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Abstract:  

  
Globally, every year about 11% of infants are born preterm, defined as a birth prior to 37 weeks of 
gestation, with significant and lingering health consequences. Multiple studies have related the vaginal 
microbiome to preterm birth. We present a crowdsourcing approach to predict: (a) preterm or (b) early 
preterm birth from 9 publicly available vaginal microbiome studies representing 3,578 samples from 1,268 
pregnant individuals, aggregated from raw sequences via an open-source tool, MaLiAmPi. We validated 
the crowdsourced models on novel datasets representing 331 samples from 148 pregnant individuals. 
From 318 DREAM challenge participants we received 148 and 121 submissions for our two separate 
prediction sub-challenges with top-ranking submissions achieving bootstrapped AUROC scores of 0.69 
and 0.87, respectively. Alpha diversity, VALENCIA community state types, and composition (via phylotype 
relative abundance) were important features in the top performing models, most of which were tree based 
methods. This work serves as the foundation for subsequent efforts to translate predictive tests into clinical 
practice, and to better understand and prevent preterm birth.  
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Introduction  
  
Preterm birth (PTB) is the leading cause of infant morbidity and mortality worldwide. Globally, every year 
approximately 11% of infants every year are born preterm, defined as birth prior to 37 weeks of gestation, 
totaling nearly 15 million births1. In addition to the emotional and financial toll on families, preterm births 
result in higher rates of neonatal death, nearly 1 million deaths each year, and long-term health 
consequences for some children2. Infants born preterm are at risk for a variety of adverse outcomes, such 
as respiratory illnesses, cerebral palsy, infections, and blindness, with infants born early preterm (i.e., 
before 32 weeks) at increased risk of these conditions3. Thus, the ability to accurately identify women at 
risk for PTB is a first step in the development and implementation of treatment and prevention strategies. 
Currently, available treatments for pregnant women at risk of preterm delivery include corticosteroids for 
fetal maturation and magnesium sulfate provided prior to 32 weeks to prevent cerebral palsy2. 
Progesterone supplementation may also be administered as early as the second trimester to reduce the 
risk of PTB4.  
  
There are several known factors associated with PTB, including history of PTB, a short cervix, extremes of 
maternal age and body mass index (BMI), low socio-economic status, smoking, and genetic 
polymorphisms5–11. Nevertheless, there are currently no clinical tools that enable the early and reliable 
assessment of the risk of preterm birth for an individual12,13. Machine learning (ML) modeling has 
demonstrated potential to aid in the determination of individuals at risk of conditions and diseases across 
medical domains14–16. By applying ML methods to large amounts of heterogeneous data, patterns in data 
can be discerned that would be otherwise difficult for humans to distinguish. Moreover, deducing which 
features contribute most to the predictive performance of an ML model allows for the identification of 
biomarkers that can be important for a condition or disease. There are a variety of ML algorithms that can 
be used individually, or combined into an ensemble approach to improve prediction performance. After ML 
modeling has been applied to and optimized on a training dataset, then the  model is ideally tested on an 
independent dataset to assess how well the model is able to generalize to data it has never seen before17. 
The validation on independent data is a critical step to guard against overfitting and hence optimistically 
biased accuracy estimates . In the past several decades, applications of machine learning approaches to 
various types of clinical, molecular, and other data have been explored to predict complications of 
pregnancy including preterm birth18–23. The results of these works to date demonstrate that the prediction 
of PTB from varied data types including metabolites in amniotic fluid and maternal blood and urine, 
ultrasound images, and electronic health records, appears to be feasible to a certain extent. In 2019, a 
DREAM (Dialogue for Reverse Engineering Assessments and Methods) Challenge was organized to 
harness the power of crowdsourcing and engage the computational biology community to develop and 
apply machine learning models to maternal blood multi-omics data for the determination of gestational age 
at time of blood draw and prediction of spontaneous PTB24. Tarca et al.24 demonstrated that models based 
on the maternal blood transcriptome were able to significantly predict a subset of spontaneous PTBs 
(preterm prelabor rupture of the membranes) while spontaneous preterm labor and delivery was 
significantly predicted by the plasma proteome. For both outcomes, the sample closer to delivery was 
more informative than earlier samples.  
  
Although the sources of some data to which ML algorithms can be applied are more difficult to obtain, 
such as blood and amniotic fluid which involve procedures that require technical expertise and puncturing 
through skin and other anatomical structures that may introduce infection or cause pain, vaginal 
microbiome samples can be collected relatively more easily by clinicians as well as by patients 
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themselves25. There is some indication that the vaginal microbiome is associated with adverse pregnancy 
outcomes, specifically PTB.  
Previous studies have shown that there are significant differences between the vaginal microbiome of 
patients who deliver at term and those who deliver prematurely. Vaginal microbiomes with increased 
diversity as well as communities where Lactobacillus is not dominant were more frequent in patients with 
PTB26–28. Therefore, the vaginal microbiome is a tempting source of data to use for predictive modeling of 
PTB. However, there are significant biological and technical challenges to using microbiome data for 
predictive modeling. Biologically, human-associated microbiomes (including the vaginal microbiome) are 
incredibly variable–with any two individuals typically sharing less than half of microbes29. Thus, 
microbiome data, particularly compositional microbiome data, is both highly dimensional (typically 10 to 
100 times more features than biological replicates being observed) and sparse (most features are 
observed in few biological replicates). These microbiome data attributes contribute to a substantial risk of 
model overfitting. Metaanalysis as well as rigorous evaluation of models on independent validation data is 
a robust approach to contend with these biological challenges with microbiome data. However there are 
significant technical challenges in aggregating and combining microbiome data across studies, therefore 
there have been few studies taking on this task30–32. In previous work, we have shown that by aggregating 
microbiome data across several studies we can gain significant statistical power to show that higher 
diversity is associated with PTB especially in the first trimester of pregnancy and to identify several novel 
microbial associations33. While ML approaches have been applied to the vaginal microbiome, most have 
involved a single dataset with limited sample size34–36. One recent work explored the application of ML to 
12 vaginal microbiome datasets to predict PTB; however, while they leveraged public data extensively to 
ensure their findings were robust across studies, their work did not include an independent validation 
dataset30. Moreover, their work involved a single approach - a random forest ML model - with predictive 
accuracy for PTB ranging from 0.28 to 0.79.  We hypothesized that applying advanced computational and 
machine learning techniques to aggregated microbiome data across many diverse studies could be used 
successfully for identification of women at risk of delivering preterm, including against independent 
validation data unavailable to the models in the training phase.  
  
Building on the groundwork laid by the 2019 Preterm Birth Transcriptome Prediction DREAM Challenge24, 
we designed a new Challenge aimed at leveraging longitudinal microbiome data and crowdsourcing for 
prediction of (i) preterm or (ii) early PTB. DREAM Challenges define the prediction task, supply the 
necessary data, and provide the infrastructure to evaluate models designed by any participating teams; 
they do so in an unbiased manner using a gold-standard, undisclosed validation dataset. The Challenges 
are international, open science efforts to identify the best predictive models. Here, we provide the results 
from the Preterm Birth Microbiome Prediction Challenge, along with top models, and insights gained from 
this initiative. The dockerized code for all predictive pipelines are made available along with data used in 
the challenge at: http://www.synapse.org/preterm_birth_microbiome. This work can serve as the 
foundation for subsequent endeavors to better understand the mechanisms underlying PTB and early 
PTB, to translate into clinical practice predictive tests to help identify women at risk of delivering preterm, 
and to discover interventions for prevention of PTB. Likewise, we believe this is a robust scientific 
approach suitable for predictive modeling of other conditions based on microbiome data.  
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Results  
Overview  
The overall timeline of the Microbiome PTB DREAM challenge is shown in Figure 1. Major milestones 
included developing and harmonizing the training data, opening of the challenge to participants, post-hoc 
integration and harmonization of the validation data, assessment of models, and finally evaluation of the 
approaches and results. We leverage data across 9 studies including over 3,500 samples and utilized 
crowdsourcing to identify best predictive strategies and models for prediction of PTB. The endpoints of the 
challenge included PTB (delivery before 37 weeks of gestation) and early PTB (delivery before 32 weeks 
of gestation).   
  
Data Aggregation and Processing  
The training dataset was constructed by aggregating and processing vaginal microbiome data from the 
public domain leveraging resources including dbGAP37 as well as MOD Database for Preterm Birth 
Research38. The final dataset included data from nine studies, representing 3,578 samples from 1,268 
individuals. Of these patients, 851 delivered at term and 417 preterm (before 37 weeks of gestation) 
including 170 whose deliveries were early preterm (before 32 weeks of gestation). Details of the nine 
studies that were included in the training set are shown in Table 1. Supplementary Figure 1 illustrates the 
sampling strategies for each of the datasets, showing that some studies (like I and J) collected samples 
only once during gestation, while in most other studies samples were collected multiple times during 
gestation from the same individual. As shown in Table 1, while all of these studies focus on profiling the 
16S rRNA gene, primers targeting different variable regions of the 16S rRNA gene, PCR conditions, and 
sequencers all varied. The combination of microbiome data from different studies, particularly those using 
different underlying techniques, is a challenging task which has hindered prior efforts for meta-analysis of 
microbiome data. Likewise, integration of newly sequenced microbiome data ad hoc into an existing set of 
features is another barrier to the practical use of microbiome-trained predictive models. This was evident 
when we generated our first ordination of the training and validation data based on raw sequence reads, 
all preprocessed with DADA2 into amplicon sequence variants (ASVs), where specimens clustered more 
by the underlying technique (Figure 2a), such as primer selection, variable regions amplified, and 
sequencing platforms used. Thus, we first focused on harmonizing the microbiome data from the nine 
studies that comprised our training set into a common set of features that were not reliant upon taxonomy, 
but instead based on phylogenetic placement of the ASVs onto a common de novo maximum likelihood 
phylogenetic tree comprised of full-length 16S rRNA alleles. This approach is fully described and validated 
elsewhere, and was implemented as a Nextflow-based workflow called MaLiAmPi39. After processing with 
MaLiAmPi, we were able to overcome most of the technique-based noise and successfully harmonize the 
data into one cohesive feature set.  As seen in Figure 2b, phylogenetic placement resulted in Shannon 
alpha diversity measures that were consistent across the majority of the studies after processing with 
MaLiAmPi, although study F did have higher diversity across the samples. The separation between 
samples by outcome–from term, preterm, and early preterm deliveries–is not clearly evident (Figure 3a 
and b). There are some distinct differences observed with respect to community state types (CSTs) and 
outcome (Figure 3c and Supplementary Figure 3). Leveraging different types of microbial features 
including phylotype relative abundance, diversity measures as well as CST membership provide a unique 
opportunity to apply ML techniques to these data for PTB prediction. Additional dimensionality reduction 
plots demonstrating the successful integration of the data, colored by trimester of collection and 
demographic features, are presented in Supplementary Figure 2.  
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To build an independent test set for evaluating the models submitted by participants in this DREAM 
challenge, we combined an unpublished dataset from Wayne State University consisting of 159 samples 
across 60 individuals among whom 40 (66.7%) had term deliveries and 20 (33.3%) had preterm deliveries, 
including 5 (8.3%) who had early preterm deliveries. Most patients in this test set had three longitudinal 
samples. We also generated a second validation dataset that comprised 172 vaginal microbiome samples 
from 88 individuals, up to three samples (one sample per trimester) for each individual, with 48 individuals 
(54.5%) having term deliveries, and 40 individuals (45.5%) having preterm deliveries including 8 (9.1%) 
having early preterm deliveries. DNA extraction, V4 16S rRNA gene library preparation, and 16S rRNA 
gene sequencing (2x150 Paired-End sequencing on the Illumina NextSeq platform) of these samples was 
performed by the UCSF Benioff Center for Microbiome Medicine, with most samples yielding over 100,000 
reads (see Methods for details). Supplementary Figure 1 represents the week of gestation for the sample 
collection times for each individual from the two test datasets. These validation datasets became  
available only after the training dataset was generated and distributed to teams. Thus, the resultant reads 
had to be integrated into the same feature set as in the training data post-hoc. Using MaLiAmPi, we were 
able to  first generate the training data, preserving the features (e.g., phylotypes, alpha diversity, etc.) 
(Figure 2a, B) and further integrate the validation datasets.  The generalizability of these features across 
studies, including new study data, has allowed us to apply the ML models to these independent validation 
sets, and enable the use of the model on data to be generated in the future.  
  
The DREAM Challenge Results  
The Preterm Birth Microbiome Prediction DREAM Challenge launched on July 5, 2022 (Figure 1) and 
closed on September 16, 2022. There were two sub-challenges for this challenge: sub-challenge 1 - 
Prediction of PTB (before 37 weeks of gestation) and sub-challenge 2 - Prediction of early PTB (before 32 
weeks of gestation). The validation dataset for this second sub-challenge included only data from samples 
collected no later than 28 weeks of gestation (to reduce trivial predictions based upon later-in-gestation 
specimens being available from a pregnancy).  A baseline ‘organizers’ random-forest based model was 
developed with the training data to provide participants an example, inclusive of packing of the model 
within a docker container. Performance metrics that were used to evaluate the prediction models 
submitted by the teams include area under the receiver operator characteristic (AUROC) curve, area 
under the precision-recall (AUPR) curve, accuracy, sensitivity, specificity and Matthews Correlation 
Coefficient (MCC). All values were determined on bootstrapped validation data, with the mean 
bootstrapped value used to evaluate the model. The primary scoring metric was set at the onset to be 
AUROC, followed by AUPR to break ties.  
   
There were 318 participants from all over the world with 136 and 110 submissions for sub-challenges 1 
and 2, respectively. The prediction models with top-ranking submissions achieved mean bootstrapped 
AUROC scores of 0.688 and 0.868 respectively for the 2 sub-challenges (Figure 4, Supplementary Tables 
1 and 2). Several techniques were carried out in order to ensure the robustness of the resulting rankings 
including test set label inversion, bootstrapping, oversampling, and undersampling (see Methods). The 
results are shown in Supplementary Figures 4 (sub-challenge 1) and 5 (sub-challenge 2).  
  
A few patterns emerged in the best-performing predictive models for sub-challenge 1 (Table 3) and 
subchallenge 2 (Table 4). Nearly all of the models used tree-based approaches (typically implemented as 
part of the python Scikit Learn40 package), such as random forest and relatives. A few models used 
regression approaches with inclusion of gestational age at sampling (with feature pruning and clustering), 
or neural networks. All of these modeling approaches are notable for their aggressive pruning or 
consolidation of features well-suited for handling both sparse and highly dimensional data. Therefore, 
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avoiding overfitting the training data was a shared and likely essential attribute of the best-performing 
models.  
  
Predictive Features:   
Next we focused on identifying common features that the best performing models (as judged by mean 
bootstrapped AUROC, one model per team) relied upon to make their predictions. We used feature 
permutation (limited to models that could make a prediction in a tractable time) as a means of empirically 
identifying the feature tables and individual features that the models depended upon for their predictions. 
For both sub-challenges, the best performing models relied upon alpha diversity, VALENCIA community 
state types, and some form of composition (either phylotypes or taxonomy) (Figure 5). There was a 
preference for phylotypes over taxonomy for the very best performing models for both sub-challenges .   
  
We used feature permutation to first identify features used by the top-performing predictive models in 
subchallenge 1 (Figure 6a), and then proceeded to establish the univariate relationship with PTB stratified 
by trimester. A surprising number of phylotypes (at a phylogenetic distance of 0.1) were significantly 
associated with PTB in the second trimester (Figure 6a) when analyzed as present-absent and assessed 
with a Fisher’s exact test and contingency table after summarizing each pregnancy by trimester (to 
address repeated sampling in some of the underlying studies). As would be expected, Lactobacillus 
species generally were negatively associated with PTB. Curiously, one Lactobacillus jensenii-like 
phylotype is positively associated with PTB when present in the second trimester. Likewise, in the third 
trimester, two distinct Lactobacillus were more prevalent with PTB. Both are contrary to the broad notion 
that Lactobacillus are beneficial in preventing PTB. Alpha diversity metrics (Figure 6a) and VALENCIA 
community state types (Figure 6a) were largely insignificant when evaluated as univariates.    
  
Much like with sub-challenge 1, we next used feature permutation to identify features used by multiple 
topperforming models in sub-challenge 2, predicting early PTB, followed by univariate correlation of these 
features with early PTB (Figure 6b). The better predictive performance of the sub-challenge 2 models 
(predicting early PTB) makes feature permutation more robust.  In the second trimester (Figure 6b), 
phylotypes corresponding to multiple Lactobacillus strains were less prevalent in early PTB pregnancies. 
Curiously, one Gardnerella vaginalis strain was less prevalent in early PTB, contrary to this organism 
typically being thought of as a risk factor. For alpha diversity (Figure 6b), increased phylogenetic entropy 
in the second trimester was the most cleanly associated with early PTB. VALENCIA community state type 
IIIA or III-B in the second trimester were the most associated with early PTB (Figure 6b).   
  
Sub-challenge 1 - Top performing teams:   
  
Team UWisc-Madison   
  
For predicting PTB, a LightGBM-based pipeline was built using an ensemble strategy tailored for vaginal 
microbiome data collected from multiple projects. The model was developed using specimens collected no 
later than 32 weeks of gestation and included five types of features: counts of taxa at different taxonomic 
levels, counts of phylotypes, microbiome community states, alpha diversity metrics, and metadata (age, 
collection week, and race). In particular, the counts of taxa at the family, genus, and species levels, the 
counts of phylotypes defined at phylogenetic distances of 0.5 and 1, and the alpha diversity metrics 
including Shannon index, Inverse Simpson Index, phylogenetic entropy, balance-weighted phylogenetic 
diversity, and rooted/unrooted/quadratic phylogenetic diversity were used. To obtain scale-invariant 
values, the centered log-ratio (CLR) transformation41 was applied to each type of the microbiome count 
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data. Rare microbial features with less than 5 non zero counts in any of the studies of the training set were 
removed. The LightGBM model was chosen as the prediction model due to its well-known efficiency42. 
Each specimen was one training sample and each training sample had a total of 1,991 features. Five-fold 
cross-validation on the subject level was used to tune hyperparameters. Because Project G had a very 
different sequencing depth profile (the average sequencing depth of Project G is 185,010, whereas the 
value is below 50,000 for other projects), two prediction models were built: one was trained using 
specimens from all projects (Model 1) and one was trained only using specimens from Project G (Model 
2). When making a prediction given a specimen, the ensembling weights of Model 1 and Model 2 were 
generated by a logistic regression model with sequencing depth and collection week as features. As one 
subject is likely to have multiple vaginal microbiome specimens, a customized weighting method was 
designed to aggregate predictions from multiple specimens on one subject. If a subject has multiple 
specimens, then the weight of each specimen equals the collection week of the specimen divided by the 
sum of the collection weeks of all specimens from the subject. In other words, the closer a sample was to 
delivery, the more impact it would make on the final prediction. The architecture of the pipeline is 
presented in Supplementary Figure 6. This pipeline achieved an AUROC of 0.69 and an AUPRC of 0.58 
when tested on the validation dataset for sub-challenge 1.  
  
Team AI4knowledgeLAB  
  
To predict the risk of PTB, a workflow based on an ensemble of random forest43  models with 
oversampling of the minority class had been used. For the implementation of the model, both metadata 
and characteristic data of the vaginal microbiome were used. Concerning metadata, information on race 
and ethnicity and the gestational week when the sample was collected were included into the analysis. 
Microbiome data included: relative abundances of clusters of variants measured at three different 
phylogenetic distances (0.1, 0.5, 1), alpha-diversity metrics, and “VALENCIA Community State Types” 
(CST). The pipeline is shown in Supplementary Figure 7.  
  
The first step was to eliminate samples collected after the 32nd week of gestation. A model was then built 
that takes three different matrices as input, one for each phylogenetic distance, to create three 
independent models that can output three different predictions for the same individual, which are then 
combined using an ensemble strategy. Each input matrix had a number of features of 9743, 3651, and 
1871: to each matrix of relative abundance of phylotypes were added features related to: alpha-diversity 
(7), CST (11), and demographics (8).  
  
To make the dataset more balanced, a data augmentation algorithm, SMOTE (Synthetic Minority 
Oversampling Technique)44, was adopted. As a classification algorithm, random forest was chosen using 
the default parameters of the Scikit-learn python package40 due to its efficiency in handling datasets with a 
high number of features45. The final output was obtained as the average of the three probability values and 
the associated class was obtained from the probability value by imposing the classic threshold of 0.5. The 
prediction model achieved an AUROC of 0.64 and an AUPRC of 0.48 on the Dream Challenge validation 
dataset.  
  
Sub-challenge 2 - Top performing Teams:  
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Team Techtmann Lab  

To predict early PTB, a basic random forest classifier was employed using python’s Scikit-learn package40. 
Training data included relative abundances clustered phylogenetically at a distance of 0.1, race of the 
patient, VALENCIA community state types, diversity metrics, and collection week. This model used default 
Scikit-learn parameters and involved no additional feature selection or hyperparameter tuning. When 
tested on the competition validation dataset, the model reported an AUROC of 0.87 and an AUPRC of 
0.45.  

When investigating feature importance diversity metrics, race, community state type, sample collection 
week, and some phylotypes were found to be the most important features in the model’s decision-making.  
Specifically, five phylotypes whose relative abundances were identified as important to predict early PTB: 
Lactobacillus jensenii, Lactobacillus iners, Lactobacillus crispatus, Prevotella bivia, and Ureaplasma 
urealyticum. This approach is hypothesized to result in a model that was not over-tuned to the training 
data, allowing it to generalize well to the competition validation dataset.  

Team KBJ  
  
With the approach of team KBJ for sub-challenge 2, several processes were applied to improve the model 
prediction performance (Supplementary Figure 8). First, samples were filtered out by collection week 
conditions as the test dataset and aggregated all corresponding features. Here, one feature type was 
selected among several for taxonomy and phylotypes – genus-level and 0.1 phylogenetic distance, 
respectively. Also, race information was considered, while pairwise distance was excluded. Next, 
significant features were selected using the minimum redundancy maximum relevance46, which considers 
mutual information of features in terms of response variables (i.e., early preterm versus non-preterm). The 
feature selection was conducted for phylotypes, sequence variants, and taxonomy whose dimensions are 
relatively large compared to the data size. Then, an ensemble model was constructed with five algorithms 
(Linear Support Vector Classification47, Support Vector Classification47, Quadratic Discriminant Analysis48, 
Calibrated Classifier49, and Passive Aggressive Classifier50) that solely performed the best in 
crossvalidation. All compared models were tested with default parameters by the Lazy Predict51 and Scikit-
learn40 python packages. The prediction model constructed by team KBJ achieved an AUROC of 0.841 
and an AUPRC of 0.270 on the Dream Challenge validation dataset. Specifically, the model showed good 
balanced accuracy (sensitivity: 0.77; specificity: 0.79).   
  
Sensitivity analysis on gestational age at sampling:   
To ensure that the best performing models were not overly reliant upon the gestational week of collection 
of specimens, we performed a sensitivity analysis–removing gestational age at sampling or permuting 
gestational age values (Table 5). Model performance was only modestly affected removing model access 
to the gestational age of collection, indicating the predictions were primarily based on other attributes.  
  
Post-challenge ensemble models:   
Several ensemble models were created - combining results of (a) the winning teams, (b) the teams with 
Bayes factor < 20 (Tables 3 and 4), and (c) all the participants across the two sub-challenges (Figure 7). 
An improvement in performance was observed across the board with the ensemble models of Bayes 
factor < 20 performing the best AUROC 0.74 and AUROC 0.91 respectively for sub-challenges 1 and 2.   
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Discussion  
PTB, particularly early PTB (before 32 weeks of gestation), remains a potentially devastating outcome of 
pregnancy. Without a clear way of identifying pregnancies at risk for PTB, it remains difficult to target 
interventions or clinical trials. The microbiome has been extensively correlated in single-center studies 
with the risk for PTB, opening the promise of using the vaginal microbiome to build rigorous, generalizable, 
and robust predictive models to identify pregnancies at risk for PTB. However, results from various studies 
were largely inconclusive. In addition, combining data from different microbiome studies into a predictive, 
stable, and generalizable set of features for the rigorous evaluation of predictive models against 
independent validation datasets and their eventual use with vaginal microbiome data from individual 
pregnancies clinically is non-trivial. In this study, we leveraged data from 9 independent studies of the 
vaginal microbiome during pregnancy. The data was aggregated from public domain sources including 
dbGAP and the MOD Database for Preterm Birth Research. The final training dataset included data from 
3,578 samples across 1,268 individuals, with 851 individuals delivering at term and 417 delivering preterm, 
including 170 early preterm deliveries. We applied a novel scientific and technical schema (implemented in 
a software workflow MaLiAmPi) for harmonizing microbiome data at the sequence-level, even when 
generated with different underlying primers and sequencing platforms, to transform the raw data into a 
stable and generalizable set of features suitable for predictive modeling. This schema also allowed the 
post hoc integration of microbiome data from two independent validation sets (that were unavailable at the 
time of the release of the training set) into the same set of features: an unpublished dataset from Wayne 
State University/Perinatology Research Branch and a second validation dataset generated by UCSF from 
samples provided by Stanford University. Crowdsourced predictive models were developed by 318 teams 
based on the training feature set and evaluated against the independent validation data within the same 
schema of features. Multiple teams were able to generate predictive models for both PTB and early PTB, 
with the models predicting the latter particularly robustly.  
  
We noted that the best-performing predictive models all employed some type of feature-pruning and 
selection, typically within the broad family of random forest-like models. Given the sparseness of 
microbiome data, and plethora of features that can be detected, it is not surprising that modeling 
techniques more resilient to overfitting, and better able to hone in on the most important features, 
performed better. This risk of overfitting also speaks more broadly to the value of validating microbiome 
associations and predictive models on independent data sets; even with a large training data set 
consisting of multiple studies, teams often needed to adjust their models to reduce the risk of overfitting to 
perform well against the validation data.  
  
While taxon data were provided to teams (the current state of the art for combining microbiome data), it is 
notable that the novel taxonomy-independent phylotypes were used by a majority of the better performing 
models. Taxonomy-based features were overall a challenge for participants, as there was poor overlap 
between the training and validation data sets at the taxonomic level. This required teams that relied upon 
taxonomy to preprocess the taxonomic feature tables, drop taxa that were not observed in the training 
data. In contrast, the taxonomy-independent phylotypes were intrinsically overlapped between the training 
and validation data.  
  
An expected finding in our study is that more severe cases which involve early delivery were easier to 
predict from vaginal microbiome data than all PTB cases. This result was consistent for multiple 
independent modeling teams, including teams who tackled both sub-challenges, with sub-challenge 2 
(predicting early PTB) models generating better predictions (as judged by our metrics, including AUROC). 
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This was expected given that in early PTB the frequency of intra-amniotic infection is higher, and infection 
may be caused by ascending bacteria it’s been previously observed that there is a relationship between 
PTB and the vaginal microbiome52 also, it’s potentially a more extreme phenotype (rephrase). . Further 
study is needed, but we believe this could suggest that the vaginal microbiome has a stronger causal 
contribution to early PTB.   
  
Through feature-permutation combined with multiple independently-developed highly-predictive models, 
we were able to identify multiple organisms, community state types, and community structures that 
associate with the risk for PTB opening the door to future studies into the underlying biology and 
pathophysiology of these associations, as well as more precise and effective intervention upon the vaginal 
microbiome during pregnancy to reduce the risk of PTB. In particular, while non-dominance of 
Lactobacillus in vaginal microbiome communities has previously been associated with PTB26–28, there 
seems to be physiologicallyrelevant species- and strain-level variability within the Lactobacillus and 
Gardnerella genera across pregnancy trimesters that deserves further exploration and indicates a 
potential role forintra-niche competition in the vaginal microbiome during pregnancy and the risk for early 
PTB.   
  
The training data set itself, inclusive of the stable and generalizable features, is an invaluable resource for 
future studies of the vaginal microbiome during pregnancy. This training set, and more importantly the 
stable set of features, is a possible means of avoiding a challenge in the microbiome literature, where 
each study reports on a slightly different set of features. Future novel studies can leverage this large, 
geographically diverse, and strictly formatted data set to leverage and validate their findings.   
  
The study has several limitations that should be considered when interpreting the results. The study is 
based on publicly available data which might not have full clinical or demographic annotations of the 
samples in the metadata. In particular, the spontaneous nature of PTB could not be ascertained for all 
patients in the training set, and differentiating between spontaneous preterm labor and delivery and 
preterm prelabor rupture of the membranes was not feasible. Recent work suggests that this latter 
phenotype is more likely associated with the microbiome53,54. While the sample size of the study is 
considerable, with 3,578 samples across 1,268 individuals, it may not be representative of the entire 
population of pregnant women from around the world. We only considered binary outcomes (term vs 
preterm delivery) and did not take into account other important outcomes such as low birth weight or 
neonatal morbidity. The study is a computational challenge, and the results of the models are only as good 
as the data that they are trained on, and the limitations of the data may be reflected in the results. Finally, 
we only used data from the vaginal microbiome, which may not fully reflect the overall health of the 
pregnant women; other factors such as genetics, host-response, lifestyle, or environment may also play a 
significant role in parturition timing.  
  
This work serves as the basis for several potential follow up studies. To improve the performance of the 
models, additional data such as demographic, clinical data, environmental data, or data from other body 
sites could be incorporated into the models. To better understand the mechanisms underlying PTB and 
early PTB further in vitro and in vivo validation of individual microbial features identified by the models can 
point to the underlying molecular mechanisms of human parturition. Studying how to in turn modulate the 
microbes can result in therapeutic hypotheses. Once the models have been validated and optimized, the 
next logical step is to translate them into clinical practice to help identify women at risk of PTB and to 
develop appropriate interventions to prevent PTB.  
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Together, we believe this represents a genuine advancement in our ability to identify pregnancies at risk 
for early PTB. Given these models rely upon a generalizable set of features that can accommodate post-
hoc data from individual pregnancies, these predictive models are ‘shovel ready’ for use in clinical trials 
and exploration of their potential role in the clinical care of pregnancies. Further, we believe this scientific 
and technical schema could be suitable for building microbiome-based predictive models for other 
microbiomerelated conditions.  

Methods  
Collection, generation, and analysis of vaginal microbiome data was approved by the National Heart, 
Lung, and Blood Institute (NHLBI) Clinical Data Science Institutional Review Board (CDS-IRB) in study 
number 2021-040, and reliance was granted to the NHLBI CDS-IRB by the University of California, San 
Francisco Institutional Review Board in study number 21-35274.  
  
Training Data Acquisition and Processing  

  
The following vaginal microbiome studies were identified by leveraging the March of Dimes Preterm Birth 
database38, the NCBI Sequence Read Archive55, the European Nucleotide Archive56, and the database of 
Genotypes and Phenotypes (dbGaP)37. Sequence data and associated metadata for the DiGiulio et al.27 
cohort were downloaded from ImmPort57, under Study SDY465 in May 2016. Sequence data and 
associated metadata for Romero et al.58 cohort were downloaded from the NCBI Sequence Read Archive 
under BioProject PRJNA242473 in May 2016. Sequence data and associated metadata for the Callahan 
et al.28 cohort were downloaded from the NCBI Sequence Read Archive under BioProject PRJNA393472 
in January 2018. Sequence data and associated metadata for the Stout et al.59 cohort were downloaded 
from the NCBI Sequence Read Archive under BioProject PRJNA294119 in January 2018. Sequence data 
for the Kindinger et al.60 cohort were downloaded from the Sequence Read Archive of the European 
Nucleotide Archive under Projects PRJEB11895 and PRJEB12577 in June 2020, and associated 
metadata was downloaded from Additional Files 4 and 6 from the paper with some additional metadata 
requested from the senior author. Sequence data and associated metadata for the Brown et al. (2018)61 
cohort were downloaded from the Sequence Read Archive of the European Nucleotide Archive under 
Project PRJEB21325 in June 2020 with some additional metadata requested from the senior author. 
Sequence data and associated metadata for the Brown et al. (2019)53 cohort were downloaded from the 
Sequence Read Archive of the European Nucleotide Archive under Project PRJEB30642 in June 2020 
with some additional metadata requested from the senior author. Sequence data and associated metadata 
for the Elovitz et al.62 cohort were downloaded from the database of Genotypes and Phenotypes 
(dbGaP)37 under accession number phs001739.v1.p1 in September 2021. Sequence data and associated 
metadata for the Fettweis et al.63 cohort were downloaded from the NCBI Sequence Read Archive under 
BioProject ID PRJNA430482 in January 2022, and associated metadata were requested through and 
obtained from the RAMS Registry (https://ramsregistry.vcu.edu).    
  
Validation Data Generation  
  
Wayne State University  
Study design, sample collection   
The microbiome dataset from Wayne State University School of Medicine included in the challenge was a 
subset of randomly selected 20 cases and 40 controls from a larger retrospective longitudinal case-control 
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study described in detail elsewhere (https://www.researchsquare.com/article/rs-2359402/v1)54. The 20 
spontaneous PTB cases included both spontaneous preterm labor with intact membranes (PTL) and 
preterm prelabor rupture of membranes (PPROM) resulting in delivery 20-36+6 weeks. Cases had 3 or 4 
longitudinal samples collected from 10-36 weeks of gestation which were matched with samples from 
controls (2 to 4 samples per patient). Term controls were defined as women who delivered between 38 
and 42 weeks of gestation without congenital anomalies or obstetrical, medical, or surgical complications. 
Samples of vaginal fluid were collected using a Dacron swab (Medical Packaging Corp., Camarillo, CA). 
Vaginal swabs were stored at −80°C until time of DNA extraction, following established standard operating 
procedures. The study was conducted at the Perinatology Research Branch, an intramural program of the 
Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of 
Health, U.S. Department of Health and Human Services, Wayne State University (Detroit, MI), and the 
Detroit Medical Center (Detroit,  
MI). The collection of samples was approved by the Institutional Review Boards of the National Institute of 
Child Health and Human Development and Wayne State University (#110605MP2F(RCR)). All 
participating women provided written informed consent prior to sample collection.  
  
DNA extraction from vaginal swabs  
Genomic DNA was extracted from vaginal swabs using a Qiagen MagAttract PowerMicrobiome DNA/RNA 
EP extraction kit (Qiagen, Germantown, MD), with minor modifications to the manufacturer’s protocols as 
described in (https://www.researchsquare.com/article/rs-2359402/v1). The purified DNA was transferred to 
the provided 96-well microplates and stored at -20°C.  
  
16S rRNA gene sequencing and processing  
The V4 region of the 16S rRNA gene was amplified from vaginal swab and control DNA extracts and 
sequenced at Michigan State University’s Research Technology Support Facility  
(https://rtsf.natsci.msu.edu/) using the dual indexing sequencing strategy developed by Kozich et al.64. The 
forward primer was 515F: 5’-GTGCCAGCMGCCGCGGTAA-3’ and the reverse primer was 806R: 
5’GGACTACHVGGGTWTCTAAT-3’.  
  
Stanford University  
Study design, sample collection   
The Stanford University microbiome dataset included in the challenge consisted of 40 cases and 48 
controls from a repository of specimens from women enrolled in a longitudinal study conducted by the 
March of Dimes Prematurity Research Center at Stanford University. Samples of vaginal fluid were 
collected using a 2x Sterile Catch-All™ Sample Collection Swab (Epicentre Biotechnologies #QEC091H, 
Madison, WI). Vaginal swabs were placed into tubes then immediately placed on ice or in a household 
freezer (-20°C). After samples arrived at the March of Dimes Prematurity Center they were immediately 
placed on dry ice, inventoried, and then stored at −80°C at the Stevenson Laboratory until time of DNA 
extraction. The study was conducted at Stanford Hospital and Clinics. The collection of samples was 
approved by the Institutional Review Board of Stanford University (Study number 21956). All participating 
women provided written informed consent prior to sample collection.  
  
Vaginal swab DNA extraction and 16S rRNA sequencing  
Genomic DNA extraction and microbial sequencing were performed at the Microbial Genomics CoLab 
Plugin Facility within the Benioff Center for Microbiome Medicine at University of California, San Francisco. 
First, vaginal swabs were aseptically transferred to 2 mL tubes pre-filled with 300 µL sterile molecular-
grade water. Vaginal samples were vortexed with the swab remaining in the tube. 200 μL vaginal 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 11, 2023. ; https://doi.org/10.1101/2023.03.07.23286920doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.07.23286920
http://creativecommons.org/licenses/by-nc-nd/4.0/


suspension from the tube was withdrawn for downstream processing using the QIAamp BiOstic DNA Kit 
(QIAGEN, Hilden, Germany). DNA from all samples and several extraction blanks were extracted 
according to the manufacturer's protocol and eluted in 50 µl EB buffer. DNA concentrations were 
quantified using the Qubit dsDNA HS Assay Kit (ThermoFisher Scientific, MA), diluted to 5 ng/µL and 
stored at -20°C.  
  
The V4 hypervariable region of the 16S rRNA gene was amplified using 515F and 806R primers65 with 
PCR conditions previously described66. Amplicon reactions were quantified using the Qubit dsDNA HS 
Assay Kit (ThermoFisher Scientific, MA), and pooled at equimolar concentrations. The pooled library was 
cleaned and concentrated using the Agencourt AMPure XP beads (Beckman-Coulter), quality checked 
with the Bioanalyzer DNA 1000 Kit (Agilent, Santa Clara, CA), quantified using the KAPA Library 
Quantification  
Kit (KAPA Biosystems), and diluted to 2 nM. Library was denatured according to manufacturer’s protocol 
and spiked in with 40% PhiX control prior to loading onto the NextSeq 550 platform (Illumina, San Diego, 
CA) for 2 x 150bp sequencing.  
  
Data Processing and Normalization   
  
We applied MaLiAmPi39 to both training and test data to process and aggregate the datasets.  
Standardized processed data format facilitates running Docker containers, as we had participants use in 
our Challenge, and choosing feature sets for permutation. MaLiAmPi is available as a nextflow workflow, 
and is 100% containerized to allow for usage on multiple different high performance computing resources. 
In brief, MaLiAmPi uses DADA2 to assemble each project’s raw reads into approximate sequence variants 
(ASVs). These ASVs are used to recruit full-length 16s rRNA gene alleles from a repository (based on 
sequence identity). These recruits are assembled into a de novo maximum-likelihood phylogeny with 
RAxML and the ASVs are placed onto this common phylogenetic tree with EPA-ng. Finally, these 
placements are used to determine the alpha-diversity of communities (diversity measures include 
Shannon, Inverse Simpson, Balance weighted phylogenetic diversity (bwpd), phylogenetic entropy, 
quadratic, unrooted phylogenetic diversity, and rooted phylogenetic diversity), phylogenetic (KR) distance 
between communities, provide taxonomic assignments to each ASV, and cluster ASVs into phylotypes 
(based on phylogenetic distance between ASVs). Sequence variance counts were also determined. In 
addition, VALENCIA67 was used to provide the community state type (CST) of each sample and alluvial 
plots were made using the ggalluvial R package68 in order to visualize CST composition by trimester. 
UMAP representations of the data and violin plots of Shannon alpha diversity before and after processing 
of the data with MaLiAmPi were visualized to gauge data harmonization. Extensive use of the Python 
seaborn visualization package was used for figure preparation.   
  
DREAM Challenge  
  
Overall Challenge structure.  
The overview of the Challenge is shown in Figure 1. All Challenge elements were supported by the 
Synapse platform (http://www.synapse.org), including documentation, access to the data, submission of 
models, leaderboards, and the discussion forum. To gain access to the data, teams were required to 
comply with a data use agreement, restricting use of the data outside the Challenge and providing 
guidelines on ethical participation in the Challenge. Teams were provided the training data, they built their 
models, dockerized their environment, and submitted their models through the Synapse platform. Models 
were run on the test data and performance metrics were returned to the teams. Teams were limited to 5 
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total submissions with the top performing model selected as the final submission to be scored and ranked. 
Leaderboards were provided throughout the open phase of the Challenge, which provided teams with real-
time feedback and comparative performance rankings. After the close of the Challenge, models were 
evaluated for completeness and reproducibility. For teams to be included in the Preterm Birth DREAM 
Community, they were required to make the code public, provide a method write-up, and participate in a 
post-challenge survey to collect information on method development and features of the data important to 
the model.   
  
Participant engagement.   
Information  about  our  challenge  was  shared  through  the  Dream  Challenges  website  
(https://dreamchallenges.org). Challenge organizers also shared information about the challenge through 
listservs such as ML-news Google News Group and social media outlets including Facebook, LinkedIn, 
Reddit, and Twitter.  
  
In order to preserve model environments for portability of models, we required participants to submit 
Docker environments. These environments contain the necessary programming dependencies and 
models for each sub-challenge that can run on a processed and prepared microbiome dataset folder 
arranged in a standardized format. The organizers prepared an example Docker container for participants 
to utilize as a starting template and held occasional seminars to describe the data and answer questions 
from participants. Organizers also engaged with participants through the forums to help answer questions 
throughout the challenge.   
  
Assessment Strategies.   
Performance metrics that were used to evaluate the teams include Area under the receiver operator 
characteristic (AUROC) curve and Area under the precision-recall (AUPR) curve. On the held-out external 
validation dataset, metrics of accuracy, sensitivity, and specificity were also computed. These metrics 
were shown on the final public rankings.   
  
The reproducibility of models, including the baseline, were determined by calculating the Bayes factor for 
1000 bootstrapped iterations on a random sampling of the data. For each sub-challenge, the best-
performing models from each team were rerun to obtain scores on the random sampling. These scores 
were then used to calculate the Bayes factor, using the computeBayesFactor function from the challenge 
scoring R package69, comparing them to the top-performing model as well as the baseline model.    
  
To increase our certainty of DREAM Challenge participants’ rankings whose models’ performances could 
have been affected by prediction threshold and class imbalance in our validation dataset, we employed 
the following strategies to validate participants’ models for both sub-challenges on the external dataset: 
inverting labels, bootstrapped random subsampling, bootstrapped under-sampling, and bootstrapped over-
sampling.  
  
Inverted labels: Invert the class labels for the external dataset and prediction model outputs (i.e., 
classifying preterm or early preterm births as term births, and vice versa), and computing AUROC/AUPR 
curves.  
  
Bootstrapped random subsampling: Randomly sample a subset of 100 from the 152 participants of the 
external dataset, and run the prediction models on the validation data subset, bootstrapped 1000 times.  
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Bootstrapped undersampling: Undersample the external dataset (n = 152) to balance the minority 
(Preterm, n = 63. Early preterm, n=13) and majority (i.e., Term, n = 89) classes by randomly sampling from 
the minority and the majority groups to have the same number in each group (n = 50 for Preterm and n = 
50 for Term in sub-challenge 1, and n = 13 for Early Preterm and n = 13 for Term in for sub-challenge 2), 
and then computing AUROC/AUPRC on the undersampled external validation dataset, bootstrapped 1000 
times.  
  
Bootstrapped oversampling: Oversample the external dataset to balance the preterm or early preterm and 
term classes by randomly sampling per group (n = 200 for Preterm and n = 200 for Term in sub-challenge 
1, and n = 200 for Early Preterm and n = 200 for Term in for sub-challenge 2), and then computing 
AUROC/AUPRC oversampled external dataset, bootstrapped 1000 times.  
  
Individual team methods are linked to in Supplementary Table 1.   
  
DREAM challenge participants and teams were surveyed to gather information on how they developed 
their models.   
  
Feature importance was determined across the best performing models for sub-challenges 1 and 2 that 
demonstrated predictive performance at threshold of 0.64 for sub-challenge 1 and a threshold of 0.80 
subchallenge 2 which also could be run in a bootstrapped manner in a tractable amount of time  
  
Sensitivity analysis was carried out removing gestational age at sampling as a feature.   
  
As with previous DREAM Challenges, ensemble models were generated to explore the "wisdom of the 
crowds" phenomenon, by aggregating the best-performing models from each team. For each sub-
challenge, we experimented with 3 ensemble models by calculating the mean estimation from: 1) top two 
performing models; 2) models with Bayes factor less than 20; 3) all models.  
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Data availability  
Sequence data and associated metadata for Study SDY465 were downloaded from ImmPort57 via the 
March of Dimes Preterm Birth database38. Sequence data and associated metadata for BioProjects 
PRJNA242473,  
PRJNA294119, PRJNA393472, and PRJNA430482 were downloaded from the NCBI Sequence Read 
Archive55. Additional associated metadata for PRJNA430482 were requested through and obtained from 
the RAMS Registry (https://ramsregistry.vcu.edu).    
  
Sequence data and associated metadata for Projects PRJEB11895, PRJEB12577, PRJEB21325, and 
PRJEB30642 were downloaded from the Sequence Read Archive of the European Nucleotide Archive56, 
with associated metadata for PRJEB11895 and PRJEB12577 downloaded from Additional Files 4 and 6 
from the paper by the Kindinger et al.60. Additional associated metadata for Projects PRJEB11895, 
PRJEB12577, PRJEB21325, and PRJEB30642 were requested from the senior author.  
  
Sequence data and associated metadata for accession number phs001739.v1.p1 were downloaded from 
the database of Genotypes and Phenotypes (dbGaP)37.  
  
The training dataset representing 7 of the 9 aggregated studies and the validation dataset for our 
Challenge are available under Study ID SDY2187 from the MOD Preterm Birth Research Database 
(https://pretermbirthdb.org/mod/studydata). Two of the nine training data (PRJNA430482 and 
phs001739.v1.p1.) are exclusively available via dbGap after following the application procedures there.  
  

Code availability  
The  code  for  the  microbiome  data  harmonization  tool,  MaLiAmPi,  is 
 available  at https://github.com/jgolob/maliampi.  
  
DREAM challenge participants’ code for sub-challenge 1 and sub-challenge 2 is in their docker 
submissions which may be accessed by the hyperlinks listed in Supplemental Tables 1 and 2, 
respectively, of this work.  
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TABLES  

Table 1:  Summary of participants, samples, and V region sequences of training (AJ) 
and validation (W and S) datasets  

  

Study
ID  

  Study  
Accession ID 

Center  Title (Authors, year)  
# of  

Particip 
ants  

# of Term 
| PTB | 
Early  
PTB  

Participa 
nts  

  

# of  
Sample 

s  

# of  
Term|PTB 

| Early  
PTB  

Samples  

 V Region 
Sequenc 

es  

Instrum
nt  

A  SDY465   Stanford 
University  

Temporal and spatial variation of 
the human microbiota during 

pregnancy (DiGiulio et al., 2015) 
39  32|7|3  231  180|51|21 V3 - V5  

454 GS
FLX  

Titanium

B & J 
PRJEB11895 

&  
PRJEB12577  

Imperial  
College 
London  

The interaction between vaginal 
microbiota, cervical length, and 
vaginal progesterone treatment  
for preterm birth risk (Kindinger  

et al., 2017)  

116  91|25|9  116  91|25|9  V1 - V3  Illumina
MiSeq 

C  PRJEB21325  
Imperial  
College 
London  

Vaginal dysbiosis increases risk 
of preterm fetal membrane  

rupture, neonatal sepsis and is  
exacerbated by erythromycin  

(Brown et al., 2018)  

110  18|92|49  144  20|124|67 V1 - V2  Illumina
MiSeq 

D  PRJEB30642  
Imperial  
College 
London  

Establishment of vaginal 
microbiota composition in early  
pregnancy and its association 

with subsequent preterm  
prelabor rupture of the fetal 

membranes (Brown et al., 2019) 

70  15|55|21  134  26|108|38 V1 - V2  Illumina
MiSeq 

E  PRJNA242473
University of 

  
Maryland  

The vaginal microbiota of 
pregnant women who  

subsequently have spontaneous 
preterm labor and delivery and 
those with a normal delivery at 

term (Romero et al., 2014)  

73  57|16|10  168  137|31|19 V1 - V3  
454 GS

FLX  
Titanium

F  PRJNA294119
Washington  

  
University  

Early pregnancy vaginal 
microbiome trends and preterm 

birth (Stout et al., 2017)  
74  51|23|2  145  99|46|2  V1 - V3  

454 GS
FLX  

Titanium

G  PRJNA393472
Stanford  

  
University  

Replication and Refinement of a 
Vaginal Microbial Signature of  
Preterm Birth (Callahan et al, 

2017)  
134  85|49|20  957  670|287|7 

1  V4  
llumina
HiSeq 
2500 

H  PRJNA430482

Virginia  
 
Commonweal 

th  

 The vaginal microbiome and 
preterm birth (Fettweis et al.,   114  70|44|11  216  137|79|19 V1–V3   

Illumina
HiSeq 
4000 
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I  
PRJNA504518
(phs001739.v1

.p1.)  

  
University of  
Pennsylvania 

Cervicovaginal microbiota and 
local immune response modulate 
the risk of spontaneous preterm 

delivery (Elovitz et al., 2019)  
538  432|106|4 

5  1467  1229|238| 
82  V3 - V4  

Illumina
HiSeq 
2500 

S  Not applicable 
Stanford 

University  Not applicable  88  48|40|8  172  95|77|18  V4  
Illumina
NextSeq

550  

W  Not applicable 
Wayne State 

University  

Working title: The Vaginal  
Microbiota in Early Pregnancy  

Identifies a Subset of Women at 
Risk for Early Preterm Prelabor  

Rupture of Membranes and 
Preterm Birth  

60  40|20|5  159  102|57|17 V4  Illumina
MiSeq 

Total Not applicable 
Not 

applicable  Not applicable  1416  939|477|1 
83  3909  2786|1123 

|363  

V1, V2,  
V3, V4,  
+/or V5  

454 GS
FLX  

Titanium
Illumina
MiSeq,
Illumina
HiSeq 
2500, 

Illumina
HiSeq 

4000, or
Illumina
NextSeq

550  

  

        

        

  

    
Table 2: Summary of demographics of training (A-J) and validation (S and W) 
datasets   

  

   Group  Total  
Training (A 

- J)  
Validation 

(S & W)  

Individuals  n  1416  1268  148  

Age Range, n (%) 
   
   
   
   

Unknown  691 (48.8)  691 (54.5)  0 (0)  

Below 18  4 (0.3)  4 (0.3)  0 (0)  

18 to 28  304 (21.5)  227 (17.9)  77 (52.0)  

28 to 38  357 (25.2)  293 (23.1)  64 (43.2)  
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Above 38  60 (4.2)  53 (4.2)  7 (4.7)  

Race, n (%)  
   
   
   
   
   

Race: American Indian or Alaska Native  9 (0.6)  6 (0.5)  3 (2.0)  

Race: Asian  84 (5.9)  81 (6.4)  3 (2.0)  

Race: Black or African American  827 (58.4)  759 (59.9)  68 (45.9)  

Race: Native Hawaiian or Other Pacific Islander  7 (0.5)  3 (0.2)  4 (2.7)  

Race: White  422 (29.8)  360 (28.4)  62 (41.9)  

Race: Unknown  71 (5.0)  63 (5)  8 (5.4)  

Ethnicity, n (%)  
   

Ethnicity: Hispanic or Latino  50 (3.5)  8 (0.6)  42 (28.4)  

Ethnicity: Unknown  1261 (89.1)  1260 (99.4)  1 (0.7)  

Delivery, n (%)  
   
   

Term  939 (66.3)  851 (67.1)  88 (59.5)  

Preterm  477 (33.7)  417 (32.9)  60 (40.5)  

Early Preterm  183 (12.9)  170 (13.4)  13 (8.8)  

    

Table 3: Summary for sub-challenge 1 of modeling methods, performance metrics, 
and hyperparameters for teams with Bayes factor < 20  

Team  Modeling Methods  

Performance Metrics 

Hyperparameters  
  

  AUROC  AUPRC   

UWisc-Madison  Tree based (CART, BART, 
Random forest, gradient boosting, 
etc.), Ensemble  

  0.688  
  

0.575  num_iterations, 
 learning_rate, max_depth, 
 min_data_in_leaf, lambda_l, 
lambda_l2  

AI4knowledgeLAB  Tree based (CART, BART, 
Random forest, gradient boosting, 
etc.), Ensemble, Over-sampling of 
the minority class (SMOTE)  

  0.641  
   

0.484  Random Forest(n_estimators=100, 
criterion='gini', max_depth=None, 
min_samples_leaf=1,  
min_samples_split=2, 
min_weight_fraction_leaf=0.0, 
max_features='sqrt')  
  
SMOTE(sampling_strategy='auto')  

IBB_UT  Tree based (CART, BART, 
Random forest, gradient boosting, 
etc.), Cluster based (k-means, 
spectral 
cluster, NMF, PCA)  

  0.64  
  
  

0.526  ntreetry=500 for tuneRF function  
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KBJ  Ensemble  0.635  0.538  vanila  sklearn  models  (default 
parameters)  

DMIS_2022_PTB  Tree based (CART, BART, 
Random forest, gradient boosting, 
etc.), Ensemble  

  0.634  
  

0.47  learning_rate,  max_depth, 
n_estimators, alpha, lambda  

yuanfang.guan  Tree based (CART, BART, Random
forest, gradient boosting, etc.)  

  0.631  0.52  n_features  

Team Wallac  Neural Net  0.629  0.563  -Modeling parameters:  
Selection of predictors  
- Neural network parameters: 
Selection of hidden layers, type of 
normalization, amount of dropout, 
selection of optimizer and loss 
function  
- NN hidden layer 
parameters:  
number of filters, kernel size, 
activation function  

MatsuiLab  Regression (includes linear, 
logistic, CoxPH, Poisson, 
generalized, etc.), Tree based 
(CART, BART, Random forest, 
gradient boosting, etc.), Cluster 
based (k-means, spectral 
cluster, NMF, PCA)  

  0.625  
  
  
  
  

0.515  NIH  Racial  Category,  Age, 
Phylotypes, cst  

UMICH_DREAM_P 
TB  

Tree based (CART, BART, Random
forest, gradient boosting, etc.)  

  0.623  0.54  n_estimators,  max_depth, 
min_samples_split, criterion  

Korem_group  Regression (includes linear, 
logistic, CoxPH, Poisson, 
generalized, etc.)  

  0.62  0.498  We tuned L1/L2 penalties, PCA 
components/kernels.  

UTK- 
Bioinformatics_Pret 
erm  

Tree based (CART, BART, 
Random forest, gradient boosting, 
etc.), Support Vector Machine, 
Ensemble  

  0.62  
  

0.487  n_features, min_leaf  

IBSE_IITM  Tree based (CART, BART, Random
forest, gradient boosting, etc.)  

  0.619  0.58  n_estimators,  
min_samples_split,min_samples_le 
af,criterion  

Clague VT.TP  Tree based (CART, BART, Random
forest, gradient boosting, etc.)  

  0.605  0.523  all variables from microbial diversity
community state types, and
phylotype relative abundance
matrices.  

 

Aagaard  Lab  -
Baylor College of 
Medicine - Texas 
Childrens Hospital  

    
  
  

0.604  0.514      

Techtmann Lab  Tree based (CART, BART, Random 
forest, gradient boosting, etc.), 
Neural Net  

  0.604  
  

0.53  None other than default Scikit-learn
v. 1.2.0 parameters for random
forests (n_estimators = 100
criterion  
= gini)  
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Neural  nets  hyperparameters

    learning rate = 1e-4, 3:1
critic:generator training ratio
gradient penalty weight = 10, laten
dim = 1000, batch size = 64, epochs
= 10000  

= 

Drexel EESI  Neural Net  0.602  0.547  Some free hyperparameters in ou
modeling were the parameters used
for our neural network, which
included two intertwined
autoencoder (ae) and discriminato
(disc) components. The parameters
for these were:  nlayers_ae = 5
nnodes_ae = [1000,500, 250, 500
1000], 
dropout_ae = 0.4, nlayers_disc = 3
nnodes_disc = [512, 256, 128], and
dropout_disc = 0.2.  

 

HOPWAS  Tree based (CART, BART, 
Random forest, gradient boosting, 
etc.), Cluster based (k-means, 
spectral 
cluster, NMF, PCA), Ensemble  
  
CNN LSTM model  

  0.574  
  
  

0.496  n_featurs, min_samples_leaf, 
max_depth, min_features_to_select  
  
We use CNN LSTM deep learning 
model, and the weights of the 
designed network architecture are 
the parameters.  

  
                    

                  

    
Table 4: Summary for sub-challenge 2 of modeling methods, performance metrics, 
and hyperparameters for teams with Bayes factor < 20  

  

Team  Modeling Methods  

Performance Metrics  

Hyperparameters  
  

  AUROC  AUPRC   

Techtmann Lab  Tree based (CART, BART, 
Random 
forest, gradient boosting, etc.)  

  0.868  0.446  None other than default Scikitlearn 
v. 1.2.0 parameters 
(n_estimators = 100, criterion = 
gini)  

KBJ  Ensemble  0.841  0.270  vanila sklearn models  
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AI4knowledgeLAB  Tree based (CART, BART, 
Random forest, gradient boosting, 
etc.), Ensemble, Over-sampling of 
the minority class (SMOTE)  

  0.831  
  
  

0.343  Random  
Forest(n_estimators=100, 
criterion='gini', max_depth=None, 
min_samples_leaf=1,  
  min_samples_split=2, 
min_weight_fraction_leaf=0.0, 
max_features='sqrt')  
  
SMOTE(sampling_strategy='auto') 

polalawang  Regression (includes linear, 
logistic, CoxPH, Poisson, 
generalized, etc.), Tree based 
(CART, BART, Random forest, 
gradient boosting, etc.), Support 
Vector Machine, Ensemble  

  0.827  
  
  
  

0.297  n_features, alpha  

IBSE_IITM  Tree based (CART, BART, 
Random 
forest, gradient boosting, etc.)  

  0.817  0.273  n_estimators,  
min_samples_split,min_samples_l 
eaf,criterion  

UMICH_DREAM_P 
TB  

Tree based (CART, BART, 
Random 
forest, gradient boosting, etc.)  

  0.816  0.442  n_estimators,  max_depth,
min_samples_split, criterion  

Clague VT.TP  Tree based (CART, BART, 
Random 
forest, gradient boosting, etc.)  

  0.807  0.350  all variables in microbial diversity, 
community state types, and 
phylotype relative abundance 
matrices.  

USF biostat  Tree based (CART, BART, 
Random 
forest, gradient boosting, etc.)  

  0.803  0.272  Phylotypes  

yuanfang.guan  Tree based (CART, BART, 
Random 
forest, gradient boosting, etc.)  

  0.769  0.189  n_features  

    
Table 5: Sensitivity analysis removing gestational age as a feature for sub-challenge 
1 and sub-challenge 2  

  

  Sub-challenge 1     

Team  AUROC  AUPRC  Accuracy  Sensitivity  Specificity  MCC  

AI4KnowledgeLAB  0.599  0.448  0.608  0.367  0.773  0.152  

UWisc-Madison  0.690  0.560  0.689  0.417  0.875  0.334  

  Sub-challenge 2     

Team  AUROC  AUPRC  Accuracy  Sensitivity  Specificity  MCC  
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KBJ  0.820  0.236  0.781  0.692  0.790  0.316  

Techtmann Lab  0.844  0.343  0.911  0.000  1.000  --  

  
  
  
  
  
  
  

    

FIGURE LEGENDS  
Figure 1: Study Design and Challenge Overview  
  
Figure 2. Data visualization of harmonization by Maliampi of microbiome data across studies. a) 
Uniform Manifold approximation and projection (UMAP) ordination plots of the aggregated data before 
(left) and after (right) harmonization where each dot represents one vaginal microbiome sample colored 
by study.  
b) Violin plots of Shannon alpha diversity by trimester before (top) and after (bottom) harmonization 
stratified by study  
  
Figure 3. Data visualization of microbiome features by outcome. a) Uniform Manifold approximation and 
projection (UMAP) ordination plots of the vaginal microbiome colored by outcome, b) Violin plot of 
diversity before (left) and after (right) harmonization stratified and colored by outcome and c) Alluvial 
plot of community state type (CST) frequencies across time stratified by birth outcome  
  
Figure 4. Challenge Results. Bootstrapped area under the receiver operator characteristics (AUROC) 
curves and Bayes factors for a) sub-challenge 1 and b) sub-challenge 2  
  
Figure 5: Feature Sets used by Top Performing Models. Feature tables used by the top performing models 
for sub-challenge 1 (left) and sub-challenge 2 (right)  
  
Figure 6: Features Across Best Performing Models. For models performing at threshold or above 
baseline, odds ratios (OR) with 95% confidence intervals (CI) reflecting correlation with PTB by 
trimester of specific phylotypes (0.1), diversity metrics, and community state types (CSTs) of features 
used extensively by top-performing models for a) sub-challenge 1 and b) sub-challenge 2  
  
Figure 7: Ensemble Model Results. For a) sub-challenge 1 and b) sub-challenge 2, the area under the 
receiver operator characteristics (AUROC, left) curve and area under the precision-recall curve 
(AUPRC, right) of three ensemble models (‘ensemble_top2’: top two performing models, 
‘ensemble_top2’: models with Bayes factor less than 20; and ‘ensemble_all’: all models), as well as first 
place, second place, and baseline models, colored by model  
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Supplementary Figure 1: Individual study designs. Gestational week at sample collection stratified by 
study and colored by birth outcome  
  
Supplementary Figure 2: UMAP ordination plots of data after harmonization, where each dot represents 
one vaginal microbiome sample, colored a) by trimester and b) by race/ethnicity   
  
Supplementary Figure 3: CST heatmap. Heatmap of community state types (CST) for term, preterm, and 
early preterm births across the first, second, and third trimesters of pregnancy  
  
Supplementary Figure 4: Bootstrapped results for sub-challenge 1: preterm birth prediction. Top 
includes curves for inverted labels in the test set, while bottom includes undersampling and 
oversampling per group (preterm/term) to ensure balance between groups. Left is AUROC, right is 
AUPRC Supplementary Figure 5: Bootstrapped results sub-challenge 2: early preterm birth prediction. 
Top includes curves for inverted labels in test set, while bottom includes undersampling and 
oversampling per group (early preterm/not early preterm) to ensure balance between groups. Left is 
AUROC, right is  
AUPRC  
  
Supplementary Figure 6:  Overview of the pipeline of U-Wisconsin team. The architecture of the 
pipeline for prediction of preterm birth using microbiome data and metadata. CLR is applied to each 
type of the microbiome count data. Rare microbial features are filtered out. Two LightGBM models are 
trained: one on all available specimen data (Model 1), and another on data from Project G only (Model 
2). The predictions from these models are then combined, and the aggregate prediction is used to 
generate a probabilistic prediction of preterm birth  

Supplementary Figure 7: Workflow of the analysis by Team AI4knowledgeLAB. The probability score of 
the final output was obtained as the average of the 3 probability values and the associated class was 
obtained from the probability value by imposing the classic threshold of 0.5  

Supplementary Figure 8: Overview of the model of Team KBJ. Left represents preprocessing of 
provided metadata and processed outputs from MaliAmPi pipeline.They extracted samples according to 
the test set condition and aggregated features to represent participants. Then, sparse feature types 
were handled with mRMR and concatenated with other features. Additional race information was used 
as a feature. For ensemble learning, based on 26 different machine learning models, five algorithms 
were selected by topranked models. The final predicted value was calculated as the mean of each 
probability  
  
Supplementary Figure 9: Features of sub-challenge 1 for top model for top teams with threshold or above 
baseline (same criteria as figure 5)  
  
Supplementary Figure 10: Features of sub-challenge 2 for top model for top teams with threshold or above 
baseline (same criteria as figure 5)  
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Raw 16S Vaginal Microbiome Sequencing Data
…ACATCATACAGATACAAATA…
…ACCCATGATAGAGAAACAGA…

Phylogenetic Harmonization of Raw Data

MaLiAmPi
ASV generation, 16S rRNA Reference Allele 

Selection, Phylogenetic Tree Generation, 
Placement of ASV and Taxonomic Classification

Samples

Fe
at

ur
es

Training Data: 9 studies 
1268 individuals
3578 samples:

2589 term, 989 preterm 
(328 early preterm) 

Test Data: 2 studies 
148 individuals 
331 samples:

197 term, 134 preterm 
(35 early preterm)

Diversity Measures, 
Community State Types 

Phylotypes

DREAM Challenge Prediction Goals: 
Sub-challenge 1: Predict Term vs. Preterm (< 37 weeks) Sub-

challenge 2: Predict Term vs. Early Preterm (< 32 weeks)

Results:
318 registrants

136 submissions for sub-challenge 1 
110 submissions for sub-challenge 2

Can we predict who is more likely to deliver preterm?

Assessment:
AUROC, AUPRC, Accuracy, Sensitivity, Specificity 

Bootstrapping, Under and Over Sampling

Ensemble Model 
Feature Interpretation

1.
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