. The first case was observed on March 13, 2020, 63

however, we removed the first 100 days because Montana was following 64

non-pharmaceutical interventions during this time and did not experience the 65

pandemic’s initial wave observed in the rest of the country. Therefore, we analyzed the 66

period from June 20, 2020 – April 26, 2022, resulting in n = 676 observations. During 67

this time period, Montana experienced three peaks in cases followed by declines (i.e., 68

outbreaks or waves). A running weekly average of COVID-19 cases per day were 69

smoothed using the “smoothdata” function within MATLAB (default setting of mean = 70

3) to reduce noise in the time series. Fig. 1 shows the data reported for each county. To 71

account for differences in population size, we weighted the COVID-19 cases for each 72

county by the population size of the county in 2020 (American Community survey data 73

from the Census Bureau) and reported cases per 1000 people in that county. 74

Archetypal Analysis: Mathematical Formulation 75

Consider an m× n matrix X, where n is the number of observations of COVID-19 cases 76

across m Montana counties. AA decomposes the spatio-temporal variability of X in a 77

similar way to PCA but with the following underlying constraints. Given a specified 78

value for k, AA identifies m-dimensional vectors z1, · · · , zk that best describe k 79

characteristic patterns, or archetypes, in the original data set, such that data can be 80

represented as convex combinations (i.e., linear combinations with non-negative 81

coefficients that sums to unity) of these archetypal patterns: 82

zj =
n∑

i=1

βijxi, βij > 0 &
n∑

i=1

βij = 1. (1)

The n-dimensional vector βj contains the convex weights for the jth archetype 83

across all observations. The n× k matrix of all such weights is given by B = β1, · · · , βk. 84

Each archetype is either a convex combinations of the original observations or an actual 85

observation [7], so they are more readily interpreted compared to PCA eigenvectors. All 86

observations can then be approximated by a convex combination of the archetypes: 87

x̂i =
k∑

j=1

αjizj , αji > 0 &
k∑

j=1

αji = 1. (2)

Here, the convex weights, sometimes referred to as mixture coefficients, αji with 88

j = 1, · · · , k range from 0 to 1, are used to reconstruct the ith observation across the k 89

archetypes. The k × n matrix of all such weights is given by A = {α1, · · · , αn}. The αj 90

are like the (nonlinear) projection of the original data X onto the jth archetype zj , 91

similar to PC scores in PCA. Thus the αjs are time series that determine how much of 92

each archetype is used in reconstructing each data point. 93

The m× k matrix Z of k archetypes is defined by the matrix factorization problem:

minA,B∥X−XBA∥, (3)
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where Z = XB. RSS = ∥X−XBA∥ is the residual sum of square errors, where ∥.∥ is 94

the spectral norm. AA seeks to find k m-dimensional archetypes such that the RSS is 95

minimized. This approach is described in detail in [7], but can be summarized as 96

follows: AA uses a convex least-squares method (CLSM) to estimate the coefficient αji, 97

subject to the constraints for given some initial values of βij . It then finds the best βij 98

using CLSM, using the new αji. This process repeats until the RSS fails to improve, or 99

potentially until the maximum number of iterations is reached. AA will find local 100

minimums, not necessarily the global minimum of RSS, hence using several starting βij 101

values to insure a global solution is recommended. Furthermore, there is no universal 102

method for determining the optimal value of k. One commonly used approach is the 103

“elbow” criteria, where a good value of k is selected by when the RSS fails to improve, 104

which can be determined by finding an elbow in the relationship between RSS and k in 105

a scree plot. Since its introduction, other algorithms have been developed to find an 106

archetypal decomposition of data. To compute the archetypes we used Matlab packages 107

by Morten Mørup and Lars Kai Hansen [16] for computing the Principal Convex 108

Hull [2]. Archetypes themselves are presented as color mapped counties within a state 109

map, and are created with GeoPandas (GeoPandas.org). 110

It is noted in [7] that the archetypal points z, viewed as vectors, are not orthogonal 111

and have no natural nesting structure, i.e., as more archetypes are found, the archetypes 112

in the smaller set can change. This is in contrast to PCA, where the set of the leading 113

N principal components are a subset of the set of the leading M principal components 114

for M > N . In PCA all the eigenvectors are found in a single decomposition, and 115

computing it is fast and efficient. This is the result of the linearity of PCA, and it 116

comes at the cost of interpretation. 117

Mutual Information 118

To reduce the dimension of the data set, we apply information-theoretic measures 119

introduced by Shannon [21] to quantify the dependence of the count time series from 120

different counties upon each other. For instance, if a county has a COVID-19 count 121

time series that runs more or less independently of the other counties (as was typical 122

with very small population counties), we could chose to remove them from the data set, 123

thereby reducing the dimension. The exact meaning of “more or less independently” is 124

explored below. 125

Mutual information measures the expected reduction in uncertainty about x that 126

results from learning y, or vice versa, where x and y are samples of the random 127

variables X and Y . This quantity can be formulated 128

I (X;Y ) = H (X) +H (Y )−H (X,Y ) ,

where entropy is defined 129

H (X) = −
∑
x∈X

p (X = x) log2 p (X = x) (4)

and the joint entropy of two random variables X and Y quantifies the uncertainty of 130

their joint distribution. 131

H (X,Y ) = −
∑
y∈Y

∑
x∈X

p (X = x, Y = y) log2 p (X = x, Y = y) (5)

Using Eqs. (4) and (5), the mutual information can be rewritten 132

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2
p(x|y)
p(x)

. (6)
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The mutual information is symmetric in the variables X and Y , I(X;Y ) = I(Y ;X), 133

and is zero if the random variables are independent or if the relation between them is 134

deterministic (nothing to be learned in either case). Note also that if X is statistically 135

correlated to Y , H(X|Y ) will be less than H(X), and I will be greater than 0. If X is 136

independent of Y , H(X|Y ) = H(X) and I = 0. If X is uniquely determined by Y , 137

H(X|Y ) = 0 and I(X;Y ) = H(X). 138

In general, association measures like correlation coefficient or mutual information are 139

used to estimate the relationships between two random variables. Correlation coefficient 140

measures such as Pearson or Spearman entail the assumption of linear dependence. 141

Therefore, if two random variables are associated by a nonlinear relationship these 142

methods fail to detect this link, or the strength will be wrongly estimated. Mutual 143

information, however, is able to detect both linear and nonlinear dependencies, and it 144

measures the amount of information connecting two random variables, in this case 145

between disease cases in two Montana counties. In other words, it estimates the 146

reduction in uncertainty about the COVID-19 activity of one county when the activity 147

of another county is known. 148

Results 149

Archetypal Analysis of 56 Dimension Data Set 150

As mentioned in an earlier section, we normalized the time series by dividing by the 151

population of each county in 2020 and multiplying it by 1000. This seems like a natural 152

step, and indeed it is customary practice, but in a sparsely populated state like 153

Montana (14 of 56 counties have population less than 5000, and 4 have populations less 154

than 1000) it can lead to issues with our decomposition, as we shall demonstrate now. 155

We first apply archetypes to the entire truncated in time data set, which is 676 (m) 156

observations in 56 (n) dimensions. To determine how many archetypes to compute we 157

consider the scree plot, or RSS versus number of archetypes, plotted in 2. To choose the 158

set of the archetype set, the ”elbow criterion” would indicate truncating to one 159

archetype, but this is the “no-disease” archetype that appears in all the decompositions, 160

and serves to turn the counts off and on. Instead, we choose k = 10 archetypes. We are 161

left with a 56 by 10 (n x k) set of β values, and a 10 by 676 (k x m) set of α values. 162

These 10 archetypes are shown in 3 as color-mapped counties in Montana. The color is 163

determined by the β value for that county, for that archetype. Later we refer to high 164

count/large outbreaks as those above 1.5, mid-size outbreaks as between 0.75-1.5, and 165

low level outbreaks as β values below 0.75. Each archetypal map can be thought of as a 166

representation of the spatial features of the outbreak at a given time, or period of time. 167

The information in each archetype are summarized in Table 3. 168

This 10 archetype set is dominated by those with large outbreaks in small 169

population counties. Only two (numbers 8 and 10, Fig. 3 h and j) would be used to 170

represent large outbreaks in the largest population counties (Yellowstone, Missoula, 171

Gallatin, Flathead, Cascade, Lewis and Clark, Ravalli, Silver Bow, Lake and Lincoln). 172

Here the problem with normalizing disease counts by population becomes apparent. 173

Small population counties will have much larger normalized counts on some occasions 174

than all the rest, and these data points are thus outliers. Such small population 175

counties are numerous, and those with population below 10000, in decreasing order from 176

9391 to 434, are: Beaverhead (at 9391), Deer Lodge, Dawson, Stillwater, Madison, 177

Rosebud, Valley, Blaine, Powell, Broadwater, Teton, Pondera, Chouteau, Tolle, 178

Musselshell, Minderal Phillips, Sweet Grass, Sheridan, Granite, Fallon, Wheatland, 179

Liberty, Judith Basin, Meagher, McCone, Powder River, Daniels, Carter, Prairie, 180

Wibaux, Garfield, Golden Valley, Treasure, Pertoleum (at 434). 181
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Table 1. Archetype Composition-All County Set

Archetype Counties in Archetype

1 The zero or “no disease” archetype.

2 Widespread mid-size outbreak across state, largest in small popu-
lation counties.

3 Isolated larger outbreak in Big Horn county, small in Phillips, very
low in the rest.

4 Widespread low mid-size outbreak with a larger outbreaks in Fer-
gus, Valley, and Musselshell counties, and slightly larger outbreaks
in Park, Dawson, and Phillips counties. Note that these are all
low population counties.

5 Very low level counts in all counties except for ten small population
counties scattered all over the state, which have mid-size outbreaks.

6 Widespread mid-size outbreaks, with larger outbreaks in small
population counties, with the exception of Silverbow.

7 Low to mid-size outbreaks in all counties except Big Horn, Cascade,
Glacier, Blaine, Roosevelt, and Rosebud. The last three are very
small population counties.

8 Large outbreaks in the high population counties of Yellowstone,
Missoula and Gallatin, as well as the small population counties of
Deer Lodge, Garfield, Liberty, Mineral, Prairie, and Teton.

9 Mid-size to low outbreaks in all counties except for nine very small
counties which have very large outbreaks (Daniels, Dawson, Fallon,
Powell, Sheridan, Silverbow, Sweet Grass, Toole, Wibaux) .

10 Widespread large outbreaks throughout state, both in large and
small population counties.

The archetype algorithm is strongly affected by outliers, as they will contribute 182

largely to the RSS if not included included in the set. To remove these in a systematic 183

way, we use techniques from information theory in the following section. 184

Reducing Spatial Dimension and Removing Outliers with 185

Information theory 186

As mentioned in the last section, normalizing the data by county population biases the 187

size of the small population counties’ counts inordinately. Archetypal Analysis will 188

choose such outliers in the data set to form archetypes, hence the small counties, with 189

large per capita numbers, can drive the archetypes. In contrast, their time series are the 190

most stochastic, and less likely to have any real predictive relationship with the other 191

counties. To determine which counties should be included in the archetypal analysis, we 192

computed the mutual information between all counties, and ranked counties according 193

to their total mutual information (see also [4]). 194

Following the formulas in section 2, we first created histograms of the time series 195

data for single counties, and joint histograms for each county with all the others. We 196

note that the choice of bin size in these histograms will change the value of the entropy, 197

but by choosing a fixed bin size for all the histograms, it is possible to compare the 198
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measures relative to each other. 199

Accordingly, we calculated the entropy with a uniform bin size and 30 partitions, for 200

each county with respect to all others, creating a 56 by 56 matrix. To determine which 201

counties have the highest MI in total, the MI row/column for each county is summed 202

and ordered, to create the graph shown in Fig 4. 203

We choose the 17 top MI counties (see Fig.s 5 and 6) to analyze, as there is no clear 204

elbow criterion except for removing the 2 very smallest population counties. Taking 17 205

includes all the large population center counties, and the smaller population counties 206

that have larger MI. We also consider a smaller set of the the 10 largest population 207

counties in the state in our analysis in the next section. Their populations, in 208

alphabetical order, are: Cascade (81366), Flathead (103806), Gallatin (114434), Lake 209

(30458), Lewis & Clark (69432), Lincoln (19980), Missoula (119600), Ravalli (43806), 210

Silverbow (34915) and Yellowstone (161300). We note that the counties can be grouped 211

into rough geographic subregions, where they are connected by state and/or Interstate 212

highways, each with one major city or town. These are noted in Table 2. 213

Table 2. Top Counties Grouped into Geographical Regions

Region Counties in Region
Northwest Lincoln (Libby), Flathead (Kalispell), Lake (Polson)
North Central Lewis & Clark (Helena, state capital), Cascade (Great Falls)
Southwest Missoula (Missoula), Ravalli (Hamilton)
South Silverbow (Butte), Gallatin (Bozeman), Yellowstone (Billings)
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Archetypal Analysis of the maximal MI (17 County) Data Set 214

Archetypal analysis is used to decompose the COVID-19 counts into a limited number 215

of spatial patterns over the set of the 17 high mutual information counties, and the 216

reconstruction time series in terms of this set of patterns. Computing archetypal sets 217

with increasing numbers gives Fig. 7, the residual sum of squares (RSS) for each set 218

from 1 archetype to 20, and illustrates the drop-off in the error as the number of 219

archetypes is increased. Note that the largest drop in RSS occurs after the first 220

archetype, which, as mentioned earlier, captures the “no flu” state. Beyond that, the 221

RSS declines more slowly to near zero as the number grows larger than about 15, as 222

expected. 223

Using an elbow criterion on the scree plot to determine a cut-off, we choose 9 224

archetypes for the decomposition. We also examined an 8 archetype decomposition, and 225

found that these 8 are included in the 9 archetype set. The additional archetype is 226

archetype 2; a general widespread outbreak archetype, which should be included. 227

Accordingly, we are presenting this 9 archetype set in our analysis here. See figure 8 for 228

color maps of the archetypes. Each county is colored according to the β value it has for 229

that archetype. Note that high β values are considered those greater than 1.5, mid-size 230

are between 0.75 and 1.5, low are below 0.75. These values multiply the alpha values in 231

the time series to give the data reconstruction. The 9 archetype set gives a good 232

separation of the different outbreaks into distinct groups of archetypes, described below. 233

As the sum of the alpha time series is equal to 1 for each data point, it is fair to 234

ignore one archetype; its alpha time series can be calculated from the remaining. We 235

choose to ignore the zero archetype when analyzing in detail the anatomy and sequence 236

of an outbreak, as it serves to turn the epidemic “off”. We further classify archetypes 237

1-9 in Table 3. Note that high β values are considered those greater than 1.5, mid-size 238

are between 0.75 and 1.5, low are below 0.75. These values multiply the alpha values in 239

the time series to give the data reconstruction. 240
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Table 3. Archetype Composition-Maximal MI County Set

Archetype Counties in Archetype

1 The zero or “no disease” archetype.

2 Widespread low outbreak across state.

3 Widespread low outbreak with a concentration of a higher level of
cases in Cascade and Flathead counties.

4 Mid-size over all, larger in Lincoln in the northwest, Hill in the
north and Custer in the east.

5 Mid-size outbreaks overall, with larger outbreaks in Powell and
Dawson.

6 Low level outbreaks in all counties except in Gallatin, which is
high.

7 Mainly widespread outbreak, with lowest levels in Lincoln, Lake,
Missoula, Ravalli, Lewis and Clark, Jefferson and Silverbow coun-
ties. Mid-size outbreaks in Flathead, Powell, Beaverhead, Cascade,
Gallatin, Fergus, Yellowstone, Custer and Dawson. Larger out-
break in Hill.

8 Mid-size to very high level outbreaks over all. Largest in Gallatin,
and large in Missoula, Lewis and Clark and Cascade counties.
Powell and Silverbow have the next largest number of cases, then
Yellowstone and Hill. The rest have more moderate size outbreaks.

9 Mid-size outbreaks in the contiguous region made up of Flathead,
Lake, Missoula, and Lewis and Clark counties, with a large out-
break in adjacent Cascade county, and a mid-size outbreak in Hill
county. The remaining counties have low mid-size outbreaks.

The archetypes separate out clusters of counties which have simultaneous outbreaks 241

(spatial), and the alpha’s give the sequence in which the outbreaks occur (temporal). 242

The alpha time series indicate when each archetype is active in the time series. In Fig 9 243

we show how the 9 archetypes are present almost uniquely during the different 244

outbreaks. The first outbreak is captured by archetype 7, 5 and 2, in that order. The 245

Spring/Summer 2020 low outbreak is captured by archetypes 6 and 3, the Delta 246

outbreak by 4 and 2, and finally the Omicron outbreak by 6, 8, 9 and 3. There are 247

small contributions from other archetypes in each, e.g. archetype 2 is a low widespread 248

outbreak, and is present at the end of the first outbreak and the Delta outbreak. 249

Archetype 6 and 3 are present in the Spring/Summer outbreak, and to a lesser degree in 250

the Omicron outbreak. These results suggest a different spatio-temporal spread during 251

each outbreak. 252

The first outbreak begins with low counts except in Hill county (archetype 7), 253

spreading to the central counties of Cascade and Fergus, along with Gallatin, whilst 254

growing in the eastern counties of Custer and Dawson (archetype 5). It is largest in 255

Powell, and mid-size in the rest of the western counties. The outbreak dies down to 256

low-levels in all counties at the end (archetype 2). This outbreak thus spreads from the 257

northern border of the state, to a mid-size outbreak in the central and eastern counties. 258

The outbreak is mid-size in the west, with the exception of Powell, Silverbow and 259

Gallatin, which are linked by I15 from Deer Lodge to Butte to Bozeman. 260

After that, in Spring/Summer archetype 6 shows declines in counts in all counties 261
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except Missoula and a large outbreak in Gallatin, then archetype 3 represents a further 262

decline in counts in all counties except Cascade and Flathead, where a small increase 263

occurs. The summer outbreak is mainly a sharp increase in cases in Gallatin county, 264

represented again by archetype 6. 265

The Delta outbreak begins with largest counts in Lincoln (far northwest corner of 266

the state) and Custer (far east side of the state), and mid-size elsewhere (archetype 4). 267

Larger counts are also found in Hill, Yellowstone, Cascade, Lake and Beaverhead. The 268

outbreak appears to spread in from the east and northwest. Then the transition to 269

archetype 2 means a decline in all county counts except Dawson. Note that no other 270

outbreaks use archetype 4. 271

The Omicron outbreak uses the most archetypes, beginning with a larger outbreak 272

in Gallatin (archetype 6), to large counts in all counties, and a further increase of 273

counts in Gallatin (archetype 8). Then a decline in Gallatin counts occurs with declines 274

in all counties except Cascade (shown in archetype 9). It ends with low level outbreaks 275

everywhere except Cascade and Flathead which are low mid-size (archetype 3). The 276

outbreak follows a path from the initial outbreak in Gallatin county to a large outbreak 277

in the central and western large population counties of Missoula, Lewis and Clark, 278

Cascade, Powell and Silverbow, and east to Yellowstone. Then while these counties 279

experience a decline in flu counts, there is a late surge in cases in Cascade, before all 280

decay at the end of the outbreak. 281

This analysis is confirmed by comparing it with the time series of the counties 282

during each outbreak, see Fig 10. This figure shows flu counts in the counties with 283

significant contributions to different outbreaks, for comparison with the archetypal 284

description above. We see that the flu initially appears in Hill county followed by Powell 285

(represented by archetype 7), after which it spreads to a larger outbreak overall, with 286

largest numbers in Powell, Silverbow and Dawson counties, represented by archetype 5. 287

The last stage is characterized by large counts in Gallatin county, mid-size in Silverbow, 288

Yellowstone, Lewis and Clark and Missoula counties, and smaller in the rest (seen in 289

archetype 2). The smaller outbreak in summer 2020 is captured by archetype 6 and 3, 290

with largest counts in Gallatin county followed by larger counts in Cascade and 291

Flathead counties. The Delta variant outbreak begins in September, with archetype 4, 292

switching to archetype 2. Archetype 4 is large in Lincoln, Custer, Hill and Beaverhead 293

counties, and 2 is a widespread outbreak which is largest in Dawson county. We see in 294

the count time series that Lincoln and Custer do dominate initially, with Hill and 295

Beaverhead also larger. As Lincoln and Custer counts decline, Dawson emerges. The 296

Omicron outbreak begins in December with archetype 6, switching to 8, then 9, then 3. 297

This reflects the initial large case numbers in Gallatin county, followed by widespread 298

outbreak with large counts also in Missoula, Cascade, and Lewis and Clark counties, 299

then to large counts in Cascade (archetype 9) and finally decaying in all counties except 300

Cascade and Flathead (archetype 3). 301

Archetypal Analysis of High Population Center Set 302

We next consider the counties with large population centers. In decreasing order of 303

population they are: Yellowstone (161300), Missoula (119600), Gallatin (114434), 304

Flathead (103806), Cascade (81366), Lewis and Clark (69432), Ravalli (43806), 305

Silverbow (34915), and Lake (30458), Lincoln (19980). The time series for each is 306

plotted in Fig 11. 307

Fig 12 shows the residual sum of squares (RSS) for each truncation from 1 archetype 308

to 20. For this analysis we choose a truncation to 6 archetypes, which captures roughly 309

98% of the variance. Thus, we have reduced the dimension of the data set from 10 to 6, 310

or really 5, because the alpha time series must sum to one at each time point. 311
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In Figure 13 we show color maps of each archetype. Again, the archetypes are 312

ordered according to the overall size of their contribution to the reconstruction. The 313

alpha time series (Figure 14) show when each archetype is active in the time series. We 314

classify archetypes 1-6 in Table 4. 315

Table 4. Archetype Composition-Large Population County Network

Archetype Counties represented in Archetype

1 The zero or “no disease” archetype.

2 Mid-size overall, with larger counts in Lincoln.

3 Low level outbreak overall, with mid-size outbreaks in Cascade
and Flathead.

4 Mid-size outbreaks overall. Flathead, Lewis & Clark, Cascade
and Gallatin form a set of counties with larger counts on a major
transportation corridor. The largest counts are seen in Silver Bow
county

5 Mid-size overall, with largest outbreak in Gallatin, followed by
Missoula, Silver Bow and Yellowstone counties. Lewis & Clark
and Cascade have the next highest level of outbreak, and the rest
are in low mid-level outbreak.

6 Large outbreaks in the west central counties of Cascade, Lewis &
Clark and Missoula, with high mid-size outbreaks in the southern
counties of Silver Bow, Gallatin and Yellowstone. The northwest
corner counties of Lincoln, Flathead and Lake have mid-size out-
breaks, with Ravalli county in the southwest corner with a low
mid-size outbreak.

As in the largest total MI data set, each archetype is almost uniquely identified with 316

one of the major outbreaks. Archetype 4 (Cascade, Flathead, Gallatin, Lewis & Clark, 317

Silverbow) peaks during the first outbreak, archetype 2 (Cascade, Lake, Lewis & Clark, 318

and Yellowstone) during the Delta outbreak. Archetypes 5 (Gallatin, Missoula), 6 319

(Cascade, Missoula, Lewis and Clark) and 3 (Cascade and Flathead) illustrate 3 320

different phases in the Omicron outbreak. These archetypes also make contributions to 321

the shoulders of the major outbreaks, and 3 and 5, at low levels, are used to represent 322

the summer 2021 isolated low level outbreak. 323

In the initial outbreak Gallatin, Cascade and Flathead counts rise first, which are 324

contained in archetype 3, then replaced by archetype 4, which reflects a widespread 325

outbreak with a larger component in Silver Bow county in late November 2020. This is 326

the dominant archetype for the initial outbreak. The declining outbreak in January is 327

captured by archetype 2 and 5 (widespread lower level outbreak, with a larger 328

component in Gallatin) followed by archetype 4 again in February (fig 15 a) The 329

spring/summer persistent outbreak is represented by low level archetype 5 switching to 330

low level archetype 3, giving a rise in Cascade county followed by a rise in Gallatin 331

county, with low level outbreak in other counties (see fig 15 b)). The fall 2021 Delta 332

outbreak is initiated with low alpha 3 transitioning to large alpha 2, as it begins in 333

Cascade and Flathead counties, then spreading to all counties with a larger component 334

in Lincoln. Archetype 2 is thus the dominant archetype for the Delta outbreak. It ends 335

as alpha 2 declines and alpha 6 rises, reflecting the decline in Lincoln counts and the 336

growing counts in all other counties, especially the counties with major cities, Missoula 337

(Missoula), Gallatin (Bozeman), Yellowstone (Billings), Cascade (Great Falls) and Lewis 338
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& Clark (Helena, state capital). The Omicron outbreak in late December begins with 339

large counts in Gallatin (archetype 5) and switches to large counts in all other counties 340

(archetype 6). It ends with significant counts in Cascade and Flathead, but low 341

elsewhere, hence the rise of archetype 3. The sequence of three archetypes in the 342

Omicron outbreak reflects various anti-covid measures put in place during that time 343

period. 344

March 5, 2023 12/18

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 9, 2023. ; https://doi.org/10.1101/2023.03.06.23286886doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.06.23286886
http://creativecommons.org/licenses/by/4.0/


Discussion 345

We have seen how archetypal analysis can be used to good effect in studying a 346

spatio-temporal data set of COVID-19 counts in Montana. Decomposing the entire data 347

set was problematic, however, because of the large size of the normalized counts in small 348

population counties. These small population counties (down to less than 500) have very 349

stochastic signals, and normalized they dominate in the creation of archetypes, which is 350

sensitive to outliers [7]. Hence, we sought ways to remove the stochastic signals of the 351

small population counties. A straight-forward truncation to large population counties 352

with significant city centers formed one reduced set, but we also wanted a way to 353

include the small counties that had significant interaction with the others. To do this, 354

we used a Mutual Information (MI) measure between time series of different counties. A 355

high (relative) MI indicates that a county’s time series can be better predicted by 356

considering the other, and vice versa. We computed the MI between each county and all 357

the others, adding all together for each county to create a total MI, which can be 358

visualized as a spectrum. From this we chose those with the highest total MI, and 359

included all the large population counties, for analysis. 360

For each presentation of the data, the first archetype is necessarily the zero 361

archetype, which is used to turn off the outbreak in the decomposition of the data. In 362

the 17 county high total MI set we found that certain archetypes were tied uniquely to a 363

given outbreak, while one archetype was used to represent low-level counts in between 364

outbreaks (archetype 2). The initial outbreak was captured by archetypes 5 and 7, 365

which showed a spread from the north central border with Canada and the nascent 366

outbreak in Powell county, to the spread from Powell to the surrounding western 367

counties and from Hill to the eastern counties. Archetype 6 was represents the summer 368

2020 outbreak which occurred largely in Gallatin county, along with archetype 3, 369

indicating the spread to Cascade county. The Delta outbreak is initialized in archetype 370

4 which shows counts both in the northwest (Lincoln county), and the far east of the 371

state (Custer county), and ends with archetype 2, which has low-level counts in most 372

counties. The Omicron outbreak was the most complex, as the counts grew and 373

declined several times in different parts of the state, most likely reflecting the reduction 374

in mitigation strategies combined with social gatherings, such as year-end holiday 375

events, and the reconvening of schools in January. COVID-19 first appears in Gallatin 376

county (with its internationally known and large recreational ski area), represented by 377

archetype 6. It then spreads north (Lewis and Clark, Cascade, Hill), east (Yellowstone) 378

and northwest to Missoula, Powell, Lake, Lincoln and Flathead counties, all of which 379

are represented in archetype 8. After that counts decline in many of these counties, 380

lingering more in some counties than others, with a notable late outbreak in Cascade 381

county, hence the later appearance of archetype 9. Finally, it ends with further decline 382

in all counties, with Cascade and Flathead behind the rest, seen in archetype 3. 383

The 17 county data set shows the influence of small population counties on the 384

eastern and northern border of the state on the initiation and spread of the virus. 385

However, because of of the stochastic signal within small counties and their contribution 386

to outliers in the AA results, we compare this to the Archetypal decomposition of the 10 387

large population counties data set. It shows the same progression of the epidemic as in 388

the 17 county set, restricted to the high population counties. Archetype 4 for the 10 389

county data set is similar to archetype 5 in the high total MI set without the low 390

population counties, and both are the main component of the first outbreak. In the 391

Delta outbreak Archetype 2 in the 10 county set is similar to archetype 4. In the 392

Omicron outbreak, Archetype 5 is similar to 8 in the high total MI set, archetype 6 is 393

similar to 9, and archetype 3 to 3. This nesting structure is to be expected, and 394

confirms the validity of the results. 395

In the 17 county set we see that Archetypal Analysis finds archetypes of counties 396

March 5, 2023 13/18

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 9, 2023. ; https://doi.org/10.1101/2023.03.06.23286886doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.06.23286886
http://creativecommons.org/licenses/by/4.0/


involved in large outbreaks first, as not including them contributes a sizable amount to 397

the RSS. Therefore, an outbreak may follow a pattern of a low-level outbreak archetype 398

before any hot spots occur, to an archetype with large counts in some selection of 399

counties, perhaps followed by another archetype with another configuration, ending 400

with another low level archetype. The clusters of large outbreak counties is revealed 401

automatically in the analysis, for instance in the initial outbreak a hot-spot in Hill 402

county and larger counts in Powell county spread to all eastern counties and the western 403

side of the state. 404

How an Archetypal decomposition can be used predicting the spatial spread of 405

disease over time could be explored further. For instance, the information from the 406

Archetypal decomposition could be compared with future outbreaks. Do the outbreaks 407

follow similar spatial patterns? If an outbreak begins in a county that features largely in 408

one archetype, would this imply spread to other counties that have high counts in that 409

archetype? Flathead, Lewis and Clark and Cascade counties have similar outbreak levels 410

in several of the archetypes, which is not surprising, as they are linked by major state 411

roads and have larger population cities, but the analysis confirms that these connections 412

are important. In the east, further analysis could be done focusing on all of the counties 413

in this region to determine how COVID-19 spreads west if initiated in the east. The 414

alpha time series would be used in this analysis, as it represents the transitions from one 415

spatial pattern to another, and holds all time dependent information of the data. 416

We close by commenting on the care that must be used in the creation and analysis 417

of the archetypes. They have the advantage of automatically showing the counties that 418

experience simultaneous outbreaks, and the state of the other counties during these 419

time periods. Understanding the archetypes is intuitive, unlike graphical representations 420

of PCA vectors. However, if outliers are present in the data (like the inflated counts 421

from small population counties), they can bias the selection of the archetypes. This can 422

be mitigated by filtering out these data points, as we did using an information measure 423

between time series. In doing so we retained the small population counties that were 424

important in the initiation of the outbreaks, as they lie largely on the northern and 425

eastern sides of the state. 426
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Figure Captions 433

Fig 1. Montana County Cases. Running weekly average of COVID-19 cases plotted
for all Montana counties.

Fig 2. Scree plot. Residual sum of squares vs. number of archetypes in the set.

Fig 3. Ten Archetype set for all 56 counties. Presented as color-coded counties in
the map of Montana. The first archetype [a] is nearly zero, as it captures the “no
disease” state, and acts to “turn-off” the infection/spread in each county. The rest are
in order: [b] archetype 2, [c] archetype 3, [d] archetype 4, [e] archetype 5, [f] archetype 6,
[g] archetype 7, [h] archetype 8, [i] archetype 9, [j] archetype 10. Note that high β
values are considered those greater than 1.5, mid-size between 0.75 and 1.5, and below
0.75 as low.

Fig 4. Total Mutual Information: all counties. Total mutual information (y-axis)
across all counties in increasing order.

Fig 5. Total Mutual Information: top 17 counties. Total mutual information
across top 17 MI counties in increasing order.

Fig 6. Time Series of Flu Counts. Case number time series for the 17 highest MI
counties

Fig 7. Scree plot. Residual sum of squares vs. number of archetypes being computed
for the High MI County Set.

Fig 8. Nine Archetype set for the High MI County Set. Presented as
color-coded counties in map of Montana. The first archetype is not included, as it
captures the “no flu” state, and acts to “turn-off” the flu in each county. The rest are
presented in order: [a] Archetype 2, [b] archetype 3, [c] archetype 4, [d] archetype 5, [e]
archetype 6, [f] archetype 7, [g] archetype 8, [h] archetype 9. Note that high β values are
considered those greater than 1.5, mid-size are between 0.75 and 1.5, low are below 0.75.

Fig 9. Alpha time series for the 9 archetype decomposition of the 17 county
set. Bars across top are color-coded to show the dominant archetype during that time
period.

Fig 10. Time series of flu counts. Counties with significant contributions to the
different outbreaks: Initial, Spring/Summer, Delta and Omicron (from the 17 county
data set).
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Fig 11. Time Series for the Large Population County Set.

Fig 12. Scree plot. Residual sum of squares vs. number of archetypes being
computed for the Large Population County Set.

Fig 13. Six Archetype set for the Large Population County Set. Presented as
color coded counties in Montana. Again, the first archetype is not included, as it
captures the “no disease” state, and acts to “turn-off” the flu in each county. The rest
are in order: [a] archetype 2, [b] archetype 3, [c] archetype 4, [d] archetype 5, [e]
archetype 6.

Fig 14. Alpha time series. The 6 archetype decomposition of the 10 county set. Bars
across top are color coded to show the dominant archetype during that time period.

Fig 15. Time series for major component counties in the archetypes featured
in different outbreaks. 10 county set.
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