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ABSTRACT 

Background and Aims 

The microbiome has long been suspected of a role in colorectal cancer (CRC) tumorigenesis. 

The mutational signature SBS88 mechanistically links CRC development with the strain of 

Escherichia coli harboring the pks island that produces the genotoxin colibactin, but the 

genomic, pathological and survival characteristics associated with SBS88-positive tumors are 

unknown.  

Methods 

SBS88-positive CRCs were identified from targeted sequencing data from 5,292 CRCs from 

17 studies and tested for their association with clinico-pathological features, oncogenic 

pathways, genomic characteristics and survival.  

Results 

In total, 7.5% (398/5,292) of the CRCs were SBS88-positive, of which 98.7% (392/398) were 

microsatellite stable/microsatellite instability low (MSS/MSI-L), compared with 80% 

(3916/4894) of SBS88 negative tumors (p=1.5x10-28). Analysis of MSS/MSI-L CRCs 

demonstrated that SBS88 positive CRCs were associated with the distal colon (OR=1.84, 

95% CI=1.40-2.42, p=1x10-5) and rectum (OR=1.90, 95% CI=1.44-2.51, p=6x10-6) tumor 

sites compared with the proximal colon. The top seven recurrent somatic mutations 

associated with SBS88-positive CRCs demonstrated mutational contexts associated with 

colibactin-induced DNA damage, the strongest of which was the APC:c.835-8A>G mutation 

(OR=65.5, 95%CI=39.0-110.0, p=3x10-80). Large copy number alterations (CNAs) including 

CNA loss on 14q and gains on 13q, 16q and 20p were significantly enriched in SBS88-

positive CRCs. SBS88-positive CRCs were associated with better CRC-specific survival 
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(p=0.007; hazard ratio of 0.69, 95% CI=0.52-0.90) when stratified by age, sex, study, and by 

stage. 

Conclusion 

SBS88-positivity, a biomarker of colibactin-induced DNA damage, can identify a novel 

subtype of CRC characterized by recurrent somatic mutations, copy number alterations and 

better survival. These findings provide new insights for treatment and prevention strategies 

for this subtype of CRC. 
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INTRODUCTION 

Globally, colorectal cancer (CRC) is one of the most common and fatal cancers1. In the 

United States, there were an estimated 149,500 new CRC cases and 52,980 deaths attributed 

to CRC in 20212. CRC is a heterogeneous disease characterized by different molecular 

subtypes and pathways of tumorigenesis that have clinical implications for prognosis and 

treatment, as well as importance for understanding disease etiology (Dekker et al., 2019). For 

example, high-level microsatellite instability (MSI-high)/mismatch repair deficiency 

(MMRD) occurs in 10%-15% of CRCs and is associated with a favorable prognosis3 and 

response to immune checkpoint inhibition4. Somatic mutations in KRAS/NRAS predict 

response to anti-EGFR therapy5, while the BRAF c.1799T>A p.V600E hotspot mutation is 

used diagnostically to differentiate MSI-high CRC with a sporadic versus inherited (Lynch 

syndrome) etiology and, when present, implicates tumorigenesis via the serrated pathway. 

Therefore, molecularly derived subtypes of CRC have diagnostic and clinical utility.  

 

Tumor mutational signatures represent a novel approach to molecular stratification of CRC6,7 

as they can characterize tumors by aggregating each observed somatic DNA mutation to 

present an overall picture of the mutational processes active in the tumor8. Consequently, 

mutational signature profiles can improve our understanding of the etiology underlying 

individual tumors. The predominant set of mutational signatures published by COSMIC9 

includes recently added definitions for signatures arising from colibactin-induced DNA 

damage, namely single base substitution (SBS) signature SBS88 and small insertions and 

deletions (ID) signature ID18, characterized by single nucleotide variants (SNVs) and short 

insertions and deletions (indels), respectively, occurring predominantly in T-homopolymer 

contexts, and thus providing a biomarker of CRC tumorigenesis caused by pks+ E. coli 
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colibactin-induced DNA damage. Numerous studies have reported a higher prevalence of 

genotoxic strains of Escherichia coli harboring the pks island (pks+ E. coli) in CRC-affected 

individuals compared with healthy individuals10–12 and, more recently, a western-style diet 

was found to be associated with a higher incidence of CRC containing pks+ E. coli13, further 

implicating a role in the tumorigenesis of CRC through the production of colibactin10,14. 

Colibactin causes genomic damage in the form of inter-strand cross links15 and double-

stranded breaks16. This specific DNA damage is recognizable via a unique tumor mutational 

signature originally identified in epithelial organoids exposed to colibactin17, normal 

colorectal epithelial cells18 and, more recently, in CRCs19, providing a mechanistic link 

between pks+ E. coli colibactin-induced DNA damage and CRC etiology. Currently, the 

clinico-pathological consequences of colibactin-induced DNA damage to the tumor and 

patient are unknown.  

 

In this study, we investigated the clinico-pathological characteristics, genomic features and 

CRC-specific survival associated with CRC showing colibactin-induced DNA damage, as 

measured by SBS88, in a large group of CRC patients that had undergone targeted multi-gene 

panel sequencing of tumor and matched germline DNA as part of the Genetics and 

Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family 

Registry study (CCFR). 

 

MATERIALS AND METHODS 

Study population 

A total of 6,111 tumors were available for the study (Supplementary Table 1), consisting of 

2,542 CRCs sequenced with a 1.34 megabase (Mb) amplicon targeted panel covering 205 
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genes20 and 3,569 CRCs sequenced with a 1.96Mb capture targeted panel covering 350 

genes. Formalin-fixed paraffin-embedded (FFPE) CRC tissue was macrodissected and DNA 

extracted. Matched germline DNA from either peripheral blood or FFPE normal colonic 

mucosa was also extracted. Details of the targeted panel sequencing are provided in the 

supplementary material and details of the study design are provided in Figure 1. 

Mutational signatures 

Tumor mutational signatures were calculated for each CRC using the simulated annealing 

method employed by SignatureEstimation21. The pre-defined set of 78 COSMIC v3.2 SBS 

signatures9 was reduced to a set of 18 signatures comprising only those previously observed 

in CRC22, including the colibactin-induced signature SBS88; this reduced the potential for 

mutations to be assigned to signatures less plausible in CRC. This is necessary because 

targeted panel sequencing produces a limited number of somatic mutations23. Only tumors 

with at least five somatic single nucleotide variants were considered adequate for accurate 

signature decomposition24, leaving 5,292 (86.6%) tumors for further analysis (Figure 1). For 

this study, evidence of pks+ E. coli colibactin-induced DNA damage was defined as a tumor 

exhibiting an SBS88 contribution of >10% (SBS88-positive CRC). For indel mutations, 84% 

of the tumors had a count of <5, meaning these tumors would not be suitable for accurate ID 

signature decomposition24, and, therefore, ID signatures were not studied in this analysis. 

Similarly, doublet signatures22 were not analyzed given their low prevalence in CRC22.  

Data collection 

The clinico-pathological features assessed included sex (male/female), self-reported race and 

ethnicity (American Indian or Alaska Native/Asian/Black or African American/White/Other), 

age at CRC diagnosis (years), tumor site (ICD-9 codes 153.0, 153.1,153.4, 

153.6=Proximal/153.2,153.3, 153.7=Distal/154.0, 154.1=Rectal), AJCC tumor stage (1, 2, 3, 
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4), family history of CRC (yes/no for having one or more first-degree relatives with CRC), 

and inflammatory bowel disease (yes/no). Information on CRC-specific survival was 

available from cancer registries, vital statistics registries and study follow up, as described 

previously25.  

Bioinformatics analyses 

The genomic characteristics of the CRCs assessed included microsatellite instability status 

(defined as MSI-high or MSS/MSI-L) determined by mSINGS26 and MSIsensor227 and 

described in further detail by Zaidi et al20; tumor mutational burden (TMB; number of 

somatic SNVs and indels per Mb sequenced); non-silent mutations in known CRC driver 

genes28 (APC, KRAS, TP53, PIK3CA, PTEN, POLE, CTNNB1, RNF43, SMAD4) including 

mutational hotspots e.g. BRAFV600E and KRAS codon 12/13; tumorigenesis pathways (as 

described in Zaidi et al20) and any recurrent somatic mutations observed in the dataset. 

Variant allele fraction (VAF) was used to estimate clonal versus sub-clonal mutations for the 

recurrent somatic mutations identified to be associated with SBS88-positive CRC, with high 

VAFs suggesting clonality and consequently likely to be an earlier event, rather than the 

consequences of tumorigenesis29. Differences in VAF distributions were assessed by 

applying a t-test to the VAFs observed for the recurrent mutations relative to the VAFs 

observed in other mutations from the same tumors.  

Somatic copy number alterations (CNAs) were calculated on a subset of 2,654 tumors tested 

with the 1.96Mb targeted panel that used hybridization capture-based sequencing (compared 

with amplicon-based sequencing used for the 1.3Mb targeted panel) (Figure 1). Three types 

of CNAs were identified: 1) Focal CNAs (gene-level) were calculated with the GATK 4.1 

copy number calling pipeline to identify gene specific CNAs; 2) medium-sized CNAs were 

calculated by merging gene-level CNA calls into contiguous 10Mb segments30 and, to reduce 
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the incidence of false positives, a set of high-confidence CNA calls was generated by 

considering only segments containing three or more gene-level CNAs indicating the same 

copy number gain or loss; and 3) large CNAs affecting whole chromosome arms were 

identified as the most prevalent CNA call across the entire arm. All chromosomes were 

considered in the analysis except chromosome X and chromosome Y which had insufficient 

coverage and sex-related bias. P-values were calculated by comparing the proportions of loss 

or gain in the SBS88 positive CRCs to the proportion observed in the SBS88 negative CRCs 

in each 10Mb segment, each segment consisting of at least three concordant CNA calls, with 

Fisher’s exact test.  

Stratification of SBS88 positive tumors was explored by performing unsupervised clustering 

of genomic features. Dimensionality reduction was performed by applying multiple 

correspondence analysis (MCA)31 to features that were significantly enriched in the SBS88 

positive tumors compared to SBS88 negative tumors and relatively frequent (>10%). The 

optimal number of clusters was determined using the “elbow” method applied to the inertia32, 

silhouette33 and gap statistic34 from each clustering (considering k from 1 to 15), then clusters 

were assigned using the k-means clustering algorithm35.  

We used Cox proportional hazards regression to estimate hazard ratios for the association of 

SBS88 with CRC-specific survival and stratified by sex, study (13/17 studies with available 

data), stage and dichotomized age of diagnosis (below/above 50 years). Samples with greater 

than 5-year survival (1,825 days) since recruitment were right-censored. The proportionality 

assumption held for all analyses.  

Statistical analyses 

All statistical analyses were performed using the scipy statistical package36 on Python 3.7. 

Unless otherwise stated, two-sided unpaired t-tests were used to calculate p-values when 
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comparing means of two groups, Fisher’s exact test was used to calculate p-values when 

counting across two groups, Chi-square was used to calculate p-values when comparing 

counts across more than two groups, and ANOVA was used to calculate p-values for means 

across more than two groups.  

Statistical significance was considered to be p<0.05. For the recurrent somatic mutation 

analysis, adjusted p-values were calculated with the Benjamini-Hochberg procedure37 with a 

false discovery rate of 0.05. 

 

RESULTS 

In total, 398 of the 5,292 included tumors (7.5%) across 17 studies demonstrated the presence 

of the SBS88 signature, with the proportion of SBS88 observed in each tumor ranging from 

10.1% to 72.5% (mean ± standard deviation (SD) = 21.1 ± 10.5%) (Figure 1; 

Supplementary Table 1). Of these SBS88 positive CRCs, 98.7% (392/398) were 

microsatellite stable / microsatellite instability low (MSS/MSI-L), compared with 80% 

(3916/4894) of SBS88 negative tumors (p=1.5x10-28; Fisher’s exact test) (Supplementary 

Figure 1). Due to the predominance of the SBS88 positive CRCs in the MSS/MSI-L subtype 

and the heterogeneity and biology introduced by MSI-high, subsequent analyses focused only 

on MSS/MSI-L tumors. 

 

SBS88-positive tumors are associated with specific clinico-pathological features 

Of the clinico-pathological features assessed, age at CRC diagnosis, sex, and tumor site 

demonstrated an association with SBS88. SBS88 positive CRCs were more common in the 

distal colon (OR=1.84, 95% CI=1.40-2.42, p=1x10-5; Fisher exact test) and rectum 

(OR=1.90, 95% CI=1.44-2.51, p=6x10-6) compared with the proximal colon (Table 1). 

Further stratification by tumor site demonstrated the highest proportion of SBS88 positive 
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CRCs in the sigmoid, rectosigmoid junction, and rectum (Supplementary Figure 2). Female 

sex (57.7% vs 50.7%; p=0.01) and younger mean age at CRC diagnosis (64.6 ± 11.9 vs 66.0 

± 11.7; p=0.03) were associated with SBS88 positive CRC (Table 1; Supplementary Figure 

3). 

SBS88-positive tumors are associated with unique genomic characteristics 

The mean tumor mutational burden (TMB) was 6.3 ± 3.2 mutations/Mb in the SBS88 

positive CRCs which was significantly lower than in SBS88 negative CRCs (11.1 ± 31.6 

mutations/Mb; p=3x10-3) (Table 2). Tumors with POLD1 or POLE non-synonymous 

exonuclease domain mutations were observed only in the SBS88-negative tumors (23 and 61 

(0.6% and 1.6%) out of 3,916, respectively) (Table 2); the difference in mean TMB remained 

significant with the POLE/POLD1 tumors excluded (8.3 ±17.7 mutations/Mb; p=0.03). 

Several somatic CRC driver genes and oncogenic pathways were negatively associated with 

SBS88 positive CRC (Supplementary Table 2). When somatic hotspots were considered, 

there were 24 recurrent somatic mutations significantly associated with SBS88 status 

(p<0.05) that were seen in at least three SBS88 positive or SBS88 negative tumors including 

in APC, SMAD4, TP53, PIK3CA, KRAS and BRAF genes, where 18 mutations were 

positively associated (Figure 2a) and six negatively associated (Supplementary Figure 4), 

demonstrating a high degree of mutual exclusivity. APC c.835-8A>G was the strongest 

recurrent mutation associated with SBS88 positive CRC (OR=65.5, 95%CI=39.0-110.0, 

p=3x10-80) (Table 2, Figure 2a). The top seven recurrent somatic mutations associated with 

SBS88-positive CRCs ranked by lowest p-value (all with adjusted p<0.01) demonstrated 

mutational contexts associated with colibactin-induced DNA damage (ATT>C, TTT>A, and 

ATA>C) and included APC:c.835-8A>G (ATT>C), SMAD4:c.788-8A>G (ATT>C), 

APC:c.1549-8A>G (ATT>C), APC:c.1600A>T (p.Lys534Ter) (TTT>A), TP53:c.659A>G 

(p.Tyr220Cys) (ATA>C), PIK3CA:c.3127A>G (p.Met1043Val) (ATT>C) and 
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IWS1:c.872A>G (p.Asn291Ser) (ATT>C) (Table 2, Figure 2a). The proportion of tumors 

with these top seven recurrent somatic mutations by the SBS88 proportion is shown in 

Figure 2b, where the APC c.835-8A>G hotspot mutation, the most prevalent recurrent 

somatic mutation associated with SBS88-positive CRCs, demonstrated increased prevalence 

in tumors with higher levels of SBS88.  

 

The SBS88-associated recurrent mutation APC:c.835-8A>G is a driver of CRC 

tumorigenesis 

We assessed the potential for recurrent mutations to constitute driver events by inferring 

clonality. The recurrent variants APC:c.835-8A>G and TP53:c.659A>G (p.Tyr220Cys) 

observed in SBS88-positive tumors showed a significantly higher variant allele fraction 

(VAF) than the other somatic variants observed in these tumors with mean±SD 0.42±0.19 vs 

0.32±0.16 (p=2x10-7; t-test) and 0.54±0.19 vs 0.31±0.18 (p=2x10-4), respectively, with the 

mean higher VAFs for these mutations suggesting that they are clonal and therefore an earlier 

somatic event (Figure 2c). The mean VAFs for the APC:c.835-8A>G mutation (0.42±0.19) 

were consistent with the mean VAFs for 1,327 frameshift and truncating APC somatic 

mutations observed in 1,207 tumors (0.39±0.16) supporting the APC:c.835-8A>G mutation 

as a driver mutation (Figure 2d).  

Stratified analyses performed on the SBS88 positive CRCs by the presence or absence of the 

APC:c.835-8A>G mutation demonstrated a significant enrichment of the sigmoid and 

rectosigmoid tumor site for SBS88 positive CRCs with the APC:c.835-8A>G mutation 

(p=8x10-9; Supplementary Table 3). SBS88 positive CRCs with the APC:c.835-8A>G 

mutation had higher proportions of SBS88 signature compared with SBS88 positive CRCs 
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without the APC:c.835-8A>G mutation (mean ± SD: 27.8 ± 12.9%, n=91 vs 19.1 ± 8.7%, 

n=301; p=6x10-8) (Figure 2b). 

 

SBS88-positive tumors have a genomic profile that includes large-scale copy-number 

alteration events 

Copy number alterations (CNA) analysis was performed at gene (focal), medium (10Mb), 

and chromosome arm level on 2,654 tumors that used hybridization capture-based 

sequencing (Figure 1, Supplementary Table 4). At gene level, the median number of CNA 

gains or CNA losses in SBS88-positive CRCs compared with the SBS88 negative CRCs is 

shown in Supplementary Table 5. There were 226 significant (p<0.05) (115 enriched in 

SBS88 positive, 111 enriched in SBS88 negative) gene level CNA events detected when 

comparing the 227 SBS88 positive CRCs to 2,427 SBS88 negative CRCs (Figure 3), with 

each significant CNA on average affecting 62 (27%) of SBS88 positive CRCs. For the subset 

of 49 SBS88 positive CRCs with the APC c.835-8A>G hotspot mutation with CNA data, 289 

significant gene level CNAs were identified when compared with 2,368 SBS88 negative 

tumors without APC c.835-8A>G (Supplementary Figure 5a). In contrast, only 29 

significant gene level CNA events were observed in 174 SBS88 positive CRCs without APC 

c.825-8A>G when compared with the SBS88 negative tumors (Supplementary Figure 5b). 

A high proportion of the gene level CNAs were observed to cluster proximally on the 

genome – for example, 39 of the most significant 44 enriched CNA events are losses on 

chromosome 14 with the remaining five significantly enriched CNAs being losses on 

chromosome 2 suggesting the presence of larger copy number events.  
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For medium sized CNAs, gene level CNAs were merged into contiguous 10Mb segments30 

and a high-confidence set obtained by only considering segments containing at least three 

genes with the same CNA change (i.e. all gene-level events within a segment being gains or 

all being losses). There were 33 unique 10MB segments observed to be significantly different 

between the SBS88 positive and negative CRCs, forming 17 contiguous regions, including 

copy number losses on chromosomes 1, 2, 12, 14 and 17, and gains on chromosomes 13, 16 

and 20 (Supplementary Table 5, Supplementary Figure 6 and Supplementary Figure 7).  

 

Further clustering of medium CNAs into chromosome arm level CNAs demonstrated a CNA 

loss on 14q and gains on 13q, 16q and 20p that were significantly enriched in SBS88 positive 

CRCs and CNA losses on chromosome 2p, 2q, and 17q and a gain on chromosome 15q that 

were significantly underrepresented in SBS88 positive CRCs (Figure 3 and Supplementary 

Table 6). CNA events significantly enriched or underrepresented in SBS88 positive tumors 

with and without APC c.835-8A>G are shown in Supplementary Figures 5a-d. 

 

We observed associations between SBS88, TMB and CNA counts, with SBS88 levels 

showing a significant inverse relationship to TMB (p=0.003; excluding 79 tumors with 

POLE/POLD1 exonuclease mutations: p=0.03) and non-significant positive relationship to 

CNA count (p=0.06) (Supplementary Figures 8a & 8b, respectively). Individual hotspots 

also exhibited different levels of SBS88 (p=8x10-6; Supplementary Figure 8d) and TMB 

(p=4x10-6; Supplementary Figure 8e), but not CNA count (p=0.41; Supplementary Figure 

8f), with APC:c.835-8A>G and SMAD4:c.788-8A>G showing significantly elevated SBS88 

proportions (p=4x10-7 and p=0.01, respectively; Supplementary Figure 8d), and 

TP53:c.659A>G, SMAD4:c.788-8A>G, PIK3CA:c.3127A>G and IWS1:c.872A>G showing 
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elevated TMB (p=2x10-4, p=0.04, p=3x10-22 and p=3x10-18, respectively; Supplementary 

Figure 8e) compared with other SBS88-positive tumors.  

 

SBS88-positive tumors cluster into groups exhibiting distinct genomic characteristics 

The observation that specific genomic and tumor features that were significantly associated 

with SBS88-positive CRCs were correlated (Supplementary Figure 9) suggested the 

likelihood of molecular heterogeneity in SBS88 positive CRCs. Clustering SBS88 positive 

tumors based on enriched genomic features with sufficient frequency (>10%) revealed the 

presence of three clusters (Figure 4, Supplementary Figure 10). Cluster 1 (APC 

hotspot/20p gain cluster) was the largest cluster comprising predominantly distal and rectal 

tumors and characterized genomically by both the APC c.835-8 A>G hotspot and gains on 

the 20p chromosomal arm. Cluster 2 (TP53/CNA dominant cluster) showed pathogenic TP53 

mutations and the highest proportion of SBS88 associated CNAs, namely 16q gain, 13q gain, 

and 14q loss with a predominance for distal and rectal tumors. Cluster 3 (WNT/CNA rare 

cluster) tumors were absent of the SBS88 associated large CNAs but instead harbored KRAS 

and TGFβ mutations, with >90% of tumors in this cluster demonstrating WNT pathway 

activating mutations, with relatively more of these tumors in the proximal colon. A summary 

of each cluster, its characteristics and associated features are shown in Supplementary 

Tables 7 and 8. The molecular profile of SBS88 positive CRC by these three clusters is 

demonstrated in Supplementary Figure 11.  

 

SBS88-positive tumors are associated with better CRC-specific survival 

We assessed CRC-specific survival between the SBS88 positive and SBS88 negative CRCs, 

in the subset of MSS/MSI-L tumors with available data (n=3,465; Figure 1; Supplementary 
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Table 1). This subset of tumors included 734 CRC-related deaths. Although CRC-specific 

survival between the groups was not significantly different (p=0.06; Figure 5), after 

stratifying by age, sex, study, and by stage, the SBS88 positive CRCs were associated with 

better survival (p=0.007) with a hazard ratio of 0.69 (95% CI 0.52 to 0.90). Tumor site was 

not significant with this set of included features (Supplementary Figure 12). When stratified 

analyses were performed on the subset of SBS88 positive CRCs with the APC c.835-8A>G 

hotspot mutation, a similar improved survival effect was observed although it was no longer 

significant (p=0.21). When considering significant CNA chromosome arm changes between 

SBS88 positive tumors to SBS88 negative tumors, gains on chromosome 15q and losses on 

17q were associated with poorer survival across the cohort (p=0.002, OR=1.33-3.44, and 

0.04, 1.01-1.61, respectively) (Supplementary Table 6). Survival analysis on 

SBS88-positive tumors with both CNA and survival data (n=168) comparing the three 

clusters did not reveal a significant difference in survival (p=0.4), though a trend of improved 

survival in cluster 3 (WNT/CNA rare) relative to the other two clusters was observed 

(Supplementary Figure 13). 
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DISCUSSION 

In this large study of genomically characterized CRCs, we describe a novel subtype of CRC 

characterized by the SBS88 tumor mutational signature. These tumors are predominantly 

MSS/MSI-L and, compared with MSS/MSI-L CRC tumors without this signature, are more 

likely to occur in the distal colon and rectum, driven by the APC c.835-8A>G recurrent 

hotspot mutation, among other recurrent mutations matching the genomic contexts associated 

with SBS88, and displaying associations with copy number loss on chromosome 14q, and 

copy number gains on chromosomes 13q, 16q and 20p. These SBS88-associated genomic 

features revealed three molecular subtypes of SBS88 positive CRC. Furthermore, SBS88 

positive CRCs were associated with better CRC survival compared with SBS88 negative 

CRCs when stratified on sex, stage, age and study.  

 

The APC c.835-8A>G somatic variant was highly enriched in the SBS88 positive CRCs, and 

importantly, rarely arises in tumors not exhibiting the SBS88 signature, suggesting the 

variant may be associated with DNA damage induced by colibactin. The genomic context 

surrounding this variant is consistent with the 3bp context enriched in the SBS88 signature 

and has previously been associated with colibactin damage17,19. A link between the 

APC:c.835-8A>G mutation and colibactin damage was proposed in a smaller study, although 

the relationship with the SBS88 signature was not investigated38. In addition, our analysis of 

variant allele fraction distributions suggested this variant is likely clonal and, therefore, an 

early somatic event, consistent with current proposals that SBS88 is likely the result of early 

life exposure to colibactin18,39,40. Combined with its location within a known CRC driver 

gene, this provides further evidence of its potential status as a driver mutation and the likely 

importance of the genotoxic colibactin DNA damage targeting this hotspot DNA sequence in 
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the APC gene for tumor development. The presence of the APC c.835-8A>G mutation and 

SBS88 in pre-malignant adenomas would support this concept.  

 

Other associated recurrent mutations exhibited genomic contexts reflecting the SBS88 

signature definition: five of the top seven associated mutations match the ATT>C context. 

These SBS88 associated somatic mutations were largely mutually exclusive. The strong 

association between these somatic variants and SBS88 positive CRC and their rarity in 

SBS88 negative CRC indicates these specific variants may serve as biomarkers or proxies for 

the SBS88 mutational signature, which may be of particular importance for identifying 

colibactin-induced CRC at lower somatic mutation counts where tumor mutational signatures 

become less reliable due to an increase in reconstruction error6,24.  

 

The specific CNA events associated with SBS88 positive CRC may relate to the mechanism 

by which colibactin induces DNA damage.  Colibactin-induced DNA damage manifests 

genomically as interstrand crosslinks15 and double stranded breaks19,41, which may explain 

the association with specific CNA events observed in SBS88 positive tumors. Therefore, 

colibactin may directly cause double stranded breaks at specific genomic sequence/contexts 

(e.g. T-homopolymers) leading to CNAs.  Alternatively, these recurrent CNA events may be 

an indirect consequence of colibactin-induced DNA damage resulting from increased 

genomic instability caused by mutations in TP53 gene or activation of the interstrand 

crosslink repair mechanism mediated by the Fanconi-anemia pathway, which as a side-effect 

tends to create double stranded breaks42. We observed a cluster of SBS88 positive CRCs 

characterized by TP53 mutations and high CNA load (cluster 2). The timing of when these 

SBS88 associated CNAs occur during the tumorigenesis process may help to resolve this 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2024. ; https://doi.org/10.1101/2023.03.10.23287127doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.10.23287127
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

mechanism.  We hypothesize that the enrichment of specific CNAs in SBS88 positive CRC 

may help drive tumorigenesis in a low somatic SNV environment, as we observed a lower 

mean number of somatic mutations in the SBS88 positive CRCs than in the SBS88 negative 

CRCs.  Utilizing structural variants or CNA events resulting from colibactin-induced DNA 

damage in the mutational signature algorithm may help to refine the SBS88 mutational 

signature. In this study, 819 CRCs or 13.4% of the total 6,111 CRCs available for analysis 

could not be included in mutational signature calculation because of low (<5) somatic SNV 

count. 

 

We observed a strong enrichment of SBS88 positive CRC in the distal colon and rectum. A 

previous study also found tumors exhibiting the colibactin signature more prevalent in distal 

tumors18. Differences in the prevalence of pks+ E. coli across the colon and rectum have been 

inconsistently reported13,14,43. Physiological differences across the colon and rectum are 

known to affect the composition and behavior of microbial populations44.  The reported 

observations that pks+ E. coli occurs throughout the colon and rectum but SBS88 positive 

CRC is more prevalent in the distal colon and rectum suggests that colibactin has increased 

oncogenic potential in the mucosa of the distal colon and rectum. Furthermore, CRC in the 

distal colon is predominantly associated with development via the chromosomal instability 

pathway45,46.  In this study, SBS88 positive CRC was associated with specific chromosomal 

instability events, including copy number losses on 14q, and with recurrent somatic 

mutations in APC, SMAD4 and TP53 genes that are known driver genes of tumorigenesis via 

the chromosomal instability pathway. Therefore, the distal colon and rectum may provide 

more favorable conditions for colibactin-induced DNA damage that targets the necessary 

driver genes and CNAs to drive CRC development via the chromosomal instability pathway.   
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The observed heterogeneity within the SBS88 positive CRCs is an interesting finding. Three 

distinct subgroups of SBS88 positive CRC were identified, each characterized by an 

enrichment of different genomic features and location in the colon and rectum 

(Supplementary Figure 11).  Clusters 1 and 2 were both predominantly found in the distal 

colon and rectum but differed by the presence of the APC:c.835-8A>G recurrent mutation 

(Cluster 1) and presence of TP53 mutations and greater number of CNA events (cluster 2) 

while Cluster 3 was associated with the proximal colon, KRAS mutations, and an absence of 

recurrent hotspot mutations and CNA events.  The timing, repetition, duration and strain of 

pks+ E. coli may drive this genomic heterogeneity. Shorter exposure duration and less 

genotoxic strains are associated more with structural variation such as interstrand cross-links 

and CNAs compared with SNVs and indels16, while the presence of the SBS88 signature in 

normal colonic mucosa18, in conjunction with the presence of the APC:c.835-8A>G recurrent 

somatic mutation in adenoma tissue38 and our finding that APC:c.835-8A>G is a likely early 

driver event, suggests early life exposure to colibactin may be important for CRC 

predisposition via APC:c.835-8A>G driven mechanism. Thus, the distinct genomic clusters 

may represent exposure-dependent pathways to tumorigenesis. Furthermore, the role of 

potential modifiers, including Western diet13, may contribute to the genomic heterogeneity 

and any exposure-dependent relationship with colibactin-induced SBS88 positive CRC. 

 

The survival analysis indicated a better prognosis associated with SBS88-positive CRCs. The 

reason for this is unclear.  CRC-specific survival has been linked with the immune response 

where immune infiltration is strongly associated with better prognosis47. Pks+ E. coli 

demonstrates complex interactions with the immune system43, suggesting pks+ E. coli 

infection impacts survival via its effect on the host’s immune response.  We did not observe 
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differential survival within the clusters, although increased copy number load is typically 

associated with poorer outcomes48.  

 

The strengths of this study are the large sample size of targeted sequenced CRCs with 

associated clinico-pathological and survival data for CRC-specific death enabling adequately-

powered analyses. The targeted capture was designed to capture genes important in CRC 

development (versus a pan-cancer designed panel) ensuring that identified targets or gene 

associations will be broadly relevant to future CRC diagnostics and/or treatment. This study 

has some limitations. It was performed on a targeted sequencing platform, which limits the 

feasibility of some genomic analyses. Due to the sequencing technology, the copy number 

analysis was not performed on the full dataset, thus reducing the available samples for this 

component of the analysis, which may have limited our ability to identify additional 

significantly associated CNA regions. In addition, panel-sequenced data does not allow base-

level resolution of breakpoints which would enable us to confirm the surrounding genomic 

context of copy number related breakpoints to add confidence in a colibactin related damage 

profile. The ID18 signature could not be determined with accuracy in this study given the low 

number of indels; future studies utilizing whole-exome or whole-genome sequencing may 

enable further investigation of colibactin induced DNA damage and clinico-pathological and 

genomic features in CRC.  

 

Conclusions 

The detection of tumorigenesis caused by colibactin-induced DNA damage from pks+ E. coli 

represents our ability, for the first time, to assign a non-hereditary etiology to any given CRC. 

This has important implications for the patient where assigning a cause for their cancer can 
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relieve the anxiety of not otherwise knowing the cause after hereditary CRC genes have been 

excluded. The identification of this novel subtype of CRC will impact future opportunities for 

CRC prevention including via the detection of the SBS88 signature and/or the APC:c.835-

8A>G mutation as a biomarker of a current or prior pks+ E. coli infection and may 

additionally represent a biomarker of the malignant potential of adenoma or colonic mucosa, 

all of which may modify patient surveillance and management.  Opportunities for prevention 

at the population level would conceivably include approaches that target the detection of pks+ 

E. coli in saliva or stool. Potential treatments that inhibit the genotoxic effects of colibactin 

are gaining momentum49,50, underscoring the importance of detecting the SBS88 signature 

and/or the APC:c.835-8A>G mutation biomarker early.  SBS88-positive CRCs were 

significantly associated with unique genomic alterations including the recurrent somatic 

mutation APC:c.835-8A>G, which is likely to be an early driver event. Extending this 

concept, it seems likely that there is a subset of genomic contexts throughout the genome that 

are both vulnerable to colibactin-induced DNA damage and that when mutated, drive CRC 

initiation and progression via the chromosomal instability pathway in the distal colon and 

rectum.  Several knowledge gaps exist regarding the mechanisms driving genomic 

heterogeneity of SBS88 positive CRC, the timing of colibactin exposure, and potential 

modifiers that may increase oncogenic potential remain to be resolved.  The findings from 

this study provide an important clinicopathological and genomic characterization of this 

novel subtype of CRC arising from a specific and likely modifiable gut bacteria and provide 

further elucidation of the mechanism underlying the colibactin-induced tumorigenesis and 

molecular phenotype associated with this CRC subgroup.   
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TABLES 

Table 1: Comparison of clinico-pathological features across MSS/MSI-L CRC (n=4,308) stratified by 
SBS88 negative and SBS88 positive CRCs. P-values were either calculated from a Chi-square 
one-way test, or a two-sided unpaired t-test (age of diagnosis). Statistically significant p-values 
(<0.05) are highlighted in bold. 

Feature SBS88 
negative 
CRC 
(n=3,916) 

SBS88 positive 
CRC 
(n=392) 

p-value Odds Ratio  
(95% CI) 

Sex 

 Male 

 Female 

 

1,932 (92.1%) 

1,984 (89.8%) 

 

166 (7.9%) 

226 (10.2%) 0.01 

 

ref 

1.33 (1.07-1.64) 

Age at CRC diagnosis 
(mean±SD) 

66.0 ± 11.7 64.6 ± 11.9 0.03 n/a 

 <50 years 

 >50 years 

431 (88.7%) 

3,471 (91.2%) 

55 (11.3%) 

333 (8.8%) 0.06 

ref 

1.33 (0.98-1.80) 

Tumor Site 

 Proximal 

 Distal 

 Rectal 

 

1,400 (93.8%) 

1,176 (89.2%) 

1,057 (88.9%) 

 

92 (6.2%) 

142 (10.8%) 

132 (11.1%) 3x10-6 

 

ref 

1.84 (1.40-2.42) 

1.90 (1.44-2.51) 

Tumor Stage 

 Stage 1 

 Stage 2 

 Stage 3 

 Stage 4 

 

720 (90.7%) 

890 (91.6%) 

921 (90.0%) 

449 (92.0%) 

 

74 (9.3%) 

82 (8.4%) 

102 (10.0%) 

39 (8.0%) 0.53 

 

ref 

0.90 (0.64-1.25) 

1.08 (0.79-1.48) 

0.85 (0.56-1.27) 

Family history 

 No 

 Yes 

 

2,648 (91.1%) 

550 (89.3%) 

 

260 (8.9%) 

66 (10.7%) 0.17 

 

ref 

1.22 (0.92-1.63) 

Ethnicity 

 White 

 American Indian/Alaska 
Native 

 Asian 

 Black/African American 

 Other 

 

3,378 (90.6%) 

2 (100%) 

29 (93.5%) 

33 (89.2%) 

27 (87.1%) 

 

350 (9.4%) 

0 (0%) 

2 (6.5%) 

4 (10.8%) 

4 (12.9%) 
0.90 

 

ref 

- 

0.67 (0.16-2.81) 

1.17 (0.41-3.33) 

1.43 (0.50-4.12) 

IBD 

 No 

 Yes 

 

2,331 (91.2%) 

47 (92.2%) 

 

225 (8.8%) 

4 (7.8%) 0.81 

 

ref 

0.88 (0.31-2.47) 
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Table 2: Comparison of genomic features and recurrent somatic mutations across MSS/MSI-L CRC 
(n=4,308) stratified by SBS88 negative and SBS88 positive CRCs. P-values were either calculated 
with Fisher exact (2x2 categorical) Chi-square one-way test (>2 categorical), or from a two-sided 
unpaired t-test (TMB, CNA count). P-value and odds ratios for copy number alterations are for the 
least significant segment in each contiguous region. Statistically significant p-values (<0.05) are 
highlighted in bold. Only recurrent somatic mutations with p<0.0001 are included, all of which 
remain significant after Benjamini-Hochberg adjustment (FDR<0.05). †adj=Benjamini-Hochberg 
adjusted p-value. 

Feature SBS88 negative 
CRC 
(n=3,916) 

SBS88 
positive CRC 
(n=392) 

p-value Adj†  
p-value 

Odds Ratio  
(95% CI) 

TMB (mutations/Mb) 11.1 ± 31.6 6.3 ± 3.2 3x10-3  n/a 

CNA count 365.0 ± 191.7 

(n=2,427) 

378.9 ± 186.0 

(n=227) 

0.29 

 

 n/a 

POLE exo 

POLD1 exo 

No POLE/POLD1 exo 

61 (100%) 

23 (100%) 

3,837 (90.7%) 

0 (0%) 

0 (0%) 

392 (9.3%) 

0.01 

0.13 

 

 - 

Recurrent somatic mutations with SBS88 related contexts 

APC:c.835-8A>G 

 Absent 

 Present 

 

3,898 (92.8%) 

18 (16.5%) 

 

301 (7.2%) 

91 (83.5%) 3x10-80 

 

 

2x10-78 

 

 

65.5 (39.0-110.0) 

APC:c.1549-8A>G 

 Absent 

 Present 

 

3,915 (91.1%) 

1 (10%) 

 

383 (8.9%) 

9 (90%) 4x10-9 

 

 

2x10-7 

 

 

92.0 (11.6-728.1) 

SMAD4:c.788-8A>G 

 Absent 

 Present 

 

3,915 (91.0%) 

1 (14.6%) 

 

386 (9.0%) 

6 (85.7%) 

 

4x10-6 

 

 

1x10-4 

 

 

60.9 (7.3-506.8) 

APC:c.1600A>T (p.Lys534Ter) 

 Absent 

 Present 

 

3,913 (91.0%) 

3 (30%) 

 

385 (9.0%) 

7 (70%) 5x10-6 

 

 

1x10-4 

 

 

23.7 (6.1-92.1) 

TP53:c.659A>G (p.Tyr220Cys) 

 Absent 

 Present 

 

3,897 (91.1%) 

19 (63.3%) 

 

381 (8.9%) 

11 (36.7%) 3x10-5 

 

 

6x10-4 

 

 

5.9 (2.8-12.6) 

PIK3CA:c.3127A>G 
(p.Met1043Val) 

 Absent 

 Present 

 

 

3,916 (91.0%) 

0 

 

 

388 (9.0%) 

4 (100%) 7x10-5 

 

 

 

1x10-3 

 

 

 

- 

IWS1:c.872A>G p.Asn291Ser 

 Absent 

 Present 

 

3,915 (91.0%) 

1 (20.0%) 

 

388 (9.0%) 

4 (80.0%) 3x10-4 

 

 

0.004 

 

 

40.36 (4.5-362.0) 
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FIGURES 

 

Figure 1: Overview of study design, summarizing included tumors and analyses performed. 

 

Figure 2: (a) Somatic mutations (n=18) seen in at least three SBS88 positive CRCs that were 

significantly enriched (p<0.05) compared with SBS88 negative CRCs. Somatic mutations are 

ranked by p-value with the seven most significant mutations located in genomic contexts that 

are major contributors to the SBS88 signature (context rank in SBS88 shown as superscript). 

The APC, SMAD4 and TP53 genes had more than one recurring somatic mutation associated 

with SBS88 positive CRC. Ten mutations remained significant after Benjamini-Hochberg 

adjustment (FDR 0.05). (b) The positive relationship between the increasing proportion of 

the SBS88 mutational signature and the likelihood of observing a significant mutational 

hotspot, in particular APC:c.835-8A>G. The seven significant recurrent mutations in an 

SBS88 context are included individually, as well as the 11 other positively associated 

recurrent mutations. (c, d) Variant allele fraction of the APC:c.835-8A>G somatic hotspot 

mutation in 91 SBS88 positive CRCs is (c) significantly higher than other somatic mutations 

observed in the same tumors, suggesting the hotspot mutation is likely to be clonal and a 

relatively early somatic event, and (d) similar to other truncating and/or frameshifted APC 

mutations, suggesting the hotspot mutation is a likely driver mutation akin to these 

pathogenic APC mutations. 

 

Figure 3: Circos plots showing the overlap between gene (focal) (n=226), medium (10Mb) 

(n=17) and chromosome arm (n=7) level copy number alterations (CNAs) (losses in red, 

gains in green), that were significantly enriched in either (a) SBS88-positive tumors or (b) 

SBS-negative tumors. The outer ring shows gene-level (focal) events, with medium (10Mb) 

and chromosome arm-level events on the middle and inner rings, respectively. P-values of 

significant medium sized CNAs are listed below each circos plot.  

 

Figure 4: clustering SBS88 positive tumors on enriched and relatively frequent genomic 

features revealed potential heterogeneity. Each unlabeled point represents a tumor in 2D 

MCA (multiple correspondence analysis) space, with color representing cluster membership 

(green=cluster 1; yellow=cluster 2; purple=cluster 3). Ellipses show the 95% confidence 
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interval for cluster membership. Labeled points show genomic features mapped to the 2D 

MCA space, with proximity of features representing association between features. 

 

Figure 5: Kaplan-Meier survival curve with CRC-specific death, showing 95% confidence 

interval (unadjusted). The log-rank comparison of survival curves is not statistically 

significant across the cohort (p=0.06) (a), or for individual stages (b-e) but with stratification 

on study, sex, stage and dichotomized age the Cox proportional hazards model finds presence 

of SBS88 as significant (p=0.007). 
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