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Abstract: 
 
Globally, every year about 11% of infants are born preterm, defined as a birth prior to 37 weeks of gestation, 
with significant and lingering health consequences. Multiple studies have related the vaginal microbiome to 
preterm birth. We present a crowdsourcing approach to predict: (a) preterm or (b) early preterm birth from 9 
publicly available vaginal microbiome studies representing 3,578 samples from 1,268 pregnant individuals, 
aggregated from raw sequences via an open-source tool, MaLiAmPi. We validated the crowdsourced 
models on novel datasets representing 331 samples from 148 pregnant individuals. From 318 DREAM 
challenge participants we received 148 and 121 submissions for our two separate prediction sub-challenges 
with top-ranking submissions achieving bootstrapped AUROC scores of 0.69 and 0.87, respectively. Alpha 
diversity, VALENCIA community state types, and composition (via phylotype relative abundance) were 
important features in the top performing models, most of which were tree based methods. This work serves 
as the foundation for subsequent efforts to translate predictive tests into clinical practice, and to better 
understand and prevent preterm birth. 
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Introduction 
 
Preterm birth (PTB) is the leading cause of infant morbidity and mortality worldwide. Globally, every year 
approximately 11% of infants every year are born preterm, defined as birth prior to 37 weeks of gestation, 
totaling nearly 15 million births1. In addition to the emotional and financial toll on families, preterm births 
result in higher rates of neonatal death, nearly 1 million deaths each year, and long-term health 
consequences for some children2. Infants born preterm are at risk for a variety of adverse outcomes, such 
as respiratory illnesses, cerebral palsy, infections, and blindness, with infants born early preterm (i.e., before 
32 weeks) at increased risk of these conditions3. Thus, the ability to accurately identify women at risk for 
PTB is a first step in the development and implementation of treatment and prevention strategies. Currently, 
available treatments for pregnant women at risk of preterm delivery include corticosteroids for fetal 
maturation and magnesium sulfate provided prior to 32 weeks to prevent cerebral palsy2. Progesterone 
supplementation may also be administered as early as the second trimester to reduce the risk of PTB4. 
 
There are several known factors associated with PTB, including history of PTB, a short cervix, extremes of 
maternal age and body mass index (BMI), low socio-economic status, smoking, and genetic 
polymorphisms5–11. Nevertheless, there are currently no clinical tools that enable the early and reliable 
assessment of the risk of preterm birth for an individual12,13. Machine learning (ML) modeling has 
demonstrated potential to aid in the determination of individuals at risk of conditions and diseases across 
medical domains14–16. By applying ML methods to large amounts of heterogeneous data, patterns in data 
can be discerned that would be otherwise difficult for humans to distinguish. Moreover, deducing which 
features contribute most to the predictive performance of an ML model allows for the identification of 
biomarkers that can be important for a condition or disease. There are a variety of ML algorithms that can 
be used individually, or combined into an ensemble approach to improve prediction performance. After ML 
modeling has been applied to and optimized on a training dataset, then the  model is ideally tested on an 
independent dataset to assess how well the model is able to generalize to data it has never seen before17. 
The validation on independent data is a critical step to guard against overfitting and hence optimistically 
biased accuracy estimates . In the past several decades, applications of machine learning approaches to 
various types of clinical, molecular, and other data have been explored to predict complications of pregnancy 
including preterm birth18–23. The results of these works to date demonstrate that the prediction of PTB from 
varied data types including metabolites in amniotic fluid and maternal blood and urine, ultrasound images, 
and electronic health records, appears to be feasible to a certain extent. In 2019, a DREAM (Dialogue for 
Reverse Engineering Assessments and Methods) Challenge was organized to harness the power of 
crowdsourcing and engage the computational biology community to develop and apply machine learning 
models to maternal blood multi-omics data for the determination of gestational age at time of blood draw 
and prediction of spontaneous PTB24. Tarca et al.24 demonstrated that models based on the maternal blood 
transcriptome were able to significantly predict a subset of spontaneous PTBs (preterm prelabor rupture of 
the membranes) while spontaneous preterm labor and delivery was significantly predicted by the plasma 
proteome. For both outcomes, the sample closer to delivery was more informative than earlier samples. 
 
Although the sources of some data to which ML algorithms can be applied are more difficult to obtain, such 
as blood and amniotic fluid which involve procedures that require technical expertise and puncturing through 
skin and other anatomical structures that may introduce infection or cause pain, vaginal microbiome samples 
can be collected relatively more easily by clinicians as well as by patients themselves25. There is some 
indication that the vaginal microbiome is associated with adverse pregnancy outcomes, specifically PTB. 
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Previous studies have shown that there are significant differences between the vaginal microbiome of 
patients who deliver at term and those who deliver prematurely. Vaginal microbiomes with increased 
diversity as well as communities where Lactobacillus is not dominant were more frequent in patients with 
PTB26–28. Therefore, the vaginal microbiome is a tempting source of data to use for predictive modeling of 
PTB. However, there are significant biological and technical challenges to using microbiome data for 
predictive modeling. Biologically, human-associated microbiomes (including the vaginal microbiome) are 
incredibly variable–with any two individuals typically sharing less than half of microbes29. Thus, microbiome 
data, particularly compositional microbiome data, is both highly dimensional (typically 10 to 100 times more 
features than biological replicates being observed) and sparse (most features are observed in few biological 
replicates). These microbiome data attributes contribute to a substantial risk of model overfitting. Meta-
analysis as well as rigorous evaluation of models on independent validation data is a robust approach to 
contend with these biological challenges with microbiome data. However there are significant technical 
challenges in aggregating and combining microbiome data across studies, therefore there have been few 
studies taking on this task30–32. In previous work, we have shown that by aggregating microbiome data across 
several studies we can gain significant statistical power to show that higher diversity is associated with PTB 
especially in the first trimester of pregnancy and to identify several novel microbial associations33. While ML 
approaches have been applied to the vaginal microbiome, most have involved a single dataset with limited 
sample size34–36. One recent work explored the application of ML to 12 vaginal microbiome datasets to 
predict PTB; however, while they leveraged public data extensively to ensure their findings were robust 
across studies, their work did not include an independent validation dataset30. Moreover, their work involved 
a single approach - a random forest ML model - with predictive accuracy for PTB ranging from 0.28 to 0.79.  
We hypothesized that applying advanced computational and machine learning techniques to aggregated 
microbiome data across many diverse studies could be used successfully for identification of women at risk 
of delivering preterm, including against independent validation data unavailable to the models in the training 
phase. 
 
Building on the groundwork laid by the 2019 Preterm Birth Transcriptome Prediction DREAM Challenge24, 
we designed a new Challenge aimed at leveraging longitudinal microbiome data and crowdsourcing for 
prediction of (i) preterm or (ii) early PTB. DREAM Challenges define the prediction task, supply the 
necessary data, and provide the infrastructure to evaluate models designed by any participating teams; they 
do so in an unbiased manner using a gold-standard, undisclosed validation dataset. The Challenges are 
international, open science efforts to identify the best predictive models. Here, we provide the results from 
the Preterm Birth Microbiome Prediction Challenge, along with top models, and insights gained from this 
initiative. The dockerized code for all predictive pipelines are made available along with data used in the 
challenge at: http://www.synapse.org/preterm_birth_microbiome. This work can serve as the foundation for 
subsequent endeavors to better understand the mechanisms underlying PTB and early PTB, to translate 
into clinical practice predictive tests to help identify women at risk of delivering preterm, and to discover 
interventions for prevention of PTB. Likewise, we believe this is a robust scientific approach suitable for 
predictive modeling of other conditions based on microbiome data. 

Results 
Overview 
The overall timeline of the Microbiome PTB DREAM challenge is shown in Figure 1. Major milestones 
included developing and harmonizing the training data, opening of the challenge to participants, post-hoc 
integration and harmonization of the validation data, assessment of models, and finally evaluation of the 
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approaches and results. We leverage data across 9 studies including over 3,500 samples and utilized 
crowdsourcing to identify best predictive strategies and models for prediction of PTB. The endpoints of the 
challenge included PTB (delivery before 37 weeks of gestation) and early PTB (delivery before 32 weeks of 
gestation).  
 
Data Aggregation and Processing 
The training dataset was constructed by aggregating and processing vaginal microbiome data from the 
public domain leveraging resources including dbGAP37 as well as MOD Database for Preterm Birth 
Research38. The final dataset included data from nine studies, representing 3,578 samples from 1,268 
individuals. Of these patients, 851 delivered at term and 417 preterm (before 37 weeks of gestation) 
including 170 whose deliveries were early preterm (before 32 weeks of gestation). Details of the nine studies 
that were included in the training set are shown in Table 1. Supplementary Figure 1 illustrates the sampling 
strategies for each of the datasets, showing that some studies (like I and J) collected samples only once 
during gestation, while in most other studies samples were collected multiple times during gestation from 
the same individual. As shown in Table 1, while all of these studies focus on profiling the 16S rRNA gene, 
primers targeting different variable regions of the 16S rRNA gene, PCR conditions, and sequencers all 
varied. The combination of microbiome data from different studies, particularly those using different 
underlying techniques, is a challenging task which has hindered prior efforts for meta-analysis of microbiome 
data. Likewise, integration of newly sequenced microbiome data ad hoc into an existing set of features is 
another barrier to the practical use of microbiome-trained predictive models. This was evident when we 
generated our first ordination of the training and validation data based on raw sequence reads, all 
preprocessed with DADA2 into amplicon sequence variants (ASVs), where specimens clustered more by 
the underlying technique (Figure 2a), such as primer selection, variable regions amplified, and sequencing 
platforms used. Thus, we first focused on harmonizing the microbiome data from the nine studies that 
comprised our training set into a common set of features that were not reliant upon taxonomy, but instead 
based on phylogenetic placement of the ASVs onto a common de novo maximum likelihood phylogenetic 
tree comprised of full-length 16S rRNA alleles. This approach is fully described and validated elsewhere, 
and was implemented as a Nextflow-based workflow called MaLiAmPi39. After processing with MaLiAmPi, 
we were able to overcome most of the technique-based noise and successfully harmonize the data into one 
cohesive feature set.  As seen in Figure 2b, phylogenetic placement resulted in Shannon alpha diversity 
measures that were consistent across the majority of the studies after processing with MaLiAmPi, although 
study F did have higher diversity across the samples. The separation between samples by outcome–from 
term, preterm, and early preterm deliveries–is not clearly evident (Figure 3a and b). There are some distinct 
differences observed with respect to community state types (CSTs) and outcome (Figure 3c and 
Supplementary Figure 3). Leveraging different types of microbial features including phylotype relative 
abundance, diversity measures as well as CST membership provide a unique opportunity to apply ML 
techniques to these data for PTB prediction. Additional dimensionality reduction plots demonstrating the 
successful integration of the data, colored by trimester of collection and demographic features, are 
presented in Supplementary Figure 2. 
 
To build an independent test set for evaluating the models submitted by participants in this DREAM 
challenge, we combined an unpublished dataset from Wayne State University consisting of 159 samples 
across 60 individuals among whom 40 (66.7%) had term deliveries and 20 (33.3%) had preterm deliveries, 
including 5 (8.3%) who had early preterm deliveries. Most patients in this test set had three longitudinal 
samples. We also generated a second validation dataset that comprised 172 vaginal microbiome samples 
from 88 individuals, up to three samples (one sample per trimester) for each individual, with 48 individuals 
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(54.5%) having term deliveries, and 40 individuals (45.5%) having preterm deliveries including 8 (9.1%) 
having early preterm deliveries. DNA extraction, V4 16S rRNA gene library preparation, and 16S rRNA gene 
sequencing (2x150 Paired-End sequencing on the Illumina NextSeq platform) of these samples was 
performed by the UCSF Benioff Center for Microbiome Medicine, with most samples yielding over 100,000 
reads (see Methods for details). Supplementary Figure 1 represents the week of gestation for the sample 
collection times for each individual from the two test datasets. These validation datasets became  available 
only after the training dataset was generated and distributed to teams. Thus, the resultant reads had to be 
integrated into the same feature set as in the training data post-hoc. Using MaLiAmPi, we were able to  first 
generate the training data, preserving the features (e.g., phylotypes, alpha diversity, etc.) (Figure 2a, B) and 
further integrate the validation datasets.  The generalizability of these features across studies, including new 
study data, has allowed us to apply the ML models to these independent validation sets, and enable the use 
of the model on data to be generated in the future. 
 
The DREAM Challenge Results 
The Preterm Birth Microbiome Prediction DREAM Challenge launched on July 5, 2022 (Figure 1) and closed 
on September 16, 2022. There were two sub-challenges for this challenge: sub-challenge 1 - Prediction of 
PTB (before 37 weeks of gestation) and sub-challenge 2 - Prediction of early PTB (before 32 weeks of 
gestation). The validation dataset for this second sub-challenge included only data from samples collected 
no later than 28 weeks of gestation (to reduce trivial predictions based upon later-in-gestation specimens 
being available from a pregnancy).  A baseline ‘organizers’ random-forest based model was developed with 
the training data to provide participants an example, inclusive of packing of the model within a docker 
container. Performance metrics that were used to evaluate the prediction models submitted by the teams 
include area under the receiver operator characteristic (AUROC) curve, area under the precision-recall 
(AUPR) curve, accuracy, sensitivity, specificity and Matthews Correlation Coefficient (MCC). All values were 
determined on bootstrapped validation data, with the mean bootstrapped value used to evaluate the model. 
The primary scoring metric was set at the onset to be AUROC, followed by AUPR to break ties. 
  
There were 318 participants from all over the world with 136 and 110 submissions for sub-challenges 1 and 
2, respectively. The prediction models with top-ranking submissions achieved mean bootstrapped AUROC 
scores of 0.688 and 0.868 respectively for the 2 sub-challenges (Figure 4, Supplementary Tables 1 and 2). 
Several techniques were carried out in order to ensure the robustness of the resulting rankings including 
test set label inversion, bootstrapping, oversampling, and undersampling (see Methods). The results are 
shown in Supplementary Figures 4 (sub-challenge 1) and 5 (sub-challenge 2). 
 
A few patterns emerged in the best-performing predictive models for sub-challenge 1 (Table 3) and sub-
challenge 2 (Table 4). Nearly all of the models used tree-based approaches (typically implemented as part 
of the python Scikit Learn40 package), such as random forest and relatives. A few models used regression 
approaches with inclusion of gestational age at sampling (with feature pruning and clustering), or neural 
networks. All of these modeling approaches are notable for their aggressive pruning or consolidation of 
features well-suited for handling both sparse and highly dimensional data. Therefore, avoiding overfitting 
the training data was a shared and likely essential attribute of the best-performing models. 
 
Predictive Features:  
Next we focused on identifying common features that the best performing models (as judged by mean 
bootstrapped AUROC, one model per team) relied upon to make their predictions. We used feature 
permutation (limited to models that could make a prediction in a tractable time) as a means of empirically 
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identifying the feature tables and individual features that the models depended upon for their predictions. 
For both sub-challenges, the best performing models relied upon alpha diversity, VALENCIA community 
state types, and some form of composition (either phylotypes or taxonomy) (Figure 5). There was a 
preference for phylotypes over taxonomy for the very best performing models for both sub-challenges .  
 
We used feature permutation to first identify features used by the top-performing predictive models in sub-
challenge 1 (Figure 6a), and then proceeded to establish the univariate relationship with PTB stratified by 
trimester. A surprising number of phylotypes (at a phylogenetic distance of 0.1) were significantly associated 
with PTB in the second trimester (Figure 6a) when analyzed as present-absent and assessed with a Fisher’s 
exact test and contingency table after summarizing each pregnancy by trimester (to address repeated 
sampling in some of the underlying studies). As would be expected, Lactobacillus species generally were 
negatively associated with PTB. Curiously, one Lactobacillus jensenii-like phylotype is positively associated 
with PTB when present in the second trimester. Likewise, in the third trimester, two distinct Lactobacillus 
were more prevalent with PTB. Both are contrary to the broad notion that Lactobacillus are beneficial in 
preventing PTB. Alpha diversity metrics (Figure 6a) and VALENCIA community state types (Figure 6a) were 
largely insignificant when evaluated as univariates.   
 
Much like with sub-challenge 1, we next used feature permutation to identify features used by multiple top-
performing models in sub-challenge 2, predicting early PTB, followed by univariate correlation of these 
features with early PTB (Figure 6b). The better predictive performance of the sub-challenge 2 models 
(predicting early PTB) makes feature permutation more robust.  In the second trimester (Figure 6b), 
phylotypes corresponding to multiple Lactobacillus strains were less prevalent in early PTB pregnancies. 
Curiously, one Gardnerella vaginalis strain was less prevalent in early PTB, contrary to this organism 
typically being thought of as a risk factor. For alpha diversity (Figure 6b), increased phylogenetic entropy in 
the second trimester was the most cleanly associated with early PTB. VALENCIA community state type III-
A or III-B in the second trimester were the most associated with early PTB (Figure 6b).  
 
Sub-challenge 1 - Top performing teams:  
 
Team UWisc-Madison  
 
For predicting PTB, a LightGBM-based pipeline was built using an ensemble strategy tailored for vaginal 
microbiome data collected from multiple projects. The model was developed using specimens collected no 
later than 32 weeks of gestation and included five types of features: counts of taxa at different taxonomic 
levels, counts of phylotypes, microbiome community states, alpha diversity metrics, and metadata (age, 
collection week, and race). In particular, the counts of taxa at the family, genus, and species levels, the 
counts of phylotypes defined at phylogenetic distances of 0.5 and 1, and the alpha diversity metrics including 
Shannon index, Inverse Simpson Index, phylogenetic entropy, balance-weighted phylogenetic diversity, and 
rooted/unrooted/quadratic phylogenetic diversity were used. To obtain scale-invariant values, the centered 
log-ratio (CLR) transformation41 was applied to each type of the microbiome count data. Rare microbial 
features with less than 5 non zero counts in any of the studies of the training set were removed. The 
LightGBM model was chosen as the prediction model due to its well-known efficiency42. Each specimen was 
one training sample and each training sample had a total of 1,991 features. Five-fold cross-validation on the 
subject level was used to tune hyperparameters. Because Project G had a very different sequencing depth 
profile (the average sequencing depth of Project G is 185,010, whereas the value is below 50,000 for other 
projects), two prediction models were built: one was trained using specimens from all projects (Model 1) and 
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one was trained only using specimens from Project G (Model 2). When making a prediction given a 
specimen, the ensembling weights of Model 1 and Model 2 were generated by a logistic regression model 
with sequencing depth and collection week as features. As one subject is likely to have multiple vaginal 
microbiome specimens, a customized weighting method was designed to aggregate predictions from 
multiple specimens on one subject. If a subject has multiple specimens, then the weight of each specimen 
equals the collection week of the specimen divided by the sum of the collection weeks of all specimens from 
the subject. In other words, the closer a sample was to delivery, the more impact it would make on the final 
prediction. The architecture of the pipeline is presented in Supplementary Figure 6. This pipeline achieved 
an AUROC of 0.69 and an AUPRC of 0.58 when tested on the validation dataset for sub-challenge 1. 
 
Team AI4knowledgeLAB 
 
To predict the risk of PTB, a workflow based on an ensemble of random forest43  models with oversampling 
of the minority class had been used. For the implementation of the model, both metadata and characteristic 
data of the vaginal microbiome were used. Concerning metadata, information on race and ethnicity and the 
gestational week when the sample was collected were included into the analysis. Microbiome data included: 
relative abundances of clusters of variants measured at three different phylogenetic distances (0.1, 0.5, 1), 
alpha-diversity metrics, and “VALENCIA Community State Types” (CST). The pipeline is shown in 
Supplementary Figure 7. 
 
The first step was to eliminate samples collected after the 32nd week of gestation. A model was then built 
that takes three different matrices as input, one for each phylogenetic distance, to create three independent 
models that can output three different predictions for the same individual, which are then combined using 
an ensemble strategy. Each input matrix had a number of features of 9743, 3651, and 1871: to each matrix 
of relative abundance of phylotypes were added features related to: alpha-diversity (7), CST (11), and 
demographics (8). 
 
To make the dataset more balanced, a data augmentation algorithm, SMOTE (Synthetic Minority Over-
sampling Technique)44, was adopted. As a classification algorithm, random forest was chosen using the 
default parameters of the Scikit-learn python package40 due to its efficiency in handling datasets with a high 
number of features45. The final output was obtained as the average of the three probability values and the 
associated class was obtained from the probability value by imposing the classic threshold of 0.5. The 
prediction model achieved an AUROC of 0.64 and an AUPRC of 0.48 on the Dream Challenge validation 
dataset. 
 
Sub-challenge 2 - Top performing Teams: 
 
Team Techtmann Lab 

To predict early PTB, a basic random forest classifier was employed using python’s Scikit-learn package40. 
Training data included relative abundances clustered phylogenetically at a distance of 0.1, race of the 
patient, VALENCIA community state types, diversity metrics, and collection week. This model used default 
Scikit-learn parameters and involved no additional feature selection or hyperparameter tuning. When tested 
on the competition validation dataset, the model reported an AUROC of 0.87 and an AUPRC of 0.45. 

When investigating feature importance diversity metrics, race, community state type, sample collection 
week, and some phylotypes were found to be the most important features in the model’s decision-making. 
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Specifically, five phylotypes whose relative abundances were identified as important to predict early PTB: 
Lactobacillus jensenii, Lactobacillus iners, Lactobacillus crispatus, Prevotella bivia, and Ureaplasma 
urealyticum. This approach is hypothesized to result in a model that was not over-tuned to the training data, 
allowing it to generalize well to the competition validation dataset. 

Team KBJ 
 
With the approach of team KBJ for sub-challenge 2, several processes were applied to improve the model 
prediction performance (Supplementary Figure 8). First, samples were filtered out by collection week 
conditions as the test dataset and aggregated all corresponding features. Here, one feature type was 
selected among several for taxonomy and phylotypes – genus-level and 0.1 phylogenetic distance, 
respectively. Also, race information was considered, while pairwise distance was excluded. Next, significant 
features were selected using the minimum redundancy maximum relevance46, which considers mutual 
information of features in terms of response variables (i.e., early preterm versus non-preterm). The feature 
selection was conducted for phylotypes, sequence variants, and taxonomy whose dimensions are relatively 
large compared to the data size. Then, an ensemble model was constructed with five algorithms (Linear 
Support Vector Classification47, Support Vector Classification47, Quadratic Discriminant Analysis48, 
Calibrated Classifier49, and Passive Aggressive Classifier50) that solely performed the best in cross-
validation. All compared models were tested with default parameters by the Lazy Predict51 and Scikit-learn40 
python packages. The prediction model constructed by team KBJ achieved an AUROC of 0.841 and an 
AUPRC of 0.270 on the Dream Challenge validation dataset. Specifically, the model showed good balanced 
accuracy (sensitivity: 0.77; specificity: 0.79).  
 
Sensitivity analysis on gestational age at sampling:  
To ensure that the best performing models were not overly reliant upon the gestational week of collection of 
specimens, we performed a sensitivity analysis–removing gestational age at sampling or permuting 
gestational age values (Table 5). Model performance was only modestly affected removing model access 
to the gestational age of collection, indicating the predictions were primarily based on other attributes. 
 
Post-challenge ensemble models:  
Several ensemble models were created - combining results of (a) the winning teams, (b) the teams with 
Bayes factor < 20 (Tables 3 and 4), and (c) all the participants across the two sub-challenges (Figure 7). An 
improvement in performance was observed across the board with the ensemble models of Bayes factor < 
20 performing the best AUROC 0.74 and AUROC 0.91 respectively for sub-challenges 1 and 2.  

Discussion 
PTB, particularly early PTB (before 32 weeks of gestation), remains a potentially devastating outcome of 
pregnancy. Without a clear way of identifying pregnancies at risk for PTB, it remains difficult to target 
interventions or clinical trials. The microbiome has been extensively correlated in single-center studies with 
the risk for PTB, opening the promise of using the vaginal microbiome to build rigorous, generalizable, and 
robust predictive models to identify pregnancies at risk for PTB. However, results from various studies were 
largely inconclusive. In addition, combining data from different microbiome studies into a predictive, stable, 
and generalizable set of features for the rigorous evaluation of predictive models against independent 
validation datasets and their eventual use with vaginal microbiome data from individual pregnancies clinically 
is non-trivial. In this study, we leveraged data from 9 independent studies of the vaginal microbiome during 
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pregnancy. The data was aggregated from public domain sources including dbGAP and the MOD Database 
for Preterm Birth Research. The final training dataset included data from 3,578 samples across 1,268 
individuals, with 851 individuals delivering at term and 417 delivering preterm, including 170 early preterm 
deliveries. We applied a novel scientific and technical schema (implemented in a software workflow 
MaLiAmPi) for harmonizing microbiome data at the sequence-level, even when generated with different 
underlying primers and sequencing platforms, to transform the raw data into a stable and generalizable set 
of features suitable for predictive modeling. This schema also allowed the post hoc integration of microbiome 
data from two independent validation sets (that were unavailable at the time of the release of the training 
set) into the same set of features: an unpublished dataset from Wayne State University/Perinatology 
Research Branch and a second validation dataset generated by UCSF from samples provided by Stanford 
University. Crowdsourced predictive models were developed by 318 teams based on the training feature 
set and evaluated against the independent validation data within the same schema of features. Multiple 
teams were able to generate predictive models for both PTB and early PTB, with the models predicting the 
latter particularly robustly. 
 
We noted that the best-performing predictive models all employed some type of feature-pruning and 
selection, typically within the broad family of random forest-like models. Given the sparseness of microbiome 
data, and plethora of features that can be detected, it is not surprising that modeling techniques more 
resilient to overfitting, and better able to hone in on the most important features, performed better. This risk 
of overfitting also speaks more broadly to the value of validating microbiome associations and predictive 
models on independent data sets; even with a large training data set consisting of multiple studies, teams 
often needed to adjust their models to reduce the risk of overfitting to perform well against the validation 
data. 
 
While taxon data were provided to teams (the current state of the art for combining microbiome data), it is 
notable that the novel taxonomy-independent phylotypes were used by a majority of the better performing 
models. Taxonomy-based features were overall a challenge for participants, as there was poor overlap 
between the training and validation data sets at the taxonomic level. This required teams that relied upon 
taxonomy to preprocess the taxonomic feature tables, drop taxa that were not observed in the training data. 
In contrast, the taxonomy-independent phylotypes were intrinsically overlapped between the training and 
validation data. 
 
An expected finding in our study is that more severe cases which involve early delivery were easier to predict 
from vaginal microbiome data than all PTB cases. This result was consistent for multiple independent 
modeling teams, including teams who tackled both sub-challenges, with sub-challenge 2 (predicting early 
PTB) models generating better predictions (as judged by our metrics, including AUROC). This was expected 
given that in early PTB the frequency of intra-amniotic infection is higher, and infection may be caused by 
ascending bacteria it’s been previously observed that there is a relationship between PTB and the vaginal 
microbiome52 also, it’s potentially a more extreme phenotype (rephrase). . Further study is needed, but we 
believe this could suggest that the vaginal microbiome has a stronger causal contribution to early PTB.  
 
Through feature-permutation combined with multiple independently-developed highly-predictive models, we 
were able to identify multiple organisms, community state types, and community structures that associate 
with the risk for PTB opening the door to future studies into the underlying biology and pathophysiology of 
these associations, as well as more precise and effective intervention upon the vaginal microbiome during 
pregnancy to reduce the risk of PTB. In particular, while non-dominance of Lactobacillus in vaginal 
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microbiome communities has previously been associated with PTB26–28, there seems to be physiologically-
relevant species- and strain-level variability within the Lactobacillus and Gardnerella genera across 
pregnancy trimesters that deserves further exploration and indicates a potential role forintra-niche 
competition in the vaginal microbiome during pregnancy and the risk for early PTB.  
 
The training data set itself, inclusive of the stable and generalizable features, is an invaluable resource for 
future studies of the vaginal microbiome during pregnancy. This training set, and more importantly the stable 
set of features, is a possible means of avoiding a challenge in the microbiome literature, where each study 
reports on a slightly different set of features. Future novel studies can leverage this large, geographically 
diverse, and strictly formatted data set to leverage and validate their findings.  
 
The study has several limitations that should be considered when interpreting the results. The study is based 
on publicly available data which might not have full clinical or demographic annotations of the samples in 
the metadata. In particular, the spontaneous nature of PTB could not be ascertained for all patients in the 
training set, and differentiating between spontaneous preterm labor and delivery and preterm prelabor 
rupture of the membranes was not feasible. Recent work suggests that this latter phenotype is more likely 
associated with the microbiome53,54. While the sample size of the study is considerable, with 3,578 samples 
across 1,268 individuals, it may not be representative of the entire population of pregnant women from 
around the world. We only considered binary outcomes (term vs preterm delivery) and did not take into 
account other important outcomes such as low birth weight or neonatal morbidity. The study is a 
computational challenge, and the results of the models are only as good as the data that they are trained 
on, and the limitations of the data may be reflected in the results. Finally, we only used data from the vaginal 
microbiome, which may not fully reflect the overall health of the pregnant women; other factors such as 
genetics, host-response, lifestyle, or environment may also play a significant role in parturition timing. 
 
This work serves as the basis for several potential follow up studies. To improve the performance of the 
models, additional data such as demographic, clinical data, environmental data, or data from other body 
sites could be incorporated into the models. To better understand the mechanisms underlying PTB and early 
PTB further in vitro and in vivo validation of individual microbial features identified by the models can point 
to the underlying molecular mechanisms of human parturition. Studying how to in turn modulate the 
microbes can result in therapeutic hypotheses. Once the models have been validated and optimized, the 
next logical step is to translate them into clinical practice to help identify women at risk of PTB and to develop 
appropriate interventions to prevent PTB. 
 
Together, we believe this represents a genuine advancement in our ability to identify pregnancies at risk for 
early PTB. Given these models rely upon a generalizable set of features that can accommodate post-hoc 
data from individual pregnancies, these predictive models are ‘shovel ready’ for use in clinical trials and 
exploration of their potential role in the clinical care of pregnancies. Further, we believe this scientific and 
technical schema could be suitable for building microbiome-based predictive models for other microbiome-
related conditions. 

Methods 
Collection, generation, and analysis of vaginal microbiome data was approved by the National Heart, Lung, 
and Blood Institute (NHLBI) Clinical Data Science Institutional Review Board (CDS-IRB) in study number 
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2021-040, and reliance was granted to the NHLBI CDS-IRB by the University of California, San Francisco 
Institutional Review Board in study number 21-35274. 
 
Training Data Acquisition and Processing 

 
The following vaginal microbiome studies were identified by leveraging the March of Dimes Preterm Birth 
database38, the NCBI Sequence Read Archive55, the European Nucleotide Archive56, and the database of 
Genotypes and Phenotypes (dbGaP)37. Sequence data and associated metadata for the DiGiulio et al.27 
cohort were downloaded from ImmPort57, under Study SDY465 in May 2016. Sequence data and associated 
metadata for Romero et al.58 cohort were downloaded from the NCBI Sequence Read Archive under 
BioProject PRJNA242473 in May 2016. Sequence data and associated metadata for the Callahan et al.28 
cohort were downloaded from the NCBI Sequence Read Archive under BioProject PRJNA393472 in January 
2018. Sequence data and associated metadata for the Stout et al.59 cohort were downloaded from the NCBI 
Sequence Read Archive under BioProject PRJNA294119 in January 2018. Sequence data for the Kindinger 
et al.60 cohort were downloaded from the Sequence Read Archive of the European Nucleotide Archive under 
Projects PRJEB11895 and PRJEB12577 in June 2020, and associated metadata was downloaded from 
Additional Files 4 and 6 from the paper with some additional metadata requested from the senior author. 
Sequence data and associated metadata for the Brown et al. (2018)61 cohort were downloaded from the 
Sequence Read Archive of the European Nucleotide Archive under Project PRJEB21325 in June 2020 with 
some additional metadata requested from the senior author. Sequence data and associated metadata for 
the Brown et al. (2019)53 cohort were downloaded from the Sequence Read Archive of the European 
Nucleotide Archive under Project PRJEB30642 in June 2020 with some additional metadata requested from 
the senior author. Sequence data and associated metadata for the Elovitz et al.62 cohort were downloaded 
from the database of Genotypes and Phenotypes (dbGaP)37 under accession number phs001739.v1.p1 in 
September 2021. Sequence data and associated metadata for the Fettweis et al.63 cohort were downloaded 
from the NCBI Sequence Read Archive under BioProject ID PRJNA430482 in January 2022, and associated 
metadata were requested through and obtained from the RAMS Registry (https://ramsregistry.vcu.edu).   
 
Validation Data Generation 
 
Wayne State University 
Study design, sample collection  
The microbiome dataset from Wayne State University School of Medicine included in the challenge was a 
subset of randomly selected 20 cases and 40 controls from a larger retrospective longitudinal case-control 
study described in detail elsewhere (https://www.researchsquare.com/article/rs-2359402/v1)54. The 20 
spontaneous PTB cases included both spontaneous preterm labor with intact membranes (PTL) and preterm 
prelabor rupture of membranes (PPROM) resulting in delivery 20-36+6 weeks. Cases had 3 or 4 longitudinal 
samples collected from 10-36 weeks of gestation which were matched with samples from controls (2 to 4 
samples per patient). Term controls were defined as women who delivered between 38 and 42 weeks of 
gestation without congenital anomalies or obstetrical, medical, or surgical complications. Samples of vaginal 
fluid were collected using a Dacron swab (Medical Packaging Corp., Camarillo, CA). Vaginal swabs were 
stored at −80°C until time of DNA extraction, following established standard operating procedures. The study 
was conducted at the Perinatology Research Branch, an intramural program of the Eunice Kennedy Shriver 
National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department 
of Health and Human Services, Wayne State University (Detroit, MI), and the Detroit Medical Center (Detroit, 
MI). The collection of samples was approved by the Institutional Review Boards of the National Institute of 
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Child Health and Human Development and Wayne State University (#110605MP2F(RCR)). All participating 
women provided written informed consent prior to sample collection. 
 
DNA extraction from vaginal swabs 
Genomic DNA was extracted from vaginal swabs using a Qiagen MagAttract PowerMicrobiome DNA/RNA 
EP extraction kit (Qiagen, Germantown, MD), with minor modifications to the manufacturer’s protocols as 
described in (https://www.researchsquare.com/article/rs-2359402/v1). The purified DNA was transferred to 
the provided 96-well microplates and stored at -20°C. 
 
16S rRNA gene sequencing and processing 
The V4 region of the 16S rRNA gene was amplified from vaginal swab and control DNA extracts and 
sequenced at Michigan State University’s Research Technology Support Facility 
(https://rtsf.natsci.msu.edu/) using the dual indexing sequencing strategy developed by Kozich et al.64. The 
forward primer was 515F: 5’-GTGCCAGCMGCCGCGGTAA-3’ and the reverse primer was 806R: 5’-
GGACTACHVGGGTWTCTAAT-3’. 
 
Stanford University 
Study design, sample collection  
The Stanford University microbiome dataset included in the challenge consisted of 40 cases and 48 controls 
from a repository of specimens from women enrolled in a longitudinal study conducted by the March of 
Dimes Prematurity Research Center at Stanford University. Samples of vaginal fluid were collected using a 
2x Sterile Catch-All™ Sample Collection Swab (Epicentre Biotechnologies #QEC091H, Madison, WI). 
Vaginal swabs were placed into tubes then immediately placed on ice or in a household freezer (-20°C). 
After samples arrived at the March of Dimes Prematurity Center they were immediately placed on dry ice, 
inventoried, and then stored at −80°C at the Stevenson Laboratory until time of DNA extraction. The study 
was conducted at Stanford Hospital and Clinics. The collection of samples was approved by the Institutional 
Review Board of Stanford University (Study number 21956). All participating women provided written 
informed consent prior to sample collection. 
 
Vaginal swab DNA extraction and 16S rRNA sequencing 
Genomic DNA extraction and microbial sequencing were performed at the Microbial Genomics CoLab Plug-
in Facility within the Benioff Center for Microbiome Medicine at University of California, San Francisco. First, 
vaginal swabs were aseptically transferred to 2 mL tubes pre-filled with 300 µL sterile molecular-grade water. 
Vaginal samples were vortexed with the swab remaining in the tube. 200 μL vaginal suspension from the 
tube was withdrawn for downstream processing using the QIAamp BiOstic DNA Kit (QIAGEN, Hilden, 
Germany). DNA from all samples and several extraction blanks were extracted according to the 
manufacturer's protocol and eluted in 50 µl EB buffer. DNA concentrations were quantified using the Qubit 
dsDNA HS Assay Kit (ThermoFisher Scientific, MA), diluted to 5 ng/µL and stored at -20°C. 
 
The V4 hypervariable region of the 16S rRNA gene was amplified using 515F and 806R primers65 with 
PCR conditions previously described66. Amplicon reactions were quantified using the Qubit dsDNA HS 
Assay Kit (ThermoFisher Scientific, MA), and pooled at equimolar concentrations. The pooled library was 
cleaned and concentrated using the Agencourt AMPure XP beads (Beckman-Coulter), quality checked with 
the Bioanalyzer DNA 1000 Kit (Agilent, Santa Clara, CA), quantified using the KAPA Library Quantification 
Kit (KAPA Biosystems), and diluted to 2 nM. Library was denatured according to manufacturer’s protocol 
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and spiked in with 40% PhiX control prior to loading onto the NextSeq 550 platform (Illumina, San Diego, 
CA) for 2 x 150bp sequencing. 
 
Data Processing and Normalization  
 
We applied MaLiAmPi39 to both training and test data to process and aggregate the datasets.  Standardized 
processed data format facilitates running Docker containers, as we had participants use in our Challenge, 
and choosing feature sets for permutation. MaLiAmPi is available as a nextflow workflow, and is 100% 
containerized to allow for usage on multiple different high performance computing resources. In brief, 
MaLiAmPi uses DADA2 to assemble each project’s raw reads into approximate sequence variants (ASVs). 
These ASVs are used to recruit full-length 16s rRNA gene alleles from a repository (based on sequence 
identity). These recruits are assembled into a de novo maximum-likelihood phylogeny with RAxML and the 
ASVs are placed onto this common phylogenetic tree with EPA-ng. Finally, these placements are used to 
determine the alpha-diversity of communities (diversity measures include Shannon, Inverse Simpson, 
Balance weighted phylogenetic diversity (bwpd), phylogenetic entropy, quadratic, unrooted phylogenetic 
diversity, and rooted phylogenetic diversity), phylogenetic (KR) distance between communities, provide 
taxonomic assignments to each ASV, and cluster ASVs into phylotypes (based on phylogenetic distance 
between ASVs). Sequence variance counts were also determined. In addition, VALENCIA67 was used to 
provide the community state type (CST) of each sample and alluvial plots were made using the ggalluvial R 
package68 in order to visualize CST composition by trimester. UMAP representations of the data and violin 
plots of Shannon alpha diversity before and after processing of the data with MaLiAmPi were visualized to 
gauge data harmonization. Extensive use of the Python seaborn visualization package was used for figure 
preparation.  
 
DREAM Challenge 
 
Overall Challenge structure. 
The overview of the Challenge is shown in Figure 1. All Challenge elements were supported by the Synapse 
platform (http://www.synapse.org), including documentation, access to the data, submission of models, 
leaderboards, and the discussion forum. To gain access to the data, teams were required to comply with a 
data use agreement, restricting use of the data outside the Challenge and providing guidelines on ethical 
participation in the Challenge. Teams were provided the training data, they built their models, dockerized 
their environment, and submitted their models through the Synapse platform. Models were run on the test 
data and performance metrics were returned to the teams. Teams were limited to 5 total submissions with 
the top performing model selected as the final submission to be scored and ranked. Leaderboards were 
provided throughout the open phase of the Challenge, which provided teams with real-time feedback and 
comparative performance rankings. After the close of the Challenge, models were evaluated for 
completeness and reproducibility. For teams to be included in the Preterm Birth DREAM Community, they 
were required to make the code public, provide a method write-up, and participate in a post-challenge survey 
to collect information on method development and features of the data important to the model.  
 
Participant engagement.  
Information about our challenge was shared through the Dream Challenges website 
(https://dreamchallenges.org). Challenge organizers also shared information about the challenge through 
listservs such as ML-news Google News Group and social media outlets including Facebook, LinkedIn, 
Reddit, and Twitter. 
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In order to preserve model environments for portability of models, we required participants to submit Docker 
environments. These environments contain the necessary programming dependencies and models for each 
sub-challenge that can run on a processed and prepared microbiome dataset folder arranged in a 
standardized format. The organizers prepared an example Docker container for participants to utilize as a 
starting template and held occasional seminars to describe the data and answer questions from participants. 
Organizers also engaged with participants through the forums to help answer questions throughout the 
challenge.  
 
Assessment Strategies.  
Performance metrics that were used to evaluate the teams include Area under the receiver operator 
characteristic (AUROC) curve and Area under the precision-recall (AUPR) curve. On the held-out external 
validation dataset, metrics of accuracy, sensitivity, and specificity were also computed. These metrics were 
shown on the final public rankings.  
 
The reproducibility of models, including the baseline, were determined by calculating the Bayes factor for 
1000 bootstrapped iterations on a random sampling of the data. For each sub-challenge, the best-performing 
models from each team were rerun to obtain scores on the random sampling. These scores were then used 
to calculate the Bayes factor, using the computeBayesFactor function from the challenge scoring R 
package69, comparing them to the top-performing model as well as the baseline model.   
 
To increase our certainty of DREAM Challenge participants’ rankings whose models’ performances could 
have been affected by prediction threshold and class imbalance in our validation dataset, we employed the 
following strategies to validate participants’ models for both sub-challenges on the external dataset: inverting 
labels, bootstrapped random subsampling, bootstrapped under-sampling, and bootstrapped over-sampling. 
 
Inverted labels: Invert the class labels for the external dataset and prediction model outputs (i.e., classifying 
preterm or early preterm births as term births, and vice versa), and computing AUROC/AUPR curves. 
 
Bootstrapped random subsampling: Randomly sample a subset of 100 from the 152 participants of the 
external dataset, and run the prediction models on the validation data subset, bootstrapped 1000 times. 
 
Bootstrapped undersampling: Undersample the external dataset (n = 152) to balance the minority (Preterm, 
n = 63. Early preterm, n=13) and majority (i.e., Term, n = 89) classes by randomly sampling from the minority 
and the majority groups to have the same number in each group (n = 50 for Preterm and n = 50 for Term in 
sub-challenge 1, and n = 13 for Early Preterm and n = 13 for Term in for sub-challenge 2), and then 
computing AUROC/AUPRC on the undersampled external validation dataset, bootstrapped 1000 times. 
 
Bootstrapped oversampling: Oversample the external dataset to balance the preterm or early preterm and 
term classes by randomly sampling per group (n = 200 for Preterm and n = 200 for Term in sub-challenge 
1, and n = 200 for Early Preterm and n = 200 for Term in for sub-challenge 2), and then computing 
AUROC/AUPRC oversampled external dataset, bootstrapped 1000 times. 
 
Individual team methods are linked to in Supplementary Table 1.  
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DREAM challenge participants and teams were surveyed to gather information on how they developed their 
models.  
 
Feature importance was determined across the best performing models for sub-challenges 1 and 2 that 
demonstrated predictive performance at threshold of 0.64 for sub-challenge 1 and a threshold of 0.80 sub-
challenge 2 which also could be run in a bootstrapped manner in a tractable amount of time 
 
Sensitivity analysis was carried out removing gestational age at sampling as a feature.  
 
As with previous DREAM Challenges, ensemble models were generated to explore the "wisdom of the 
crowds" phenomenon, by aggregating the best-performing models from each team. For each sub-challenge, 
we experimented with 3 ensemble models by calculating the mean estimation from: 1) top two performing 
models; 2) models with Bayes factor less than 20; 3) all models. 
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PRJNA294119, PRJNA393472, and PRJNA430482 were downloaded from the NCBI Sequence Read 
Archive55. Additional associated metadata for PRJNA430482 were requested through and obtained from the 
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PRJEB30642 were downloaded from the Sequence Read Archive of the European Nucleotide Archive56, 
with associated metadata for PRJEB11895 and PRJEB12577 downloaded from Additional Files 4 and 6 
from the paper by the Kindinger et al.60. Additional associated metadata for Projects PRJEB11895, 
PRJEB12577, PRJEB21325, and PRJEB30642 were requested from the senior author. 
 
Sequence data and associated metadata for accession number phs001739.v1.p1 were downloaded from 
the database of Genotypes and Phenotypes (dbGaP)37. 
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The training dataset representing 7 of the 9 aggregated studies and the validation dataset for our Challenge 
are available under Study ID SDY2187 from the MOD Preterm Birth Research Database 
(https://pretermbirthdb.org/mod/studydata). Two of the nine training data (PRJNA430482 and 
phs001739.v1.p1.) are exclusively available via dbGap after following the application procedures there. 
 

Code availability 
The code for the microbiome data harmonization tool, MaLiAmPi, is available at 
https://github.com/jgolob/maliampi. 
 
DREAM challenge participants’ code for sub-challenge 1 and sub-challenge 2 is in their docker submissions 
which may be accessed by the hyperlinks listed in Supplemental Tables 1 and 2, respectively, of this work. 
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TABLES 

Table 1:  Summary of participants, samples, and V region sequences of training (A-
J) and validation (W and S) datasets 

 

Study 
ID 

Study 
Accession ID Center Title (Authors, year) 

# of 
Particip

ants 

# of Term 
| PTB | 
Early 
PTB 

Participa
nts 

# of 
Sample

s 

# of 
Term|PTB 

| Early 
PTB 

Samples 

V Region 
Sequenc

es 

Instrume
nt 

A SDY465  Stanford 
University 

Temporal and spatial variation of 
the human microbiota during 

pregnancy (DiGiulio et al., 2015) 
39 32|7|3 231 180|51|21 V3 - V5 

454 GS 
FLX 

Titanium 

B & J 
PRJEB11895 

& 
PRJEB12577 

Imperial 
College 
London 

The interaction between vaginal 
microbiota, cervical length, and 
vaginal progesterone treatment 
for preterm birth risk (Kindinger 

et al., 2017) 

116 91|25|9 116 91|25|9 V1 - V3 Illumina 
MiSeq 

C PRJEB21325 
Imperial 
College 
London 

Vaginal dysbiosis increases risk 
of preterm fetal membrane 

rupture, neonatal sepsis and is 
exacerbated by erythromycin 

(Brown et al., 2018) 

110 18|92|49 144 20|124|67 V1 - V2 Illumina 
MiSeq 

D PRJEB30642 
Imperial 
College 
London 

Establishment of vaginal 
microbiota composition in early 
pregnancy and its association 

with subsequent preterm 
prelabor rupture of the fetal 

membranes (Brown et al., 2019) 

70 15|55|21 134 26|108|38 V1 - V2 Illumina 
MiSeq 

E PRJNA242473 University of 
Maryland 

The vaginal microbiota of 
pregnant women who 

subsequently have spontaneous 
preterm labor and delivery and 
those with a normal delivery at 

term (Romero et al., 2014) 

73 57|16|10 168 137|31|19 V1 - V3 
454 GS 

FLX 
Titanium 

F PRJNA294119 Washington 
University 

Early pregnancy vaginal 
microbiome trends and preterm 

birth (Stout et al., 2017) 
74 51|23|2 145 99|46|2 V1 - V3 

454 GS 
FLX 

Titanium 

G PRJNA393472 Stanford 
University 

Replication and Refinement of a 
Vaginal Microbial Signature of 
Preterm Birth (Callahan et al, 

2017) 

134 85|49|20 957 670|287|7
1 V4 

llumina 
HiSeq 
2500 

H PRJNA430482  
Virginia 

Commonweal
th 

 The vaginal microbiome and 
preterm birth (Fettweis et al.,  114 70|44|11 216 137|79|19 V1–V3  

Illumina 
HiSeq 
4000 
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I 
PRJNA504518 
(phs001739.v1

.p1.) 

University of 
Pennsylvania 

Cervicovaginal microbiota and 
local immune response modulate 
the risk of spontaneous preterm 

delivery (Elovitz et al., 2019) 

538 432|106|4
5 1467 1229|238|

82 V3 - V4 
Illumina 
HiSeq 
2500 

S Not applicable Stanford 
University Not applicable 88 48|40|8 172 95|77|18 V4 

Illumina 
NextSeq 

550 

W Not applicable Wayne State 
University 

Working title: The Vaginal 
Microbiota in Early Pregnancy 

Identifies a Subset of Women at 
Risk for Early Preterm Prelabor 

Rupture of Membranes and 
Preterm Birth 

60 40|20|5 159 102|57|17 V4 Illumina 
MiSeq 

Total Not applicable Not 
applicable Not applicable 1416 939|477|1

83 3909 2786|1123
|363 

V1, V2, 
V3, V4, 
+/or V5 

454 GS 
FLX 

Titanium, 
Illumina 
MiSeq, 
Illumina 
HiSeq 
2500, 

Illumina 
HiSeq 

4000, or 
Illumina 
NextSeq 

550 
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Table 2: Summary of demographics of training (A-J) and validation (S and W) 
datasets  

 

  Group Total Training 
(A - J) 

Validation 
(S & W) 

Individuals n 1416 1268 148 

Age Range, n (%) 
  
  
  
  

Unknown 691 (48.8) 691 (54.5) 0 (0) 

Below 18 4 (0.3) 4 (0.3) 0 (0) 

18 to 28 304 (21.5) 227 (17.9) 77 (52.0) 

28 to 38 357 (25.2) 293 (23.1) 64 (43.2) 

Above 38 60 (4.2) 53 (4.2) 7 (4.7) 

Race, n (%) 
  
  
  
  
  

Race: American Indian or Alaska Native 9 (0.6) 6 (0.5) 3 (2.0) 

Race: Asian 84 (5.9) 81 (6.4) 3 (2.0) 

Race: Black or African American 827 (58.4) 759 (59.9) 68 (45.9) 

Race: Native Hawaiian or Other Pacific Islander 7 (0.5) 3 (0.2) 4 (2.7) 

Race: White 422 (29.8) 360 (28.4) 62 (41.9) 

Race: Unknown 71 (5.0) 63 (5) 8 (5.4) 

Ethnicity, n (%) 
  

Ethnicity: Hispanic or Latino 50 (3.5) 8 (0.6) 42 (28.4) 

Ethnicity: Unknown 1261 (89.1) 1260 (99.4) 1 (0.7) 

Delivery, n (%) 
  
  

Term 939 (66.3) 851 (67.1) 88 (59.5) 

Preterm 477 (33.7) 417 (32.9) 60 (40.5) 

Early Preterm 183 (12.9) 170 (13.4) 13 (8.8) 
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Table 3: Summary for sub-challenge 1 of modeling methods, performance metrics, 
and hyperparameters for teams with Bayes factor < 20 

Team Modeling Methods 
Performance Metrics 

Hyperparameters 
AUROC AUPRC 

UWisc-Madison Tree based (CART, BART, Random 
forest, gradient boosting, etc.), 
Ensemble 

0.688 0.575 num_iterations, learning_rate, 
max_depth, min_data_in_leaf, 
lambda_l, lambda_l2 

AI4knowledgeLAB Tree based (CART, BART, Random 
forest, gradient boosting, etc.), 
Ensemble, Over-sampling of the 
minority class (SMOTE) 

0.641 0.484 Random Forest(n_estimators=100, 
criterion='gini', max_depth=None, 
min_samples_leaf=1, 
 min_samples_split=2, 
min_weight_fraction_leaf=0.0, 
max_features='sqrt') 
 
SMOTE(sampling_strategy='auto') 

IBB_UT Tree based (CART, BART, Random 
forest, gradient boosting, etc.), 
Cluster based (k-means, spectral 
cluster, NMF, PCA) 

0.64 0.526 ntreetry=500 for tuneRF function 

KBJ Ensemble 0.635 0.538 vanila sklearn models (default 
parameters) 

DMIS_2022_PTB Tree based (CART, BART, Random 
forest, gradient boosting, etc.), 
Ensemble 

0.634 0.47 learning_rate, max_depth, 
n_estimators, alpha, lambda 

yuanfang.guan Tree based (CART, BART, Random 
forest, gradient boosting, etc.) 

0.631 0.52 n_features 

Team Wallac Neural Net 0.629 0.563 -Modeling parameters: 
Selection of predictors 
- Neural network parameters: 
Selection of hidden layers, type of 
normalization, amount of dropout, 
selection of optimizer and loss 
function 
- NN hidden layer parameters: 
number of filters, kernel size, 
activation function 

MatsuiLab Regression (includes linear, logistic, 
CoxPH, Poisson, generalized, etc.), 
Tree based (CART, BART, Random 
forest, gradient boosting, etc.), 
Cluster based (k-means, spectral 
cluster, NMF, PCA) 

0.625 0.515 NIH Racial Category, Age, 
Phylotypes, cst 

UMICH_DREAM_P
TB 

Tree based (CART, BART, Random 
forest, gradient boosting, etc.) 

0.623 0.54 n_estimators, max_depth, 
min_samples_split, criterion 

Korem_group Regression (includes linear, logistic, 
CoxPH, Poisson, generalized, etc.) 

0.62 0.498 We tuned L1/L2 penalties, PCA 
components/kernels. 
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UTK-
Bioinformatics_Pret
erm 

Tree based (CART, BART, Random 
forest, gradient boosting, etc.), 
Support Vector Machine, Ensemble 

0.62 0.487 n_features, min_leaf 

IBSE_IITM Tree based (CART, BART, Random 
forest, gradient boosting, etc.) 

0.619 0.58 n_estimators, 
min_samples_split,min_samples_le
af,criterion 

Clague VT.TP Tree based (CART, BART, Random 
forest, gradient boosting, etc.) 

0.605 0.523 all variables from microbial diversity, 
community state types, and 
phylotype relative abundance 
matrices. 

Aagaard Lab - 
Baylor College of 
Medicine - Texas 
Childrens Hospital 

  0.604 0.514   

Techtmann Lab Tree based (CART, BART, Random 
forest, gradient boosting, etc.), 
Neural Net 

0.604 0.53 None other than default Scikit-learn 
v. 1.2.0 parameters for random 
forests (n_estimators = 100, criterion 
= gini) 
 
Neural nets hyperparameters: 
learning rate = 1e-4, 3:1 = 
critic:generator training ratio, 
gradient penalty weight = 10, latent 
dim = 1000, batch size = 64, epochs 
= 10000 

Drexel EESI Neural Net 0.602 0.547 Some free hyperparameters in our 
modeling were the parameters used 
for our neural network, which 
included two intertwined 
autoencoder (ae) and discriminator 
(disc) components. The parameters 
for these were:                                                    
 nlayers_ae = 5; nnodes_ae 
= [1000,500, 250, 500, 1000], 
dropout_ae = 0.4, nlayers_disc = 3, 
nnodes_disc = [512, 256, 128], and 
dropout_disc = 0.2. 

HOPWAS Tree based (CART, BART, Random 
forest, gradient boosting, etc.), 
Cluster based (k-means, spectral 
cluster, NMF, PCA), Ensemble 
 
CNN LSTM model 

0.574 0.496 n_featurs, min_samples_leaf, 
max_depth, min_features_to_select 
 
We use CNN LSTM deep learning 
model, and the weights of the 
designed network architecture are 
the parameters. 
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Table 4: Summary for sub-challenge 2 of modeling methods, performance metrics, 
and hyperparameters for teams with Bayes factor < 20 

 

Team Modeling Methods 
Performance Metrics 

Hyperparameters 
AUROC AUPRC 

Techtmann Lab Tree based (CART, BART, Random 
forest, gradient boosting, etc.) 

0.868 0.446 None other than default Scikit-
learn v. 1.2.0 parameters 
(n_estimators = 100, criterion = 
gini) 

KBJ Ensemble 0.841 0.270 vanila sklearn models 
AI4knowledgeLAB Tree based (CART, BART, Random 

forest, gradient boosting, etc.), 
Ensemble, Over-sampling of the 
minority class (SMOTE) 

0.831 0.343 Random 
Forest(n_estimators=100, 
criterion='gini', max_depth=None, 
min_samples_leaf=1, 
 min_samples_split=2, 
min_weight_fraction_leaf=0.0, 
max_features='sqrt') 
 
SMOTE(sampling_strategy='auto') 

polalawang Regression (includes linear, logistic, 
CoxPH, Poisson, generalized, etc.), 
Tree based (CART, BART, Random 
forest, gradient boosting, etc.), 
Support Vector Machine, Ensemble 

0.827 0.297 n_features, alpha 

IBSE_IITM Tree based (CART, BART, Random 
forest, gradient boosting, etc.) 

0.817 0.273 n_estimators, 
min_samples_split,min_samples_l
eaf,criterion 

UMICH_DREAM_P
TB 

Tree based (CART, BART, Random 
forest, gradient boosting, etc.) 

0.816 0.442 n_estimators, max_depth, 
min_samples_split, criterion 

Clague VT.TP Tree based (CART, BART, Random 
forest, gradient boosting, etc.) 

0.807 0.350 all variables in microbial diversity, 
community state types, and 
phylotype relative abundance 
matrices. 

USF biostat Tree based (CART, BART, Random 
forest, gradient boosting, etc.) 

0.803 0.272 Phylotypes 

yuanfang.guan Tree based (CART, BART, Random 
forest, gradient boosting, etc.) 

0.769 0.189 n_features 
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Table 5: Sensitivity analysis removing gestational age as a feature for sub-challenge 
1 and sub-challenge 2 

 

Sub-challenge 1 

Team AUROC AUPRC Accuracy Sensitivity Specificity MCC 

AI4KnowledgeLAB 0.599 0.448 0.608 0.367 0.773 0.152 

UWisc-Madison 0.690 0.560 0.689 0.417 0.875 0.334 

Sub-challenge 2 

Team AUROC AUPRC Accuracy Sensitivity Specificity MCC 

KBJ 0.820 0.236 0.781 0.692 0.790 0.316 

Techtmann Lab 0.844 0.343 0.911 0.000 1.000 -- 
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FIGURE LEGENDS 
Figure 1: Study Design and Challenge Overview 
 
Figure 2. Data visualization of harmonization by Maliampi of microbiome data across studies. a) Uniform 
Manifold approximation and projection (UMAP) ordination plots of the aggregated data before (left) and 
after (right) harmonization where each dot represents one vaginal microbiome sample colored by study. 
b) Violin plots of Shannon alpha diversity by trimester before (top) and after (bottom) harmonization 
stratified by study 
 
Figure 3. Data visualization of microbiome features by outcome. a) Uniform Manifold approximation and 
projection (UMAP) ordination plots of the vaginal microbiome colored by outcome, b) Violin plot of 
diversity before (left) and after (right) harmonization stratified and colored by outcome and c) Alluvial plot 
of community state type (CST) frequencies across time stratified by birth outcome 
 
Figure 4. Challenge Results. Bootstrapped area under the receiver operator characteristics (AUROC) 
curves and Bayes factors for a) sub-challenge 1 and b) sub-challenge 2 
 
Figure 5: Feature Sets used by Top Performing Models. Feature tables used by the top performing 
models for sub-challenge 1 (left) and sub-challenge 2 (right) 
 
Figure 6: Features Across Best Performing Models. For models performing at threshold or above 
baseline, odds ratios (OR) with 95% confidence intervals (CI) reflecting correlation with PTB by trimester 
of specific phylotypes (0.1), diversity metrics, and community state types (CSTs) of features used 
extensively by top-performing models for a) sub-challenge 1 and b) sub-challenge 2 
 
Figure 7: Ensemble Model Results. For a) sub-challenge 1 and b) sub-challenge 2, the area under the 
receiver operator characteristics (AUROC, left) curve and area under the precision-recall curve (AUPRC, 
right) of three ensemble models (‘ensemble_top2’: top two performing models, ‘ensemble_top2’: models 
with Bayes factor less than 20; and ‘ensemble_all’: all models), as well as first place, second place, and 
baseline models, colored by model 
 
Supplementary Figure 1: Individual study designs. Gestational week at sample collection stratified by 
study and colored by birth outcome 
 
Supplementary Figure 2: UMAP ordination plots of data after harmonization, where each dot represents 
one vaginal microbiome sample, colored a) by trimester and b) by race/ethnicity  
 
Supplementary Figure 3: CST heatmap. Heatmap of community state types (CST) for term, preterm, and 
early preterm births across the first, second, and third trimesters of pregnancy 
 
Supplementary Figure 4: Bootstrapped results for sub-challenge 1: preterm birth prediction. Top includes 
curves for inverted labels in the test set, while bottom includes undersampling and oversampling per 
group (preterm/term) to ensure balance between groups. Left is AUROC, right is AUPRC 
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Supplementary Figure 5: Bootstrapped results sub-challenge 2: early preterm birth prediction. Top 
includes curves for inverted labels in test set, while bottom includes undersampling and oversampling 
per group (early preterm/not early preterm) to ensure balance between groups. Left is AUROC, right is 
AUPRC 
 
Supplementary Figure 6:  Overview of the pipeline of U-Wisconsin team. The architecture of the pipeline 
for prediction of preterm birth using microbiome data and metadata. CLR is applied to each type of the 
microbiome count data. Rare microbial features are filtered out. Two LightGBM models are trained: one 
on all available specimen data (Model 1), and another on data from Project G only (Model 2). The 
predictions from these models are then combined, and the aggregate prediction is used to generate a 
probabilistic prediction of preterm birth 

Supplementary Figure 7: Workflow of the analysis by Team AI4knowledgeLAB. The probability score of 
the final output was obtained as the average of the 3 probability values and the associated class was 
obtained from the probability value by imposing the classic threshold of 0.5 

Supplementary Figure 8: Overview of the model of Team KBJ. Left represents preprocessing of provided 
metadata and processed outputs from MaliAmPi pipeline.They extracted samples according to the test 
set condition and aggregated features to represent participants. Then, sparse feature types were handled 
with mRMR and concatenated with other features. Additional race information was used as a feature. For 
ensemble learning, based on 26 different machine learning models, five algorithms were selected by top-
ranked models. The final predicted value was calculated as the mean of each probability 
 
Supplementary Figure 9: Features of sub-challenge 1 for top model for top teams with threshold or above 
baseline (same criteria as figure 5) 
 
Supplementary Figure 10: Features of sub-challenge 2 for top model for top teams with threshold or 
above baseline (same criteria as figure 5) 
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Raw 16S Vaginal Microbiome Sequencing Data
…ACATCATACAGATACAAATA…
…ACCCATGATAGAGAAACAGA…

Phylogenetic Harmonization of Raw Data

MaLiAmPi
ASV generation, 16S rRNA Reference Allele 

Selection, Phylogenetic Tree Generation, 
Placement of ASV and Taxonomic Classification

Samples

Fe
at

ur
es

Training Data: 9 studies 
1268 individuals
3578 samples:

2589 term, 989 preterm 
(328 early preterm) 

Test Data: 2 studies 
148 individuals 
331 samples:

197 term, 134 preterm 
(35 early preterm)

Diversity Measures, 
Community State Types 

Phylotypes

DREAM Challenge Prediction Goals: 
Sub-challenge 1: Predict Term vs. Preterm (< 37 weeks) Sub-

challenge 2: Predict Term vs. Early Preterm (< 32 weeks)

Results:
318 registrants

136 submissions for sub-challenge 1 
110 submissions for sub-challenge 2

Can we predict who is more likely to deliver preterm?

Assessment:
AUROC, AUPRC, Accuracy, Sensitivity, Specificity 

Bootstrapping, Under and Over Sampling

Ensemble Model 
Feature Interpretation

1.
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6b.  Features used by models predicting Early PTB (Subchallenge 2)
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