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TRANSLATIONAL RELEVANCE 

In this article, we propose a new integrated metabolic, genomic, and cytopathologic methods to 

diagnose Differentiated Thyroid Cancer when the conventional methods failed. Moreover, we 

suggest metabolic and genomic markers to help predict high-risk Papillary Thyroid Cancer. Both 

might be important tools to avoid unnecessary surgery and/or radioiodine therapy that can worsen 

the quality of life of the patients more than living with an indolent Thyroid nodule.  

ABSTRACT 

Differentiated thyroid cancer (DTC) affects thousands of lives worldwide every year. Typically, 

DTC is a treatable disease with a good prognosis. Yet, some patients are subjected to partial or 

total thyroidectomy and radioiodine therapy to prevent local disease recurrence and metastasis. 

Unfortunately, thyroidectomy and/or radioiodine therapy often worsen(s) the quality of life and 

might be unnecessary in indolent DTC cases. This clinical setting highlights the unmet need for a 

precise molecular diagnosis of DTC, which should dictate appropriate therapy. Here we propose 

a differential multi-omics model approach to distinguish normal gland from thyroid tumor and to 

indicate potential metastatic diseases in papillary thyroid cancer (PTC), a sub-class of DTC. 

Based on PTC patient samples, our data suggest that elevated nuclear and mitochondrial DNA 

mutational burden, intratumor heterogeneity, shortened telomere length, and altered metabolic 

profile reflect the potential for metastatic disease. Specifically, normal and tumor thyroid tissues 

from these patients had a distinct yet well-defined metabolic profile with high levels of anabolic 

metabolites and/or other metabolites associated with the energy maintenance of tumor cells. 

Altogether, this work indicates that a differential and integrated multi-omics approach might 

improve DTC management, perhaps preventing unnecessary thyroid gland removal and/or 

radioiodine therapy. Well-designed, prospective translational clinical trials will ultimately show the 

value of this targeted molecular approach. 
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INTRODUCTION  

 In 2021 the Surveillance, Epidemiology, and End Results (SEER) database 

estimated that thyroid cancer represents ~2.3% of all new cancer cases in the United 

States and is responsible for ~2.200 deaths in the same period. Follicular thyroid and 

parafollicular C cells are the two endocrine cells from which thyroid cancers putatively 

originate. However, thyroid tumors with the largest worldwide incidence arise from 

follicular cells. They are generically classified as differentiated thyroid cancer (DTC), 

which is divided into two histopathologic categories, namely: papillary thyroid cancer 

(PTC) and follicular thyroid cancer (FTC) (1, 2).  

 Currently, one concern related to DTC is its unexplained increase in the past 40 

years. Although the incidence of DTC has been growing, the mortality of DTC patients 

has paradoxically remained stable (3, 4). Some investigators suggested that 

overdiagnosis (caused by the increased ability to detect indolent nodules and papillary 

cancers that would never cause symptoms or be life-threatening) may play a role (5, 6). 

However, the increased incidence of nodules larger than 5 cm is a genuine concern (7), 

as they are generally symptomatic and must be treated by surgical removal of the thyroid 

gland and, if cancer is present, both by adjuvant radioiodine therapy in certain cases (8, 

9). Moreover, the epidemiologic data suggest that both the overdiagnosis and truly 

increased incidence of clinical thyroid nodules occur concomitantly, suggesting that a 

more accurate methodology is desirable in this setting.  

Finally, an increasing number of poorly diagnosed thyroid cancer patients undergo 

surgical removal of part or the entire thyroid gland (8), which leads to several problems, 

such as inappropriate/unnecessary surgical or radioiodine therapy (9–11).  
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Therefore, the diagnostic method for differentiating benign from malignant tumors 

and indolent vs. aggressive thyroid cancers must be improved (12). The current gold 

standard procedure to diagnose thyroid cancer is still the cytopathologic analysis of 

thyroid nodule samples obtained from percutaneous fine-needle aspiration (FNA) by 

using the Bethesda Classification System (8, 13, 14). Unfortunately, FNA with pathologic 

analysis is inconclusive in up to ~25%, bringing into question the choice of therapy (10, 

15, 16). In order to overcome this challenge, molecular testing towards the precise 

diagnosis of indeterminate thyroid nodules were developed. The most used platforms are 

RNA-expression based detection (Veracyte;17) or identification of somatic mutations 

(ThyroSeq;18). Nevertheless, both methods also show their limitations (19) which might 

be complemented by new methods of diagnosis such as metabolic profiling.   

 On a further level of complexity, a small percentage of these tumors belong to high-

risk thyroid cancer variants that often generate distant metastasis, with a very poor 

prognosis compared to non-metastatic thyroid cancer (20); also, up to  20% of patients 

with DTC may have residual tumors left behind after surgical or radioactive iodine 

treatment (1, 21–24). Therefore, there is a clear need for improved procedures and 

biomarkers to distinguish among benign nodules, low-risk and, high-risk thyroid cancer. 

 Here we evaluate the metabolomic profile of normal gland and thyroid tumors from 

DTC patients (n=20) with different features (e.g., gender, stage, metastatic status), 

showing that the metabolic profile of DTC tumor cells remains consistent and well-defined 

and may potentially be used to distinguish normal thyroid gland from cancer. Moreover, 

matched tissues from these patients (n=10), including normal and tumor samples, were 

subjected to whole-genome sequencing (WGS). Unexpectedly the WGS results indicate 
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other features beyond the mutational profile, such as mitochondrial and nuclear DNA 

(mtDNA and nDNA) mutational burden and telomere length, may also serve as 

candidates biomarkers for metastatic PTC, including local lymph node metastasis (LM) 

and high-risk PTC presenting with distant metastases (DM).   

  On another note, we also compared the intra-tumor heterogeneity among multiple 

samples from the same thyroid tumor. We observed that histopathological heterogeneity 

strongly correlates to post-transcriptional events (such as gene expression and metabolic 

rewiring) independently of the conserved mutational profile. Together, these results 

highlight the translational importance of integrated omics for thyroid cancer diagnosis, 

prognosis, and management. 
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RESULTS 

Differentiated thyroid cancer has a well-defined metabolic profile.  

 In order to evaluate the metabolomic profile of differentiated thyroid cancer (DTC), 

we used normal tissue and primary thyroid tumor obtained from partial or total surgical 

thyroid resections (Fig. 1A). The histologic subtype was classified, and only the patients 

with DTC were selected. This cohort comprises 20 patients, 18 of these DTC patients 

(95%) have their tumors classified as papillary thyroid cancer, while the other two were 

follicular thyroid cancer (Supplementary Table 1). Most of the patients were women (75%) 

and, on average, were slightly younger than the men (Figs. 1B and 1C). Although the 

average size of the primary tumor in both genders was similar, in this series, the 

percentage of metastatic DTC samples (including distant and local metastasis) was 

higher in men, which may suggest a more aggressive disease, late clinical diagnosis, or 

both (Figs. 1D, 1E, and 1F). The cohort of patients evaluated here is generally 

representative of the natural history of DTC.  

One of our goals was to identify metabolic biomarkers predictive of whether or not 

a tissue sample is normal or a tumor of the thyroid tissue. We also evaluated whether the 

metabolic changes might shed light on the molecular mechanisms of metastatic DTC. We 

focused on polar metabolites (n=110) from each sample. These analyses clearly resulted 

in a DTC metabolic profile distinct from normal thyroid (Fig. 1G). Next, we aimed to identify 

an informative subset of biomarkers, which may effectively differentiate the two types of 

tissue (normal vs. cancer) based on their metabolic profile. As a first step, we constructed 

a predictive model which uses ordinary logistic regression to assess the relationship of 

each compound to the sample type. We selected the metabolic biomarkers with p-values  
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Figure 1: Differentiated thyroid cancer presents a well-defined metabolic profile. (A) H&E scanned slides of normal 

thyroid tissue and papillary thyroid cancer (Scale bar 50 µm). DTC patients' profiles consider (B) gender, (C) age, 

and (D) the greatest size of the primary DTC tumor. (E) Thyroid cancer risk, metastatic (local and distant metastasis), 

and non-metastatic, per gender. (F) Classification of thyroid cancer according to histopathologic analysis in surgical 

report. Primary tumor (T), local metastasis (Lymph nodes (N)), and distant metastasis (other organs (M)). (G) Heat 

map of metabolites extracted from primary thyroid cancer and normal thyroid tissue. (H) mClust analysis considering 

the six most significant altered metabolites. All the points except one lie on their respective sides. That one, however, 

lies within the boundary error region. (I) Box plot of the three metabolites with lower p-value used to perform mClust 

analysis (J) with the lower number of biomarkers possible. 

 

≤ 0.20/110 = 0.0018, thereby practically reducing the number of candidate biomarkers 

(from 110 to 19). We next used cross-validated Lasso logistic regression by using the 

“optL1” function in the R package “penalized” to find the penalty parameter that minimizes 

the 10-fold cross-validated penalized likelihood (25). We then used the “penalized” R 

function in this package with this penalty parameter to identify the optimal subset of 

metabolic biomarkers (n=6) that were most effective in predicting normal versus cancer. 

The six biomarkers found were aconitate, glycine, inosine, isoleucine, proline, and taurine 

(Supplementary Fig. S1A). These results clearly show that applying the aforementioned 

predictive model in the metabolomic analysis distinguishes normal thyroid tissue from 

primary thyroid tumors.  

 To illustrate the ability to use these six compounds to separate normal and cancer 

samples, we next used a procedure known as “mclust” that identifies the projection of the 

six-dimensional predictors onto two dimensions that optimally separate the two groups 
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(26, 27) (Fig. 1H). These results suggest that the six predictors selected may differentiate 

normal biopsy samples from thyroid tumors. To better evaluate the classification error, 

we applied the ten-fold cross-validation methods, which yielded an error rate of 0.1316 

and a standard error of 0.0451, clearly differentiating this error rate from the null 

hypothesis value of 0.5 (Supplementary Fig. S1B). 

 Moreover, we considered whether an even smaller subset of biomarkers could be 

suitable for adequate classification. To this end, we performed the same procedure with 

five, four, or three of the most effective metabolic biomarkers in predicting the phenotype. 

However, the model with fewer predictors has lower power and many misclassified 

samples (Supplementary Figs. S1C and S1D), but in all cases, the error rates are below 

0.5. For instance, selecting the three biomarkers (i.e., glutamate, proline, and threonine) 

(Fig. 1I) generated only three misclassifications per sample type, all lying in the error 

boundary (Fig. 1J). Applying ten-fold cross-validation, we could rely on an error rate of 

0.21 and a standard error of 0.051, suggesting that this more straightforward procedure 

could be helpful in the absence of a more extensive metabolic panel. Notably, all 

proteogenic amino acids are present at higher levels in tumor samples (Supplementary 

Fig. S1E), making the classification procedure even more accessible. Thus, our data 

indicate that a histopathologic analysis supplemented by a small metabolomic biomarker 

panel might efficiently improve DTC diagnosis. 

 

The metabolic alterations of DTC are enriched in energy maintenance and anabolic 

metabolism. 
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 A volcano plot showed that most metabolites are present at higher levels in DTC 

(Fig. 2A). As 45 of 110 metabolites (41%) were significantly altered (adjusted p-value ≤ 

0.01/110), we applied a more restrictive analysis considering only the metabolites that 

have fold change more than double, or less than half, in normal thyroid versus cancer 

tissue (Figs. 2A and 2B). Thus, we found the most affected metabolite classes and the 

pathways these biochemical alterations impact.  

 According to this stringent criterion, ~70% of the metabolites are amino acids, 

purines, pyrimidines, 1-Carbon metabolism intermediates, tricarboxylic acid (TCA) cycle 

components, and fatty acids (Fig. 2C). The most altered metabolites in malignant DTC 

are involved in two fundamental processes: metabolism of building blocks and energy 

maintenance. Indeed, the pathway impact analysis revealed that the main altered 

pathways in DTC are the TCA cycle, beta-oxidation of fatty acids, amino acids, and 

purine/pyrimidine metabolism (Fig. 2D). A high-energy requirement of thyroid tumor cells 

might be responsible for the altered TCA intermediate metabolites, as suggested by the 

higher NAD+/NADH ratio in tumors (Fig. 2E). However, the most robust result linked to 

energy maintenance was the increased levels of several metabolites from lipid 

metabolism. For instance, a lower level of free carnitine in tumor cells may be one 

example because one of its main metabolic roles is to shuttle long-chain fatty acids across 

the mitochondrial membrane to be burned by β-oxidation (Fig. 2G). Furthermore, the 

higher acetyl-carnitine/free carnitine ratio also suggests that DTC might have altered β-

oxidation activity, consistent with previous observations (28).  

 As with other malignant tumor cells, thyroid cancer cells are driven to increase the 

proliferative ratios, requiring anabolism to produce building blocks. Moreover, rapid 
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proliferative growth caused by oncogenic activity might generate harmful oxidative 

species (29). These results may perhaps explain the altered levels of intermediates of 1-

Carbon metabolism, S-Adenosyl-Methionine (SAM) cycle, and glutathione (GSH) (Figs. 

2B, 2H, 2I, and 2J).  
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Figure 2: DTC prioritized metabolism of building blocks and energy maintenance. (A) Volcano plot of 
metabolites extracted from DTC patients' samples. The purple triangles highlight the significantly altered 
metabolites (p-value ≤ 0.01/110) with fold change higher than double or less than a half comparing cancer 
versus normal thyroid tissues. The levels of these metabolites are graphically expressed in (B). Data 
presented as mean (SEM). (C) The most altered classes of metabolites in DTC. (D) Pathways impact 
analysis. Purple circles show the metabolic pathways impacted in more than 20%, with a false discovered 
ratio equal to or lower than 0.01. Box plot of metabolites involved in energy maintenance (E-G) and 
oxidative stress (H-J). T-test ** P≤0.01. 

 

A panel of six metabolites is associated with metastatic papillary thyroid cancer. 

 In the literature percentage of metastatic (local and distant) DTC is relatively low 

(~5%), but the prognosis is poorer than those with non-metastatic DTC (20, 23). However, 

most cases submitted to thyroid dissection in our cohort were metastatic (Fig. 3A). As 

there is a great need for reliable biomarkers for the metastatic potential of this tumor 

subset (30), we used such cohort composition in our favor to identify specific biomarkers 

that could help determine if a primary tumor was likely to metastasize to local lymph nodes 

or distant organs. We purposely removed the two samples from this analysis classified 

as FTC to avoid any noise in the classification. Therefore, we analyzed non-metastatic 

(n=6) and metastatic (n=11) PTC patient samples. 

 The ordinary logistic regression model was applied, evidencing six biomarkers with 

a p-value lower than 0.1: Adenosine, ascorbic acid, betaine, guanidinoacetic acid, 

phenylacetic acid, and pyruvate (Figs. 3B and 3C). None of the metabolites were found 

below the level of the Bonferroni-based cutoff (adjusted p-value≤0.0004545); however, 

we must consider this an extremely stringent criterion because of the much higher number 

of biomarkers compared to the number of samples. Nevertheless, the positive coefficients 

indicated by a non-adjusted p-value (p-value≤0.1) presented a positive correlation 

between these six metabolite levels and metastatic PTC tumors. 
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 These six metabolites were considered for mclust analysis followed by 10-fold 

cross-validation (Fig. 3D). All metastatic PTC patients were classified as a single group 

(error rate 0.1176 with SE=0.0667). Notably, the 95% confidence interval excludes 0.5, 

indicating that this classification is statistically significant and that procedure 

abovementioned is robust enough to distinguish non-metastatic from metastatic PTC 

samples in this set. 

 

 

Figure 3: Six metabolites can help to identify metastatic papillary thyroid cancer. (A) Distribution of non-
metastatic and metastatic (local and distant) PTC patients. (B) and (C) Most altered metabolites in 
metastatic PTC (p-value ≤0.1). (D) mclust projection showing the isolation of metastatic samples in a single 
group. 
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High nuclear and mitochondrial DNA mutation burden and shorter telomere length 

correlate to metastatic PTC. 

 Ten PTC tumors with matched normal samples were randomly selected and 

submitted to whole-genome sequencing (WGS) with an average depth of 60x coverage. 

Four of these tumors were non-metastatic, and six were metastatic (local and distant 

metastasis) (Fig. 4A). The overall nuclear DNA (nDNA) mutation burden in PTC was low, 

generally less than 0.2 mutations per Mb (Fig. 4B). However, five PTC samples presented 

a nDNA mutation burden above this threshold. Four of them are metastatic, which might 

suggest a link between high nDNA mutation burden and metastatic potential in PTC 

(Supplementary Fig. S2A).  

 We identified seven driver mutations in this set of PTC samples (Fig. 4C). Five of 

these tumors have a BRAF mutation, four have the hotspot V600E mutation, and one has 

a CICD2-BRAF fusion. The structural variant analysis identified the other four thyroid 

tumors with inversions that resulted in CCDC6-RET fusions. While the breakpoints of the 

four inversions were all different, they all occur within intron-1 of CCDC6 and intron-11 of 

RET, resulting in the same fusion protein. Interestingly, our classification model based on 

the metabolic profile could not distinguish between samples with BRAF or RET alterations 

(Supplementary Figs. S2B and S2C). Although BRAFV600E presented some association 

with more aggressive PTC elsewhere (31, 32), we could not find any correlation between 

this mutation and gain of aggressiveness in our cohort, as also reported by other groups 

(33). 
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 Only two tumors showed meaningful copy number alterations. The tumor sample 

T9 had chromosome 1q duplication, 16q deletion, and 17q duplication (Fig. 4D). The other 

tumor sample (T10) had chromosome 1q duplication and 11q deletion. 

 The WGS average depth of coverage allows us to determine the mtDNA mutations 

by using GATK and Mutect2 (see Methods) and found missense and truncated 

mitochondrial gene mutations in six PTC samples (Supplementary Table S2). Most 

mtDNA mutations were found in genes that encode proteins from the electron transport 

chain (ETC) complex I, mainly in MT-ND1, MT-ND4, and MT-ND6; these alterations were 

also reported in previous articles (Fig. 4E) (34, 35). Metastatic PTC samples had a higher 

allelic frequency of mtDNA mutations (Supplementary Fig. S2D), suggesting that a high 

mtDNA mutation burden might be associated with metastatic risk. 

 The histopathology analysis of the samples with higher mtDNA copy numbers 

(namely, T1, T3, and T10) yielded PTC with oncocytic features (Figs. 4F and 4G), with 

an ubiquitous BRAF V600E mutation.  Interestingly, one of the tumor samples (T10) had 

several mutations in mtDNA: MT-ND1, MT-ND4, and MT-ATP6. The mutation in MT-ND1 

has an allele frequency of 0.83, demonstrating that this mutation is homoplastic, a feature 

found only in this tumor sample. 

 We also estimated the telomere length of all samples, including the normal thyroid 

tissue (Fig. 4H). The estimated telomere length of normal tissue compared with the tumor 

samples, metastatic or not, is much longer. Nonetheless, a clear trend indicates that 

metastatic PTC has a shorter telomere length than non-metastatic tumors. 

 Despite the absence of a specific gene mutation that could predict a more 

aggressive PTC, these results suggest that some genetic features, such as high nuclear 
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and mitochondrial DNA mutation burden and shorter telomere length, are associated with 

metastatic PTC phenotype. 

 

Papillary thyroid cancer mutational signatures. 

 The genetic sequencing of PTC samples presented nine different mutational 

signatures among the patients (Fig. 4I). The most common mutational signature is  #8, 

which is present in all samples and is associated with possible exposure to radiation, one 

of the leading causes of thyroid cancer (36, 37). The second most common mutational 

signature is #18, found in nine patients. Curiously, signature #18 is linked to colibactin 

exposure. Colibactin is a mutagenic agent secreted by E.coli, which is highly associated 

with genotoxic colon cancer signatures but rarely reported in thyroid cancer (38). 

Additionally, the enrichment of signatures #8, #9, and #18 correlate with a substantial 

amount of C>A mutations in this cohort, a pattern of mutations associated with damage 

caused by reactive oxygen species (ROS) (39). 

 The mutational signatures #1 and #5 were found in most malignant tumor samples. 

These signatures correlate with the age at the time of cancer diagnosis and hence the 

nDNA mutational burden. However, in this cohort, the correlation between signatures #1 

or #5 with nDNA mutation burden or age was not observed (Supplementary Figs. S2E 

and S2F).  

 The mutational signatures and the mutated gene pattern did not distinguish an 

aggressive PTC. Nonetheless, one patient sample (T10) presented the most advanced 

diseases with local and distant metastases. This patient also has a distinct characteristic 

presenting seven of nine (78%) listed signatures (Fig. 4I). This is the only sample  
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Figure 4: Whole-genome sequencing of primary cancers suggests genetic features associated with 
metastatic PTC. (A) General information and tumor characterization per patient across the cohort. Female 
and Male (F and M); Normal samples (N); Distant Metastasis (DM); Local Metastasis (LM). Age class 
(years): 1- (20-30); 2 - (31-40); 3 - (41-50); 4 - (51-60); 5 - (61-70).  (B) Histogram presenting nuclear DNA 
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mutation burden per sample. (C) Driver mutations in PTC. (D) Chromosome alterations. (E) Distribution of 
mtDNA mutations found in the genes that encode proteins of the mitochondrial electron transport chain. 
(F) Histogram presenting mtDNA copy number per sample. (G) H&E of scanned slides showing the 
histology of PTC classic type and PTC with oncocytic alterations (Scale bar 50µm). (H) Estimated telomere 
length in normal, non-metastatic, and metastatic PTC (I) COSMIC mutational signatures in PTC. 

 

demonstrating mutational signatures linked to age, smoking, and high numbers of 

insertions-deletions mutations (signatures #2, #3, and #16). All these features are present 

in this sample presumably because it belongs to the oldest patient, a former smoker, 

presenting an increased number of insertions-deletions (indels) and the highest nDNA 

mutation burden (Figs. 4B, 4D and Supplementary Table S1). Moreover, the tumor 

sample T10 is the only sample that presents three potential driver mutations: BRAF, 

ZFHX3, and TERT promoter (Fig. 4C). This sample had a high mtDNA burden, and it was 

the only sample with a homoplastic mutation (in MT-ND1 gene). Furthermore, the T10 

patient also presented multifocal nodules and oncocytic sites in both thyroid glands. All 

these features suggest a history of high intratumor heterogeneity (ITH) that might perhaps 

play a role in high-risk PTC and deserve to be studied. 

 .  

Papillary thyroid cancer tumors present high metabolic, transcriptional, and 

immunogenic, but not genetic ITH. 

 Intra-tumor genetic and non-genetic heterogeneity are established cancer 

hallmarks (40, 41), which often compromise therapy efficacy (42). We examined the 

extent of genetic and non-genetic ITH in two female patients (P1 and P2) of the same 

age and carrying PTC large enough for multi-omics profiling from multiple geographically 

distinct regions from their primary tumors. We selected four spatially well-separated areas 
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from each primary tumor. We performed metabolomic, whole-exome sequencing, and 

RNA sequencing of these tumor regions and matched normal thyroid tissues (Fig. 5A). 

 Both patients had low somatic mutation burden and low genetic heterogeneity; 

most somatic mutations were ubiquitous and detected in all regions within the tumor (Fig. 

5B), a pattern consistent with other reports (43).   

 In contrast, as reported in other tumors, ITH and divergence from the matched 

normal tissues were considerably higher at the transcriptomic, metabolic, and 

immunogenic levels (44). Tumor samples clustered separately from the normal tissues at 

the metabolite levels (Fig. 5 C), as observed previously (Fig. 1G). However, the metabolic 

ITH was considerably higher in P2, as shown by clustering and dendrograms (Figs. 5D 

and 5E). Moreover, the transcriptional ITH was observed to be increased in P2 (Fig. 5F). 

In addition, P2 presented a more conspicuous heterogeneous pattern in the proliferative 

score based on gene expression patterns (Fig. 5G). The heterogeneous metabolic and 

transcriptional profile of P2 reflects its tumor phenotype, a mixture of classic papillary 

type, follicular type, oncocytic features, and dense lymphocytic infiltration [7 of 12 

metastatic lymph nodes (58%)]. On the other hand, P1 presents a non-metastatic classic 

type of papillary carcinoma. All the tumor samples from both patients presented very 

distinct immune cell profiles, which suggests a high immune ITH (Fig. 5H). Also, there 

was considerable variation between the patients in their proportional abundance of 

different immune cell types (Fig. 5I), suggesting that the immune microenvironment might 

differ among PTC samples.  

Despite a small sample set, these results support a model that, while genetic 

variations are minor among the thyroid cancer subtypes, non-genetic heterogeneity at the 
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metabolic, transcriptional, and immune levels within and between tumors, especially in 

metastatic PTC cases, was substantial.  
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Figure 5: ITH in Papillary thyroid cancer. (A) Step-by-step genetic and non-genetic PTC intratumor 
heterogeneity determination. (B) Dendrogram of genetic ITH from patients 1 (P1) and 2 (P2). N represents 
normal thyroid tissue, and Rs (R1-R4) represent different pieces of PTC cancer tissues. (C) Metabolic heat 
maps, (D) principal component analysis, (E) and dendrogram show the distinct metabolic profile in 
different pieces of cancer in P2. (F) Dendrogram of transcriptional ITH. (G) Heat map of the proliferative 
score of cancer samples. (H) Dendrogram of Immunogenic ITH (I) Compositions of immune cells type 
infiltrated in cancer tissue. 
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DISCUSSION 

The potential for overdiagnosis and/or overtreatment in patients with thyroid cancer 

remains a critical topic for clinical research (8, 9, 45, 46). It is clear that DTC requires a 

more comprehensive procedure to identify patients that should or not be subjected to 

more invasive therapies. Another challenge in thyroid cancer translational research is the 

earlier identification of a potential metastatic PTC, which comprise ~30% of all cases in 

the SEER database. Overall, the ten-year survival of thyroid cancer patients is ~ 98%, 

but those few patients with local and distant metastases are associated with a very poor 

prognosis (11, 47). Unfortunately, efforts to find a mutational profile that predicts high-risk 

PTC, such as ThyroSeq (18) and Veracyte(17), are generally insufficient and may need 

to be combined with other diagnostic methods (16, 23). Considering that FNA aligned 

with cytopathologic analysis is inconclusive in many cases and the lack of data that can 

be used as a predictor of more aggressive thyroid cancer, we showed that an integrated 

analysis between non-genetics (metabolomic and cytopathology) and genetic biomarkers 

(RNA and DNA genome sequence) have the potential to refine the diagnosis and 

management of DTC. 

The DTC metabolic profile is markedly different from normal thyroid tissue, as we 

showed, which is enough to identify thyroid cancer tissue, even when other conventional 

methods are inconclusive. Targeted and untargeted studies of thyroid cancer have 

suggested several potential metabolic signatures (48–50). Previous reports have 

proposed using metabolite levels as a potential diagnostic tool (51). Most of these 

metabolites, such as lactate, glucose, glutamine, asparagine, and choline, were indeed 

altered in our metabolic profile (52). However, the results presented here showed that 
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other metabolites such as aconitate, glycine, inosine, isoleucine, proline, and taurine 

could be more efficient in distinguishing normal from cancer thyroid tissues, which might 

improve diagnostic accuracy.  

Our study also showed that some metabolite levels are altered in metastatic PTC: 

adenine, ascorbic acid, betaine, guanidoacetic acid, phenylacetic acid, and 

phenylpyruvate. However, this phenotype must be associated with other cancer features 

to generate a more reliable distinction between low- and high-risk thyroid cancer. In this 

particular case, we suggest associating metabolomics with genomic data. Moreover, we 

might consider more than only BRAF mutations as predictors of poor prognostics (24, 43, 

53). In the cancers with BRAF mutations in our cohort, 50% were metastatic, while the 

ones with RET fusions were largely metastatic (80%). Notably, we could not distinguish 

BRAF mutations and RET fusions at the metabolic level, presumably because they may 

redundantly trigger the same downstream signal transduction pathway(s). As such, both 

mutations were mutually-exclusive, as shown here and consistent with reports from other 

investigators (54–56). Taken together, this body of work suggests that both of these 

molecular alterations may ultimately lead tohigh-risk PTC generation. However, a major 

limitation of this discovery work is that our tentative hypothesis-generating conclusions 

are based on a relatively small patient cohort. Future studies of patients withPTC 

presenting with distant metastasis might shed further light on this open question.   

Equally important, other alterations must be further investigated as potential high-

risk PTC predictors, such as telomere length, nDNA and mtDNA mutation burden, and 

ITH. Our data showed a good correlation between shorter telomere length and cancer 

risk. Again, despite the relatively small patient cohort, we observed a high nDNA and 
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mtDNA mutational burden and ITH in high-risk PTC when we contrasted multiple primary 

tumor regions of patients with non-metastatic versus metastatic PTC. 

However, we should highlight that although the methods here were carefully 

applied, the conclusions of this study have inherited limitations due to its relatively small 

number of samples and its descriptive nature, which allows us only to suggest that these 

alterations could favor the identification of a metastatic PTC. Ideally, our results would 

need to be validated with a larger patient cohort. 

This study showed that our classification model could distinguish cancer and 

normal thyroid tissue. This approach would be beneficial when the cytopathologic report 

presents indeterminate results and should help the physician to manage the patient, such 

as deciding whether to submit the patient to surgery, the extension of this surgery, and/or 

radioiodine therapy application. We also showed that multi-omics analysis considering 

telomere length, high nDNA and mtDNA mutation burden, and high ITH might help 

prematurely identify high-risk PTC. To conclude, we demonstrate that new research 

avenues in thyroid cancer may still have important implications for the diagnosis, 

treatment, and prognosis of DTC patients. 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.09.23287037doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.09.23287037
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

METHODS  

Thyroid tissue extraction - The tissue was fractioned and classified by an expert 

dedicated pathologist. The DTC samples were picked from four equidistant sites to 

determine intratumor heterogeneity features. Paired normal and tumor thyroid tissue 

samples were fresh-frozen, unidentified, and maintained by the Cancer Institute of New 

Jersey Biospecimen Repository Service (CINJ-BRS) under the auspices of IRB-approved 

protocol. CINJ-BRS numbered and linked the stored tissue with its specific surgical report 

removing identification. The samples were obtained from CINJ-BRS after the protocol 

above and processed as indicated by the following protocols.   

Histology – A sample of each piece of tissue collected was fixed overnight in formalin 

10% and then transferred to 70% ethanol for paraffin-embedded sections. The paraffin 

blocks were cut and mounted on slides. The slides were deparaffinized, rehydrated, and 

then submitted to hematoxylin-eosin staining.  

Tissue pulverization – A total of 25-30 mg of frozen thyroid tissue (duplicates of non-

normal and tumor samples per patient) were weighed and added to a 2 mL round bottom 

microtube with a – 80° C cold Yttria Grinding Ball per tube. The tissues were pulverized 

by using a Retsch CryoMill following three alternating cycles at 5 Hz for 2 min and 25 Hz 

for 2 min. 

Extraction of polar metabolites from human thyroid tissue – To each 2 mL microtube 

with 25-30 mg of frozen pulverized tissue, a buffer volume equivalent to 20X the sample 

weight in μL was added. The extraction buffer was 40:40:20 (v/v/v) 

methanol:acetonitrile:water with 0.1 M of formic acid. After adding the buffer, the sample 
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was vigorously vortexed and incubated on crushed ice for 10 minutes. The samples were 

then vortexed again and centrifuged for 10 min at 16,000 g at 4°C. The supernatant A 

was collected and saved, and the pellets were submitted to re-extraction following the 

same procedures which generated the supernatant B. Supernatant A and B were mixed 

and transferred to a clean 1.5 mL microtube with the appropriate volume of 15% NH4CO3. 

The samples were stored in a -80°C freezer until analysis by LC-MS. 

LC-MS analysis for polar metabolites - The LC-MS method involved hydrophilic 

interaction liquid chromatography (HILIC) coupled with electrospray ionization to the Q 

Exactive PLUS hybrid quadrupole-orbitrap mass spectrometer (Thermo Scientific). The 

LC separation was performed on an XBridge B.E.H. Amide column (150 mm × 2.1 mm, 

2.5 μm particle size, Waters, Milford, MA) by using a gradient of solvent A (95%/5% H2O/ 

acetonitrile with 20 mM ammonium acetate and 20 mM ammonium hydroxide, pH 9.4), 

and solvent B (20%/80% H2O/ acetonitrile with 20 mM ammonium acetate and 20 mM 

ammonium hydroxide, pH 9.4). The gradient was 0 min, 100% B; 3 min, 100% B; 3.2 min, 

90% B; 6.2 min, 90% B; 6.5 min, 80% B; 10.5 min, 80% B; 10.7 min, 70% B; 13.5 min, 

70% B; 13.7 min, 45% B; 16 min, 45% B; 16.5 min, 100% B; 22 min, 100% B. The flow 

rate was 300 μL/min. The injection volume was 5 μL, and the column temperature was 

25°C. The MS scans were done in both positive and negative ionization mode with a mass 

resolution of 70,000. The automatic gain control (AGC) target was 3e6. The maximum 

injection time was 50 ms. The scan range was 75-1,000. The metabolite features were 

extracted in MAVEN (57) with a mass accuracy window of 5 ppm. The compound 

identification is based on accurate mass and retention time matching our custmized  in-

house metabolite library (58). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.09.23287037doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.09.23287037
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

DNA and RNA extraction and processing – A total of 20-25 mg of frozen pulverized 

tissue was submitted to DNA extraction following DNeasy Blood and Tissue Kit (Qiagen 

ID:69504) protocol. For the ITH co-extraction of metabolites, DNA and RNA were 

extracted using the remaining pellet of tissues from the extraction of the metabolites. After 

initial quality checks of the raw RNA sequencing reads by using FastQC (v0.11.7) and 

removal of any low-quality reads, STAR aligner (v 2.6.0c) (59) was used to map the 

remaining reads onto the human genome (GRCh38). RSEM (v1.3.1) (60) was used for 

transcript quantification, and log2 (TPM+1) (Transcripts per million) values were reported 

for different tumor regions and also matched non-malignant regions. ESTIMATE (61) was 

used for predicting tumor purity and the presence of stromal/immune cells in tumor 

tissues. Multiregional tumor trees at transcriptomic levels were constructed for every 

patient with RNA expression data for all genes across different regions, an approach 

similar to that used at the genomic level. Manhattan distance was computed between all 

regions of a patient sample by using log2 (TPM+1), then unrooted dendrograms were 

drawn by using this distance metric. Proliferation (PI) and apoptotic (AI) indices were 

calculated a similar approach by considering  124 proliferation-associated genes (62) and 

six apoptosis-related genes. For each gene, Z-scores corresponding to its expression in 

tumor regions was calculated based on the mean and standard deviation of its expression 

in the non-malignant samples. Then proliferation index (PI) and apoptosis index (AI) were 

defined as mean z-scores of all proliferation and apoptosis genes, respectively. 

Whole genomic sequencing analysis - Mutect2 from the GATK (63) is carried out to 

analyze the point mutations and small indels by considering the tumor-normal pair mode 

with the GRCh38 genome. The corresponding results are annotated by SnpEff (63) and 
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then filtered with a series of conditions: i). “FILTER” column as “PASS”; ii). tumor sample 

depth, REF + ALT > 10 & REF + ALT < 200; iii). normal sample depth, REF + ALT > 8 & 

REF + ALT < 200; iv). tumor AF > 0.2; v). normal AF < 0.05; and vi). SNVs only from 1–

22, X, Y, and MT chromosomes. The mutation signatures are analyzed by 

deconstructSigs (64) with the filtered SNVs as input. Manta analyzes the structural 

variants (SVs) (65). The filter conditions are applied to the original outputs: i). “FILTER” 

column as “PASS”; ii). SOMATICSCORE > 40. The copy number variations are 

investigated by using FACETS (66). 

Mitochondria DNA analysis - Ten tumor-normal pairs of whole-genome sequencing 

data were used for somatic mutation calling. First, the sequencing reads were clipped 

with Trimmomatic (Trimmomatic, RRID:SCR_011848) 0.39 (67); then, the reads were 

mapped to reference GRCh38 by using Burrows-Wheeler Alignment tools (bwa 0.7.17-

r1188) (68). The bam files (the mapped file format) were further sorted, mark-duplicated, 

base quality score recalibrated (BQSR), and indexed using samtools-1.3.1 5 and gatk-

4.1.9.0. Mitochondria-mode of Mutect2 (gatk)  served to call somatic variants. The 

variants were filtered by gatk FilterMutercCalls. We developed a complex filter for 

screening low confident variants by using allele fractions of alternate alleles (AF) in the 

tumor (AF>0.03) and normal (AF=0), non-coding removal, approximate read depth (DP> 

2000), and log ten likelihood ratio score of variant existing versus not existing (TLOD > 

10). The variants were annotated by using Ensembl Variant Effect Predictor (VARIANT, 

RRID:SCR_005194; VEP 101.0) (69). The mtDNA copy number was estimated by the 

total number of reads mapping to the mitochondrial genome divided by the total number 
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of reads and multiplied by the factor (6x10^9/16x10^3), which is the size of the diploid 

genome and the mitochondrial genome. 

Telomere length estimation method - We used TelomereHunter (70) to estimate 

telomere content from human WGS data considering default settings (44). Telomere 

content = Intra telomeric reads * 106/ total reads with telomeric GC. 

Somatic mutation calling in ITH samples – FastQC (v0.11.7) was used for initial quality 

checks, and low-quality reads and PCR duplicates were removed. Next, we used BWA-

mem (71) (v0.7.17-r1188) to map the reads onto human genome (GRCh38), and call 

variants by using varScan2 (72) (mapping quality > 40, base quality > 20). Only ‘high 

confidence’ somatic variants with tumor allele frequency > 5% at least in one tumor region 

and normal allele frequency < 1% were selected. For each somatic variant deemed as a 

high confidence variant in at least one tumor region, we queried the corresponding base 

position in other tumor regions in that tumor specimen. It was included if reads supported 

the variant allele with mapping quality > 20, base quality > 25, and variant allele frequency 

> 2%. All identified somatic mutations were annotated with SnpEff (63)(v4.3t). Missense, 

nonsense, frameshift, or splicing mutations in known COSMIC cancer genes with high-

predicted impact were marked. The dendrograms were generated with the approach 

described (44) in the previous paper from variant allele frequency of variations identified 

in different regions. 

Mutational signatures – Contexts of somatic point mutations were used to draw 

inferences about their likely etiologies (73). We used deconstructSigs (39, 64) to identify 

patterns of mutational signatures on somatic variants. 
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Immune cell infiltration - Immune cell infiltrations were inferred from molecular 

signatures of immune cell types. ESTIMATE (v1.0.13) (61) was used to predict the 

immune infiltration level in tumor tissues. CIBERSORT (74) was used to estimate the 

abundance of different immune cell populations from expression data. Standard LM22 

signature gene file and 1000 permutations were used to calculate deconvolution p values. 

Similar to genomic and transcriptomic data, multiregional tumor trees were made for 

every patient to infer immunogenic heterogeneity (iITH) with immune cell proportions from 

CIBERSORT. Manhattan distance was computed between all regions of a patient sample 

using immune cell proportions datasets independently, and separate unrooted 

dendrograms were drawn by using respective distance metrics. 

Pathways impact analysis and metabolites classification  - To evaluate the impact of 

the metabolic alterations found in tumor versus normal thyroid tissues, we submitted the 

raw data obtained from the metabolic extraction on MAVEN (ion counts) to log 

transformation by using the web-based software MetaboAnalyst 5.0 (75). The 

transformed data were used to obtain the class of the metabolites significantly altered 

and the impact of these alterations on tumor thyroid tissues (76).  

Graphs and figures - All charts and statistics presented in this article were built using 

GraphPad Prism 9 (GraphPad Prism, RRID:SCR_002798) and RStudio 1.1453. The 

cartoon figure 5A was created with BioRender (Biorender, RRID:SCR_018361). All 

graphs, pictures, and cartoons were assembled by using Adobe Illustrator 26 (Adobe 

Illustrator, RRID:SCR_010279).  

Predictive model and statistical analysis - First, the biomarker levels of the 110 

metabolites were transformed by using a log2 transformation. Since the number of 
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markers is zero, a small amount, 100, was added to all the biomarkers before taking logs. 

Thus, the transformation is given by y=log2(x+100). As a first step in constructing a 

predictive model, we used ordinary logistic regression to assess the relationship of each 

predictor to the sample type. Then the biomarkers that presented p-values smaller than 

0.20/110 =  0.0018 (Bonferroni adjustment) were selected as predictors unless mentioned 

differently. The numbers and kinds of predictors are different depending on the 

comparison. The Lasso regression (25) was applied to find a subset of biomarkers that 

effectively predict the status of the sample. Additionally, we used the “profL1” function of 

the “penalized” R package to select, via cross-validation, the optimal tuning parameter. 

Then we used the “penalized” function to carry out the lasso regression.  

 

Study approval - All patients consented to submit their samples to this protocol in writing. 

All tissue samples were acquired by partial or total thyroid dissection per the approved 

protocol (CINJ 001724 – Pro20170001082) and Institutional Review Board (IRB) approval 

at Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA. 
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Supplementary Figure S1: (A) Matrix of scatterplots of each of the seven biomarkers vs. the others, with 
"blue squares" indicating cancer samples and "black circles" normal samples. (B) The receiver operating 
characteristic curve (ROC) shows the predictive model's power. mClust analysis considering (C) five 
(glutamate, leucine, proline, taurine, and threonine) and (D) four (glutamate, proline, taurine, and 
threonine) most altered metabolites. The cross-validated and standard error rates are 0.1579 - 0.055 for 
five biomarkers and 0.236 - 0.059 for four biomarkers. (E) Levels of proteogenic amino acids found in DTC 
patients' samples.  
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Supplementary Figure S2: (A) Nuclear DNA mutation burden in metastatic and non-metastatic PTC. (B) 
Logistic regression analysis of BRAF mutation versus CCDC6-RET fusion comparison presenting the p-
values per sample. The smallest p-value in this comparison was 0.0760 (thiamine), emphasizing no 
correlation between the metabolic profile and genetic alterations. (C) mClust analysis considering the six 
main altered metabolites comparing the groups in B. (D) mtDNA mutation burden in metastatic and non-
metastatic PTC. (E) and (F) Correlation of nDNA mutation burden and age with mutational signatures 1 
and 5, respectively. 
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Supplementary Table 1: Patients information 

Patients Gender Age 
(class) Variant Type Metastatic Surgery Stage Oncocytic 

changes Distant Metastasis

P1 F 3 F PTC N TT T3N1 N
P2 F 3 C, F, O PTC Y TT+LnD T1bN1a Y
T1 F 1 C, O PTC Y TT+LnD T2N1 Y
T2 F 2 F PTC N TT T1bN0 N
T3 M 2 C PTC N TT T3N0 Y
T4 F 3 F PTC N TT T1N0 N
T5 M 3 C PTC Y TT+LnD T3N1 N
T6 F 4 C, OV PTC Y TT+LnD T2N1 N

T7 F 3 F, C PTC Y
RT 

lobectomy T3N1 N

T8 F 1 C PTC Y TT+LnD T2N1b N
T9 F 2 C PTC N TT T1bNo N

T10 F 5 C, O PTC Y TT+LnD T3N1 Y

Lymph nodes of head, 
face, and neck; 
intrathoracic lymph nodes; 
lung.                                                                                                                                                                                     

T11 F 4 F PTC N TT T1N0 N
T12 F 4 F PTC N TT+LnD T1bN0 N
T13 F 2 C PTC Y TT+LnD T3N1b N Lung.                                                                                                                                                                                                              
T14 M 4 C PTC Y TT+LnD T1bN1a N
T15 M 5 F FTC Y TT T3N1b N
T16 F 4 F FTC N TT T3N0 N
T17 F 3 C PTC Y TT+LnD T1N1a N

T18 M 3 F PTC Y TT T3N1M
1 N Bone and lung.                                                                                                                                                                                                                       

T19 F 1 C PTC Y TT T3N1 N
T20 F 1 C PTC Y TT+LnD T3N1a N

Follicular Variant (F); Classic Type (C); Other Variant (OV); Oncocytic Changes (O); Papillary Thyroid Cancer (PTC); 
Follicular Thyroid Cancer (FTC);   Total Thyroidectomy (TT); Lymph nodes dissection (LnD); Right Thyroid (RT). Age 

class (years): 1- (20-30); 2 - (31-40); 3 - (41-50); 4 - (51-60); 5 - (61-70)
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Tumor ID Position Reference Alteration Mutation Type Gene Tumor AF (%)
T1 13886 T C Missense MT-ND5 0.093
T2 10946 A AC Frameshift MT-ND4 0.068
T3 3982 G AC Missense MT-ND1 0.045
T6 14162 G AC Missense MT-ND6 0.177
T7 14527 A AC,ACC,ACCC Frameshift MT-ND6 0.363, 0.095, 0.024

T10 3565 A AC, ACC Frameshift MT-ND1 0.827, 0.029
T10 8872 G A Missense MT-ATP6 0.148
T10 10946 A AC Frameshift MT-ND4 0.037

Supplementary Table 2: mtDNA mutations 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.09.23287037doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.09.23287037
http://creativecommons.org/licenses/by-nc-nd/4.0/

