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Abstract 17 

During the COVID-19 pandemic, the use of mobile phone data for monitoring human mobility 18 

patterns has become increasingly common, both to study the impact of travel restrictions on 19 

population movement and epidemiological modelling. Despite the importance of these data, the 20 

use of location information to guide public policy can raise issues of privacy and ethical use. 21 

Studies have shown that simple aggregation does not protect the privacy of an individual, and there 22 

are no universal standards for aggregation that guarantee anonymity. Newer methods, such as 23 

differential privacy, can provide statistically verifiable protection against identifiability but have 24 

been largely untested as inputs for compartment models used in infectious disease epidemiology. 25 

Our study examines the application of differential privacy as an anonymisation tool in 26 

epidemiological models, studying the impact of adding quantifiable statistical noise to mobile 27 

phone-based location data on the bias of ten common epidemiological metrics. We find that many 28 

epidemiological metrics are preserved and remain close to their non-private values when the true 29 

noise state is less than 20, in a count transition matrix, which corresponds to a privacy-less 30 

parameter 𝜖 = 0.05 per release. We show that differential privacy offers a robust approach to 31 

preserving individual privacy in mobility data while providing useful population-level insights for 32 

public health.  Importantly, we have built a modular software pipeline to facilitate the replication 33 

and expansion of our framework.  34 

Author Summary 35 

Human mobility data has been used broadly in epidemiological population models to better 36 

understand the transmission dynamics of an epidemic, predict its future trajectory, and evaluate 37 

potential interventions. The availability and use of these data inherently raises the question of how 38 

we can balance individual privacy and the statistical utility of these data. Unfortunately, there are 39 
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few existing frameworks that allow us to quantify this trade-off. Here, we have developed a 40 

framework to implement a differential privacy layer on top of human mobility data which can 41 

guarantee a minimum level of privacy protection and evaluate their effects on the statistical utility 42 

of model outputs. We show that this set of models and their outputs are resilient to high levels of 43 

privacy-preserving noise and suggest a standard privacy threshold with an epsilon of 0.05. Finally, 44 

we provide a reproducible framework for public health researchers and data providers to evaluate 45 

varying levels of privacy-preserving noise in human mobility data inputs, models, and 46 

epidemiological outputs.  47 

Introduction  48 

The use of private mobile phone data for various applications in public health, urban planning, and 49 

response to natural disasters has been steadily growing for more than a decade [1–3] .  The COVID-50 

19 pandemic has accelerated this trend, and the use of mobility data has increased, following the 51 

need to monitor and make policy decisions related to travel restrictions and lockdowns. These data 52 

were incorporated into epidemiological models during the pandemic to monitor or forecast SARS-53 

COV-2 transmission.  54 

Mobility data from mobile phones allow us to quantify changes in human movement, identify how 55 

social contacts cluster, evaluate where cases come into contact with others, and predict the 56 

probability of geographic spread  [4]. Data acquired from cell phone metadata recorded for billing 57 

purposes or from digital platforms are aggregated and shared with researchers, who can then get 58 

significant information from mobility patterns [5–7]. Such studies have been used to explain the 59 

seasonal pattern of dengue in Pakistan and rubella in Kenya, for example [5,7]. These models are 60 

predominantly metapopulation models in which mobility data are used to determine the impact of 61 
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human migration on the trajectory of infectious diseases. During the COVID-19 pandemic, the use 62 

of mobility data increased around the world, and metapopulation models were used to understand 63 

the relationship between human mobility and the spread of the epidemic, predict the dynamics of 64 

the epidemic, and estimate the effectiveness of nonpharmaceutical interventions such as 65 

lockdowns, reopenings, and social distancing, based on other work modelling the spatial dynamics 66 

of pathogens [4–6]. 67 

Despite the statistical utility of these datasets, important privacy concerns remain about the sharing 68 

of personal data, even if they are deidentified and aggregated. Standardised approaches are 69 

currently lacking for data-sharing agreements and guidelines on the appropriate ways to protect 70 

individual privacy while using mobility data for public health.  As big data, the semantic web,  the 71 

interconnectedness of digital technology, and the "Internet of Things" (IoT) increase the volume 72 

and velocity of data,  it becomes easier to reanonymise such aggregated data [8].   73 

Several privacy frameworks have been developed to address the trade-off between privacy and 74 

utility for statistical analyses [9–15]. Amongst these frameworks, differential privacy (DP) has 75 

become the leading approach to balance this trade-off [16]. DP is a parameterized privacy concept, 76 

where the privacy parameter 𝜖 allows for a smooth trade-off between privacy and utility for 77 

statistical analyses [17]. Informally, an algorithm that is 𝜖-differentially private ensures that any 78 

particular output of the algorithm is at most 𝑒𝜖  more likely when we arbitrarily change one data 79 

entry. In DP, observations are perturbed by adding noise coming from a carefully chosen 80 

distribution [17]. A DP mechanism applied to a mobility matrix of travel between different 81 

locations will prevent disclosing the exact number of movements and will also keep the private 82 

information of the individual (home and work location, etc.) hidden.  83 
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DP is considered the gold standard of statistical privacy, as its application can be proven to 84 

preserve privacy while quantifying the trade-off between privacy and the utility of the released 85 

statistics [16]. The trade-off between privacy and utility is important because the noisier the output, 86 

the less useful it may be for inference. Increasingly, DP is used for the public release of data sets 87 

by industries and governments such as Google, Apple, Microsoft, Facebook (Meta), Uber, and the 88 

US Census Bureau,  but it remains unclear how DP should be used in the context of mobility data 89 

for epidemiological frameworks [18]. 90 

In this paper, we examine how differential privacy can be applied to infectious disease modelling 91 

and analyse the impact of different levels of privacy on the reconstruction of epidemic features 92 

through simulation. Our method is based on a previously validated epidemiological 93 

metapopulation model, and we investigate the effect of the addition of privacy-preserving noise 94 

on key epidemiological outputs of interest. We used real-world mobility data from New York State 95 

during the early stages of the COVID-19 pandemic in the United States and show that the 96 

application of differential privacy can bias certain epidemiological metrics. We propose that 97 

differential privacy offers a rigorous and quantifiable approach to safely using mobile phone data 98 

during epidemics for modelling purposes.  99 

Results 100 

Mobility data 101 

The mobility matrices included data from August 15 to November 15, 2020, and contained a total 102 

of 812,587 transitions made between sixty-two counties of New York State, with a mean of 9,029 103 

transitions a day. The observed daily transitions ranged from a minimum of 600, occurring in 104 

Hamilton County, to a maximum of 77,131 in Suffolk County. The maximum transition between 105 
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counties occurred between Queens and Kings counties, with 5,262, whereas we counted 14 106 

combinations of zero transitions during the selected windows. After applying DP, the absolute 107 

number of transitions was affected, but the relative rank of the intercounty routes with respect to 108 

the volume of travel remained the same. We initiated a variety of common scenarios to assess the 109 

effect of added noise on bias and variability in our epidemiological parameters of interest.  110 

Scenarios with initial outbreaks in large and small regions  111 

We first address the impact of starting epidemics in large versus small counties to determine 112 

whether DP would have systematic impacts on the dynamics overall. Kings and Queens are the 113 

largest counties in New York State with an approximate population of 2 million individuals each 114 

[19]. Allegany and Essex are the smallest counties in New York state, with populations of 115 

approximately 46,000 and 37,000 individuals, respectively. In each of these counties (first the two 116 

largest, and then the two smallest), we seeded 20 infectious individuals to spark an epidemic. In 117 

the scenario with large counties, we observed epidemics that started around the 50th day and 118 

peaked around the 75th day, reaching approximately 1% of the population living in these areas. In 119 

the smaller counties, the epidemic began around the 60th day and peaked on the 150th day, 120 

reaching approximately 5% of the population (Suppl.).  121 

We evaluated the metrics of interest over 1,000 iterations for each combination of scenarios and 122 

noise. We observed that when the epidemic is seeded in Queens and Kings, the epidemic size and 123 

the proportion of counties with at least one case are higher compared to an outbreak seeded in 124 

smaller counties (Fig. 1A).  When noise is above 20, the values for the epidemic size for observed, 125 

asymptomatic, and symptomatic infected, the size at the peak of the epidemic, and the proportion 126 

of counties with one case are lower than those obtained when the mobility matrix is not perturbed. 127 
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However, the values obtained for the rate of spread, effective reproductive rate, risk of importation, 128 

probability of importation, and mean importation rate are higher than those obtained for the non-129 

perturbed dataset (Fig. 1).   130 

Scenarios with Epidemics in Well- and Poorly Connected Regions 131 

To address how the effect of DP on network connectivity would impact predicted disease 132 

dynamics, we simulated an outbreak in three pairs of counties with varying levels of connectivity 133 

to Kings County. The first simulation in Monroe and Saratoga counties was designed to assess the 134 

impact of low connectivity (less than 20% of transitions during the period) on the disease dynamic. 135 

The second scenario targeted counties in the median of transitions, such as Putman and 136 

Westchester counties, to assess the dose-response effect of the epidemiological model. The third 137 

scenario was simulated in Schoharie and Lewis counties (no transition to Kings County during the 138 

period) to assess the impact in places that were isolated in the larger mobility network.  When the 139 

outbreak is simulated in Monroe and Saratoga (Scenario 3), the epidemic begins around the 60th 140 

day and the number of infected persons reaches the maximum around the 150th day, with less than 141 

1% of the total population living in this area infected. When the outbreak is seeded in medium 142 

connectivity areas such as Putnam and Westchester (Scenario 4), less than 0.6% of the population 143 

became infected around the 75th day after the epidemic peaks around the 40th day. When the 144 

outbreak is seeded in an area with low connectivity to Kings County, i.e., connectivity close to 0 145 

such as Lewis and Schoharie (scenario 5), less than 0.07% of the population is infected around the 146 

200th day since the epidemic only starts around the 90th day (Suppl.).   147 

We found that regardless of network connectivity, epidemiological metrics degraded as noise 148 

increased (Fig. 1B). As such in the three scenarios addressing the change in the network of 149 
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mobility, namely when i) the epidemic is sparked in two random counties having less than 20% 150 

transition to Kings County, ii) the epidemic is sparked in two random counties with a median 151 

transition to Kings County, and iii) the epidemic is sparked in a county with no transition to Kings 152 

County; we observed a similar pattern in the distribution of the metric to what we observed when 153 

there was an outbreak in small counties (scenario 2). Specifically, the size of the epidemic, the day 154 

that the epidemic peaks, the fraction of counties with at least one case, the size of the epidemic, 155 

the average exposure time, the maximum exposure time, and the minimum exposure time are 156 

smaller than the baseline. The spread rate, the effective reproductive rate, the importation risk, the 157 

mean importation risk rate, and the probability of infection are higher than the baseline, especially 158 

when the noise is above 33.33 (Fig. 1B).  We observed a significant change in the epidemiological 159 

metrics only when the value of noise added to perturb the transition matrix is above those of the 160 

scenario targeting the location of the first cases (small versus large county) (Fig. 1B).  161 

Scenarios with varying epidemiological parameters 162 

To address the nature of the epidemic, we simulated three changes in the trajectory of the epidemic 163 

in Kings and Queens counties. Specifically, we simulated i) a faster epidemic through the increase 164 

of the transmission rate, ii) a heavy load of asymptomatic individuals, and ii) an absence of 165 

asymptomatic individuals in the population. When the transmission rate increases (scenario 6) we 166 

can observe that the epidemic starts around the 40th day and reaches its peak around the 75th with 167 

almost 3% of the population infected. When the fraction of symptomatic individuals increases, the 168 

size of the epidemic also increases and reaches 1.5% of the population around the 75th day since 169 

the epidemic starts around the 40th day after the first case (scenario 7). When the fraction of 170 

documented infection decreases (scenario 8), there is no declared epidemic, as only asymptomatic 171 

people are recorded in the population, reaching a fraction of 0.008% after the 100th day.  172 
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When the transmission rate increases, the epidemic spreads quickly (Fig. 1C). When the 173 

asymptomatic rate increases, the probability of infection will subsequently increase. The trajectory 174 

of the epidemic is similar to the non-perturbed dataset. However, above the noise of 33.33, 175 

epidemiological metrics are either more conservative (lower than those of the baseline) or more 176 

volatile (higher than those of the baseline) (Fig. 1C). Furthermore, we found that the fraction of 177 

counties with at least one case is not affected by the change in i) the transmission rate and ii) the 178 

fraction of symptomatic individuals (Fig. 1C)   179 
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[insert Fig. 1 here] 180 

Discussion  181 

Several metapopulation models were developed throughout the SARS-CoV2 pandemic to inform 182 

decision making, predict the trajectory of the disease and identify weaknesses in the healthcare 183 

system [20–23]. The mobility data used to parameterize these models provided information on 184 

geographic and behavioral heterogeneity between populations, but these data could theoretically 185 

be used to identify individuals or their unique travel behavior, which warrants privacy preservation 186 

measures [24]. Our study shows that in metapopulation models that use mobility data, the 187 

application of privacy-preserving noise results in unbiased estimates of metrics of interest at a wide 188 

range of noise values with an upper limit that allows for a significant privacy-preserving budget.  189 

We found that mobility matrices that are infused with noise values below 20, that is, loss of privacy 190 

loss 𝜖 =  0.05 per matrix, can help protect the privacy of individuals who contribute their data, 191 

while limiting bias in the estimation of public health measures of interest when used for 192 

epidemiological modelling. Intuitively, adding noise to these mobility matrices may result in 193 

newly created connections between locations that would not otherwise be connected, strengthening 194 

connections that would otherwise be weak, or vice versa. In some cases, we may even see the 195 

removal of connections on specific days. Predictions of the spread of the rural area may be more 196 

affected than those of the areas connected to urban centers. However, sensitivity analyses could 197 

be performed to provide robustness, and the purpose and geographic scope of the model will dictate 198 

how important this degradation is.   199 

As noise increases above 20, estimates such as the epidemic size, the day that the epidemic peaks, 200 

and the average epidemic size are biased downwards as the mobility matrix decreases connectivity 201 
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to large population centers and distributes the epidemic into many smaller locations with lower 202 

contact rates. Similarly, estimates such as the rate of spread, the risk of importation, and the 203 

effective reproduction rate are biased upwards as mobility between smaller and poorly connected 204 

locations increases, leading to greater importation into areas with smaller population sizes. Our 205 

study demonstrates that for epidemiological metapopulation models using mobility data, metrics 206 

estimates are fairly unbiased up to a noise threshold of 20, which provides greater privacy 207 

protection than previous studies [23,25]. 208 

Although our pipeline only evaluated a specific combination of mobility data, metapopulation 209 

model, and metrics, it provides a " plug-and-play " interface for researchers to assess bias using 210 

proprietary models and mobility data [26]. As mobility data sets become increasingly available 211 

and used in metapopulation models, we provide a flexible framework to identify the evaluation-212 

specific maximum privacy-preserving noise that can be incorporated into these mobility data 213 

before they result in biased outputs.  214 

Methods 215 

The pipeline workflow for the next analysis is represented in the following schematic architecture 216 

(Fig. 2). This flow diagram shows the preprocessing before and after acquisition of the mobility 217 

data, and, most importantly, how synthetic data has been used to parameterize the metapopulation 218 

mode.  219 

[insert Fig. 2 here] 220 

Mobility Data 221 
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We obtained mobility data from Camber Systems (the provider), a third-party analytics company 222 

that purchased advertising technology (ad tech) data from many data brokers. The data covered 90 223 

days from August 15 to November 15, 2020, representing between 3-7% of the total American 224 

Community Survey (ACS), a county-specific population in New York State. The original data 225 

consisted of a log of user global positioning system (GPS) coordinates, sorted and grouped by a 226 

unique device identification number. These data have all the identifying information removed, 227 

cleaned to remove duplicate entries or unrealistic usage, used to calculate device-specific modal 228 

locations, and aggregated at the county level [27]. The key metric of interest used in these analyses 229 

was movement between counties in 8 hour increments. Movement was defined as the change in 230 

the location of a device from time period t-1 to the location of the device at time t. To further 231 

guarantee anonymity, the provider used a predefined group of devices per area, removed data that 232 

represented small numbers of devices,  and applied an initial layer of privacy noise to the data set 233 

to ensure that the basic privacy preservation mechanisms were in place before providing access to 234 

these data to researchers [28]. We then added an additional layer of postproduction differential 235 

privacy (PPDP) (see next section) and aggregated it into 24-hour blocks of time with averaged 236 

transitions between counties. The process consists of generating an origin/destination matrix 237 

normalised to the ACS population for each county. The matrix was then randomly sampled and 238 

replicated 500 times to extend the data set time period.  239 

Application of Differential Privacy 240 

As background, a mechanism 𝑀 taking a database in a domain 𝐻 and producing outputs in a 241 

domain Ｒ   𝑀: 𝐻 →Ｒ is 𝜖-differential private if and only if for every pair of neighboring 242 

databases 𝑥, 𝑦 ∈ 𝐻, such that they differ in at most one entry, and for any subset of possible outputs 243 

𝑆 ⊆Ｒ, we have  244 
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 𝑃𝑟[𝑀(𝑥) ∈ 𝑆]  ≤  𝑒𝜖  𝑃𝑟[𝑀(𝑦) ∈ 𝑆], (1)  

where the probability is taken over the randomness of the mechanism 𝑀. Equation (1) suggests 245 

that if two databases 𝑥, 𝑦 are sufficiently close due to the perturbation, then it becomes difficult 246 

for random attackers to uncover the privacy of the observed individuals. This is achieved by 247 

perturbing the true observations by adding noise from a carefully chosen distribution . The 248 

parameter quantifying the privacy loss 𝜖 represents the likelihood that an attacker with nearly full 249 

information about a database can determine whether their target is in the database. DP offers a 250 

quantifiable tradeoff between accuracy and privacy. Mobility data is aggregated data that could 251 

display the transmission of small groups of individuals. Our goal is to preserve the privacy of these 252 

groups and hide low transitions by applying differential privacy.  253 

The Laplace mechanism is a common differential privacy mechanism, which adds Laplace noise 254 

to query values in which the noise scales with 𝛥/𝜖, where 𝛥 is the query sensitivity. DP 255 

compositions adaptively allowing us to design a mechanism with several building blocks ensuring 256 

efficient protection of privacy achievable using the advanced composition 10.  257 

For all 𝜖, 𝛿, 𝛿′ > 0, the class of (𝜖, 𝛿)-differentially private mechanisms satisfies (𝜖′, 𝑘𝛿 + 𝛿′)-258 

differential privacy under 𝑘-fold adaptive composition for (Eq. 2): 259 

 𝜖′ = √2𝑘𝑙𝑜𝑔(
1

𝛿′
)𝜖 + 𝑘𝜖(𝑒𝜖 − 1) 

(2) 

To assess the tradeoff between accuracy and utility, we further privatize the synthetic data using 260 

the composition theorem with the privacy parameter epsilon ranging from 0.01 to 16 by the means 261 
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of the Laplace mechanism using the‘smartnoise sdk’ library [10] . The transition data contains the 262 

movements for 8-hour time blocks over 90 days, and using the advanced composition theorem 263 

with 𝑘 =  270 , the total privacy budget is as follows (Eq. 3):  264 

𝜖′ = √540 𝑙𝑜𝑔(
1

𝛿′
) 𝜖 + 270 𝜖(𝑒𝜖 − 1) =  84.6𝜖 + 270𝜖(𝑒𝜖 − 1). 

(3) 

For 𝜖 = 0.01, 𝛿 ′ = 1.064494, we have 𝜖′ = 0.8911355 used to the existing deployment.  265 

The rationale for using this range of epsilon lies in the fact that below 0.01 the infused noise is 266 

extremely large, compromising the accuracy of the transition matrix, and above 16 the total privacy 267 

budget is extremely large, compromising the privacy. More specifically, since the transition matrix 268 

used already has privacy noise applied, with a value of 𝜖 =16 means, the synthetic transition 269 

obtained is similar to the one received from the provider. However, for 𝜖 =0.01, the synthetic data 270 

is more protective since low transitions are more hidden due to the large amount of noise added 271 

through the Laplace mechanism. To simplify interpretation, from here on, we evaluate noise which 272 

is the inverse of the privacy loss 𝜖. 273 

Metapopulation model 274 

The disease dynamic was modeled with a Susceptible-Exposed-Infected Symptomatic-Infected 275 

asymptomatic model as follows (Eq. 4-7). 276 

𝑑𝑆𝑖

𝑑𝑡
=  −

𝛽𝑆𝑖𝐼𝑖
𝑟

𝑁𝑖
−

𝜇𝛽𝑆𝑖𝐼𝑖
𝑢

𝑁𝑖
 

(4) 
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𝑑𝐸𝑖

𝑑𝑡
=  

𝛽𝑆𝑖𝐼𝑖
𝑟

𝑁𝑖
+  

𝜇𝛽𝑆𝑖𝐼𝑖
𝑢

𝑁𝑖
−

𝐸𝑖

𝑍
 

(5) 

𝑑𝐼𝑖
𝑠

𝑑𝑡
= 𝛼

𝐸𝑖

𝑍
−

𝐼𝑖
𝑠

𝐷
 

(6) 

𝑑𝐼𝑖
𝑎

𝑑𝑡
= (1 − 𝛼)

𝐸𝑖

𝑍
−

𝐼𝑖
𝑎

𝐷
 

(7) 

where 𝑆𝑖 , 𝐸𝑖 , 𝐼𝑖
𝑠, 𝐼𝑖

𝑎 are the susceptible, exposed, infected symptomatic, infected asymptomatic, and 277 

total population in a county i. 278 

The synthetic mobility datasets were integrated into the previous system (Eq.4-7) and documented 279 

[11]  by the following equations (Eq. 8-12), 280 

 𝑑𝑆𝑖

𝑑𝑡
=  −

𝛽𝑆𝑖𝐼𝑖
𝑟

𝑁𝑖
−

𝜇𝛽𝑆𝑖𝐼𝑖
𝑢

𝑁𝑖
+ 𝜃 ∑

𝑀𝑖𝑗𝑆𝑗

𝑁𝑗 − 𝐼𝑗
𝑟

𝑗

− 𝜃 ∑
𝑀𝑗𝑖𝑆𝑖

𝑁𝑗 − 𝐼𝑗
𝑟

𝑗

 
(8) 

 𝑑𝐸𝑖

𝑑𝑡
=  

𝛽𝑆𝑖𝐼𝑖
𝑟

𝑁𝑖
+  

𝜇𝛽𝑆𝑖𝐼𝑖
𝑢

𝑁𝑖
−

𝐸𝑖

𝑍
+  𝜃 ∑

𝑀𝑖𝑗𝐸𝑗

𝑁𝑗 − 𝐼𝑗
𝑟

𝑗

− 𝜃 ∑
𝑀𝑗𝑖𝐸𝑖

𝑁𝑗 − 𝐼𝑗
𝑟

𝑗

 
(9) 

 𝑑𝐼𝑖
𝑟

𝑑𝑡
= 𝛼

𝐸𝑖

𝑍
−

𝐼𝑖
𝑟

𝐷
 

(10) 

 𝑑𝐼𝑖
𝑢

𝑑𝑡
= (1 − 𝛼)

𝐸𝑖

𝑍
−

𝐼𝑖
𝑢

𝐷
+  𝜃 ∑

𝑀𝑖𝑗𝐼𝑗
𝑢

𝑁𝑗 − 𝐼𝑗
𝑟

𝑗

− 𝜃 ∑
𝑀𝑗𝑖𝐼𝑖

𝑢

𝑁𝑗 − 𝐼𝑗
𝑟

𝑗

 
(11) 

 𝑁𝑖 = 𝑁𝑖 + 𝜃 ∑ 𝑀𝑖𝑗

𝑗

− 𝜃 ∑ 𝑀𝑗𝑖

𝑗

 
(12) 

where 𝑆𝑖 , 𝐸𝑖 , 𝐼𝑖
𝑟 , 𝐼𝑖

𝑢 are the susceptible, exposed, documented infected, undocumented infected, and 281 

total population in a county i.  282 
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The system of equations (Eq. 8-12) thus took into account both the mobility and the contagion 283 

describing the epidemic's evolution on the metapopulations network. We assumed that the 284 

randomness in the contagion followed a Poisson distribution and was documented elsewhere 12.  285 

Most specifically, we seeded cases in a specific location, then, for each time 𝑡, the disease spread 286 

through the metapopulation network according to the transition matrix when people are moving 287 

between counties from the first day to the 500th day.  288 

[insert Table 1 here] 289 

Epidemiological metrics 290 

In reviewing epidemiological models using mobility data, we identified salient metrics of interest, 291 

including probability of infection [12], risk of importation [13], incubation period [15], mean 292 

importation rate [14], size at the epidemic peak [29], effective reproduction number [11], epidemic 293 

size [22], proportion of counties with at least one case [30], rate of spread [31], timing of the peak 294 

[32] and the average size of the peak [33]. 295 

Epidemiological scenarios  296 

To assess the effect of noise on these metrics, we evaluated eight scenarios with three salient 297 

characteristics and provided a general formula to incorporate more. We evaluated scenarios where 298 

the epidemiological metrics of interest were driven by i) the location of the first case, ii) changes 299 

in connectivity, and iii) changes in epidemiological parameters (Table 2). 300 

[insert Table 2 here]   301 

To assess the impact of privacy on the epidemiological metric, we ran each set of parameters 302 

through 1000 Monte Carlo iterations and visualised the results.  303 
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Data and Code Availability 304 

Data and codes are available at https://github.com/crisisready/DP_Metapopulation 305 
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