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[Abstract] 
 

Genome wide association studies contributed to a better understanding of the etiology of 

inflammatory bowel disease (IBD). While over 240 genetic associations with IBD have since 

been identified, functional follow-up studies are still in their infancy with the overall 

pathogenesis of IBD remaining unsolved. E.g., a functional understanding of the genetic 

association between the human leukocyte antigen (HLA) region and ulcerative colitis (UC) – 

one subtypes of IBD – is still lacking. Here, we analyzed whether an autoimmune reaction 

involving the HLA class II proteins HLA-DQ and -DR, both being strongly associated with UC, 

could be a disease trigger or driver. To this end, genotype data derived from whole exome 

sequencing and genome-wide SNP array data of 863 German UC patients as well as 4,185 

healthy controls were analyzed. Association analyses identified novel variants in the NOD2 

and SNX20 genes to be linked with UC and confirmed known HLA allele associations. 

Employing the genetic data, we generated patient-specific self-immunopeptidomes and in 

silico predicted HLA-peptide binding. Peptidome-wide association analyses of peptide binding 

preferences in a set of candidate proteins yielded significant associations with 234 specific 

peptides. Interestingly, none of those peptides showed a differential presence in case and 

control samples. The disease-associated candidate peptides predicted to be presented by risk 

HLA proteins contained predominantly aromatic amino acids. In contrast, protective HLA 

proteins were predicted to bind peptides enriched in acidic amino acids. In summary, we 

present a proof-of-concept immunogenetic analysis that contributes to a better understanding 

of the HLA in UC. 
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[Introduction] 
 
Although about 0.3% of people in the industrialized countries suffer from inflammatory bowel 

disease (IBD)1, the etiology of the diseases is still unclear. Different studies have correlated 

the disease with environmental2,3 and genetic factors4–7. For some of the known factors, a 

concrete role in the pathogenesis of IBD has been identified, in other cases the impact on the 

disease remains unknown. Interestingly, the major histocompatibility complex region (MHC), 

which shows the strongest genetic association with the disease, still has an enigmatic role in 

IBD8. The genetic association at this locus differs between the two main subtypes of IBD, 

Crohn’s disease (CD) and ulcerative colitis (UC)8,9. Especially in UC, the MHC class II genes 

are highly associated with the disease in Caucasians (Goyette et al.9) and across different 

ancestries (Degenhardt et al.10). Though detailed analysis showed a consistent genetic profile, 

the biology behind the associations remains unsolved. MHC class II proteins mainly present 

peptides derived from extracellular proteins to CD4-positive T cells, which may then elicit an 

immune response in the host. The classical MHC class II genes in humans are the human 

leukocyte antigen (HLA) genes HLA-DPA1, -DPB1, -DQA1, -DQB1, -DRA, -DRB1 and 

depending on the (DRB1-related) haplotype possibly one of HLA-DRB3, -DRB4 and -DRB5. 

Except for HLA-DRA, which is nearly invariable regarding its protein sequence, all other 

classical HLA proteins are highly polymorphic. Several different processes of how the HLA 

may contribute to the inflammation in IBD have been discussed in the literature, most of those 

are based on the structural differences in the peptide binding pocket and the related 

differences in antigen recognition8. Differences among HLA alleles and their binding 

preferences have already been discussed in Goyette et al.9 and Degenhardt et al.10. Here, we 

dig deeper into the autoimmune hypothesis which refers to an immune reaction triggered by 

HLA-presentation of a host’s self-peptide8. 

 

For this purpose, we analyzed genotype data derived from next generation sequencing (NGS)-

based whole exome-sequencing (WES) and genotyping based on Illumina’s Global Screening 

Array (GSA) as well as imputed HLA allele information of 5,048 German individuals for genetic 

association with UC (Figure 1, Supplementary Table 1). This data is unprecedented in its 

resolution of individual-level coding variation. 
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Figure 1: Graphical abstract of the current study. The first box summarizes the sample collection and wetlab part. 
The second box shows the data preparation. The third box lists the different performed analyses. UC: ulcerative 
colitis, CD: Crohn’s disease, DNA: Deoxyribonucleic acid, QC: quality control, SNP: single-nucleotide 
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polymorphism, HLA: human leucocyte antigen, GWAS: genome-wide association study, PepWAS: peptidome-wide 
association study. This Figure was created with BioRender.com. 

 

Based on this exceptionally high-resolution genotype data, we first performed a genome-wide 

association analysis (GWAS) as well as a fine-mapping of the HLA region. Subsequently, we 

took advantage of the individual WES data and performed a peptidome-wide association 

analysis (PepWAS)11 based on personalized proteomes, focusing on self-peptides from a 

disease-relevant set of human proteins (Supplementary Table 2), to identify candidate self-

peptides with a differential likelihood of presentation in patients and controls. The personalized 

proteomes were generated by translating the per-patient observed nucleotide variations from 

the WES data into a collection of personalized protein sequences. Further, we checked the 

peptides identified through the PepWAS for mutations in the coding DNA sequence leading to 

the according peptide or another amino acid sequence. 

 

[Results] 
 
Comparison of exome data and imputed genotyping data 

The exome data is expected to include novel or rarely described coding variants. In a first step 

we therefore compared how many exome variants are not included in our imputed SNP 

(single-nucleotide polymorphism) genotyping array dataset. The comparison revealed that half 

of the variants discovered by exome sequencing are not detected in the imputed data. Most 

of those variants are very rare (minor allele frequency (MAF)<0.1%). Of the variants with a 

higher allele frequency about 11% are unique to the exome data. 6.3% of the common exome 

variants (MAF>5%) are still not imputed. 

The fraction of variants specific to the exome data varies not only with the allele frequency but 

also with the type of mutation. E.g., for missense variants the most common variants were 

imputed and only 2.8% of variants were specific for the exome dataset but the fraction of 

overlap is lower for InDels. 

 

GWAS of imputed genotyping data 

For the summary statistics of the imputed genotyping data, a genomic inflation factor lambda 

of 0.995 was calculated based on the data excluding the HLA region (Supplementary Figure 
1). This means no population stratification is expected to cause false positive hits. The 

Manhattan plot of the analysis is shown in Supplementary Figure 2. Overall, 1,713 of the 

imputed genotyping markers with a minor allele frequency of at least 1% passed the 

suggestive significance threshold P-value<10-5 and 975 of those reached genome-wide 

significance. The at least suggestively significant markers were assigned to 26 loci, 
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considering two variants as belonging to one locus if their physical distance in GRCh38 is 

below 150 kbp, overlapping largely with results from LD-based clumping (P-value<0.00001) 

but allowing for a combination of larger association signals such as the HLA class II with 24 

clumped signals calculated by PLINK. Of these loci 19 main variants were supported by 

variants in LD (Supplementary Table 3; Supplementary Figures 3-21). Three of those loci 

contained genome wide significant variants: 1p36.13 (OTUD3, Supplementary Figure 5), 

6p21.32 (HLAII, Supplementary Figure 11), and 5p14.3 (no specific gene, Supplementary 
Figure 9). In agreement with previously published GWAS7, our dataset shows the main 

significant genetic association in the HLA region on chromosome 6 with the main peak being 

in the region of the classical HLA class II genes. In addition, OTUD3 is one of the strongest 

associated loci reported previously in the literature for UC7. 5p14.3 (Supplementary Figure 
9) was not reported previously and does not replicate in the publicly available IIBDGC dataset 

(available through RICOPILI)30. The main signal rs2937516 (P-value=1.62×10-8, OR=0.68 

[0.60–0.78]) is located on chr5:18748431 between the genes LINC02100 (chr5:18,514,857-

18,746,202) and the pseudogene UBE2V1P12 (chr5:18,886,622-18,887,095). 

 

Next to the three genome-wide significant loci, we identified 16 suggestively significant loci 

(Supplementary Table 3): 5p13.1 (PTGER4, Supplementary Figure 10)7, 10q24.2 (NKX2-

3, Supplementary Figure 14)7 and 22q13.1 (PDGFB - RPL3, Supplementary Figure 21)7 

as well as 6p21.33 (HLAI, Supplementary Figure 11) all of which being previously reported 

to be associated with UC (NHGRI-EBI GWAS catalog29). An intriguing novel association signal 

for UC was detected at 16q12.1 (NOD2 and SNX20, Supplementary Figure 17), a locus 

known previously to be associated only with Crohn's disease7,54. A detailed follow up-analysis 

of these variants in the context of UC is described in the paragraph SNX20/NOD2 association 

in ulcerative colitis and Crohn’s disease. 12q24.13-q24.21 (RBM19, rs3782449, P-value= 

8.90×10-6, OR=0.73 [0.64-0.84], Supplementary Figure 16) and 4p12 (rs113429955, P-

value=5.51×10-6, OR=1.81 [1.40-2.33], Supplementary Figure 8) have not been previously 

described but were replicated using the IIBDGC dataset with replication-P-values of 0.00738 

and 0.045, respectively. For 12q24.13-q24.21 (RBM19), an association with ocular 

manifestation in IBD was described by others before55. The LD between the T allele 

rs4766697, the variant associated with ocular manifestation and the A allele rs3782449, our 

protective lead variant, is with R2 of 0.0058 very low but the D’ is 1. Therefore, all T of 

rs4766697 (allele frequency of 2.2 %, P-value=0.64, OR=0.92 [0.64-1.32] in our data) are 

most likely located on the haplotype of the reference allele A of rs3782449 (allele frequency 

79.3 %). The two-sided Fisher’s Exact test on the contingency table of the dosages yielded a 

P-value of 1.27×10-7. 
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The region of the signal at 9q22.2 (UNQ6494, rs36147380, P-value=7.4×10-6, OR=0.74 [0.65-

0.84], Supplementary Figure 13) was not covered in the GRCh37 build and therefore no 

lookup in the IIBDGC GWAS data was possible. The remaining eight loci did neither replicate 

in the IIBDGC GWAS dataset nor were they listed in the NHGRI-EBI GWAS catalog, but four 

of these loci had additional links to UC. Firstly, TNFRSF8, also called CD30L, at 1p36.22 

(rs72641067, P-value=7.4×10-3, OR=1.47 [1.25-1.77], Supplementary Figure 3) is an (auto-

)immune relevant gene and the gene coding for the corresponding ligand gene TNFSF8 has 

been described as associated with CD7,56. Secondly, the gene TPRG1 (3q28, 

chr3:188,947,214-189,325,304) was found to be associated in the IBD GWAS from de Lange 

et al.5, but the location of the signal was slightly different. Our lead SNP rs73184427 is located 

at chr3:189,167,658 (P-value=7.11×10−06; OR=1.56 [1.28–1.89], Supplementary Figure 7), 

while de Lange et al. described rs56116661 at chr3:188,683,372, annotated to the LPP gene, 

to be associated with CD (P-value=5.67×10−10; OR=1.14 [1.10–1.18])5. The R2 and the D’ 

between the variants are with respectively 0.00092 and 0.18 low and the association P-value 

of the previously described variant rs56116661 in UC patients vs. controls is 0.0067 (OR = 

0.82 [0.72–0.95]). Thirdly, the gene CTCF (16q22.1, rs117327757, chr16:67627037, P-value 

= 8.6×10-6, OR = 1.8 [1.39-2.33], Supplementary Figure 18) is known to influence the 

expression of TNF57. Fourthly, LYPD5 (19q13.31, rs364691, chr19:43804850, P-value = 

1.6e10-6, OR = 1.35 [1.2-1.53]) was reported by Taman et al. as upregulated in treatment-

naïve UC patients58. 

 
Associations in the whole exome data 

The genomic inflation factor lambda for the exome data was determined to be 1.005 

(Supplementary Figure 22). Overall, five loci showed at least suggestive associations 

(Supplementary Figure 23-28, Supplementary Table 3). In the whole exome data only the 

HLA-II region was found as a genome-wide significant signal with LD support (Supplementary 
Figure 25). The intronic PGAM5 variant rs7973452 at 12p13.2 is LD-supported and reaches 

suggestive significance (P-value=8.47×10-6; OR=1.34 [1.18-1.53], Supplementary Figure 
27). PGAM5 is known to regulate antiviral responses59. Three additional loci reached 

suggestive significance, none of these were supported by variants in LD, even when including 

low frequency variants. One of those is the 1p36.13 locus with OTUD3, also identified in the 

imputed genotyping dataset, with the intronic variant rs773646156 (chr1:19890367; P-

value=4.53×10−7; OR=1.33 [1.19–1.48], Supplementary Figure 24). Second, the bitter taste 

receptor gene TAS2R43, with the missense variant rs200922417 (chr12:11092088; P-

value=6.17×10−6; OR=1.92 [1.45–2.54]; 48L>48V, Supplementary Figure 26), is a suggested 

target for UC treatment as it influences CLCA160. This variant is not well covered in the imputed 

genotyping data and the gene was not distinguished from TAS2R45 in genome build GRCh37. 
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The fifth association in the exome data, the third without LD support, is the synonymous variant 

rs755163625 on 22q11.21 in the gene SCARF2 (chr22:20429374; P-value=9.2×10-6; 

OR=2.37 [1.62-3.47], Supplementary Figure 28). Coding mutations within SCARF2 were 

previously described as responsible for the Van Den Ende-Gupta Syndrome, an extremely 

rare autosomal-recessive disorder characterized by distinctive craniofacial features61. 

 
SNX20/NOD2 association in ulcerative colitis and Crohn’s disease 

NOD2, also formerly known as IBD14 in linkage studies, was previously described to be a CD-

specific disease gene. Here, we identified an association with UC. To investigate this further, 

we performed additional lookups and calculated the genetic association for this region also for 

the available CD data (4,097 CD cases and 4,185 controls as in UC analysis). 

Our main UC association in the genotyping dataset rs139397276 (P-value=1.3×10−6; OR=3.74 

[2.19–6.37]; MAFcontrols=0.9%; MAFcases=2.4%) was located at chr16:50666737 

(Supplementary Figure 17 and 29). In addition, an association was identified with 

rs61736932 in the exome dataset (OR=4.22 [2.36, 7.54], P-value=1.15×10-6, MAF=1%, note: 

MAF is with 0.00990 slightly below 1% therefore it was not described above) at 

chr16:50711744. Both rs139397276 and rs61736932 are located closer to the centromere as 

compared to the established CD susceptibility variants rs2066844, rs2066845, and rs2066847 

(all of them have an R2=0 with the lead variant rs139397276). The variant rs139397276 is in 

the SNX20 gene and the calculated credible set includes four additional variants with a 

probability above 1%, including the NOD2 exome variant rs61736932 (OR=4.47 [2.43, 8.25], 

P-value=1.60×10-6, MAF=1%). Of the remaining three, two are in introns of the NOD2 genes 

and one in an intron of SNX20. All five variants reach nominal significance in the association 

analysis (Supplementary Table 3, Supplementary Figure 29) and have a frequency around 

1%. None of the variants changes the amino acid sequence of the NOD2 protein. While the 

previously described CD variants have an impact on the leucine rich repeat region (LRR) of 

the NOD2 protein, our variants are in the nucleotide binding region and in the 3’-UTR region 

of SNX20 (Supplementary Figure 29). The IIBDGC dataset supported our finding of 

rs139397276 with a P-value of 2.6×10-4 and an OR of 1.36 [1.15-1.60]. We further queried the 

data of Lesage, 200262 and of the IBD Exomes Browser63 for validation purposes. The data 

on the IBD Exomes Browser reports an overall P-value of 0.023 and an OR of 1.31 [1.07, 1.60] 

for rs61736932 in UC versus healthy controls. In the Non-Finnish European batch, the P-value 

is 6.78×10-4 with an OR of 1.93. Lesage reported with 1.9% (6 of 318) in UC patients a lower 

MAF than in their controls with 2.4% (5 of 206). Therefore, the data of Lesage and colleagues 

does not support the association we identified. 

 

Gene-based analysis 
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The gene-based analysis using SAIGE-GENE35 on the exome data with an AF<1% resulted 

in no significant gene if correcting for the number of analyzed genes (P-value < 2.61×10-6). 

We here describe the three genes with the lowest P-values. Those genes are NOD2, KCNK3 

and PSORS1C1. 

NOD2 was also identified in the single variant association of the imputed data. The same 

variant rs61736932 is responsible for the association signal of the gene-based test (P-

valueSKAT-O = 3.47×10-5, P-valueSKAT = 1.21×10-5, P-valueBurden = 0.915). The variant was not 

identified in the single variant analysis as the allele frequency in the exome data was slightly 

below 1%. The Burden test result, with very low significance, suggests that the other rare 

variants have different directions of effect. Of the 13 included variants with an allele frequency 

between 0.1% and 1% only three other variants were more common in patients than in 

controls. 

The gene KCNK3 was previously not associated with IBD, of the three performed gene-based 

tests SKAT has the lowest P-value (P-valueSKAT-O = 1.10×10-4, P-valueSKAT = 5.17×10-5, P-

valueBurden = 3.96×10-2). The signal is mainly based on the intronic variant rs926416351 with 

an allele frequency of 0.0059 (P-value = 4.07 ×10-6). In the very similar gene KCNK9 a copy 

number variation (CNV) associated with UC was identified by Saadati et al.64. A recent study 

tested the effect of KCNK9 and KCNK3 knockout in a mouse model65. They figured out that 

the absence of one gene increases the expression of the other gene. A KCNK3 knockout lead 

to a beneficial outcome in DSS-induced colitis with less mitochondrial damage and apoptosis, 

while the increased expression of KCNK3 did not prevent apoptosis after DSS exposure. 

The third gene PSORS1C1 (P-valueSKAT-O = 3.04×10-5, P-valueSKAT = 4.27×10-5, P-valueBurden 

= 9.49×10-5) is located close to the HLA class I region. The two most common variants 

included in the gene-based analysis (rs118016068 and rs117114042) were also significantly 

associated in the publicly available RICOPILI30 dataset (see also Supplementary Table 3). 

 

Power analysis of genome wide associations in ulcerative colitis 

Other well-known loci associated with UC like IL23R, LINC02132 and IL10 failed to show 

nominal significance but show the trend as reported in previous GWAS studies. The expected 

statistical power to reproduce those loci with a P-value of <10-5 is below 0.75 (Supplementary 
Figure 30). All previously reported loci with a greater suggested power were only reported in 

studies with samples of Asian populations and therefore could be population-specific findings. 

 

HLA association in UC 

We imputed HLA alleles and amino acids for HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -

DRB1, -DRB3, -DRB4 and -DRB5 at full 2-field level. Overall, we observed 234 different 2-

field alleles in our UC and control data set. For the single loci, between 6 (HLA-DPA1) and 62 
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(HLA-B) different alleles were imputed into our samples. In consistency with previous studies 

of the HLA in UC9,10 the main association signal was in the locus containing HLA-DR and HLA-

DQ (Supplementary Figure 31). Overall, four 2-field alleles were associated at genome-wide 

significance (DQB1*06:02 (P-value=2.68×10-10, OR=1.58 [1.37-1.82]), DRB1*15:01 (OR=1.56 

[1.36-1.80], P-value=6.61×10-10), DRB5*01:01 (OR=1.56 [1.35-1.80], P-value=8.40×10-10), 

DRB4*01:03 (OR=0.66 [0.57-0.76], P-value=6.80×10-9)), and 3 additional 2-field alleles were 

nominally significant (5×10-8 < P-value < 1×10-5: C*12:02, B*52:01, DQA1*01:02) 

(Supplementary Table 4). The strongest association from a SNP data was observed for the 

intronic SNP rs6927022 located in HLA-DQA1 (P-value=2.20×10-14, OR=0.64 [0.58-0.72]). As 

discussed also previously by Degenhardt et al.10, DQB1*06:02 is located on the same 

haplotype as DRB1*15:01 (Figure 2). In our dataset, HLA-DRB1*15 is the most significantly 

associated 1-field allele (OR=1.61 [1.40-1.85], P-value=2.07×10-11). Overall, the observed 

association of HLA alleles is in line with previous studies (Figure 2). 

The main associated signal described by Goyette et al.9 HLA-DRB1*01:03 is not nominally 

significant (cutoff P-value<1×10-5) in our data set due its low frequency in our data, even 

though its effect size is even larger in our German cohort (OR=5.31 [1.85-15.25], P-

value=1.95×10-3, MAFcases=0.41%, MAFcontrols=0.96%) than reported by Goyette et al.9. 

Of the 58 alleles previously reported to have a nominally significant association with UC either 

within the European dataset from Degenhardt et al.10 or the results from Goyette et al.9 only 6 

showed an opposite direction of effect in our data. (Supplementary Table 4 and Figure 2 and 
Supplementary Figure 32). DQA1*05:01 showed a risk effect in Goyette et al.9. However, we 

suspect that Goyette et al. named DQA1*05:05 as DQA1*05:01 since both belong to the same 

g-group of alleles and since the allele DQA1*05:05 is not reported by Goyette, and the allele 

frequencies of DQA1*05:05 (MAF=14.7%) and DQA1*05:01 (MAF=11.9%) combined are 

closer to the allele frequency reported by Goyette et al. (MAFcases=28.0%, MAFcontrols=25.3%). 

Further, the associations of the alleles A*29:02, C*01:02, DRB1*13:01, DQA1*01:03 and 

DQB1*06:03 were not supported in our dataset since all of them have an allele frequency 

below 10% in all cohorts and the lowest P-value in our data is with 0.28 for HLA-DRB1*13:01 

far from significant. Moreover, the three class II genes are located on the same haplotype 

(Figure 2). 
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Figure 2: Disentangler42 plot that summarizes the HLA haplotype structure in our UC cases and controls. Risk 
alleles are colored in red (10-5<P-value<=0.05: light-red; 5×10-8<= P-value<10-5: mid-red; P-value<=5×10-8: dark-
red), protective alleles in green (10-5<P-value<=0.05 light-green; 5×10-8<= P-value<10-5: mid-green; P-
value<=5×10-8: dark-green), dark-grey missing data, light-gray alleles with no effect (P-value>0.05). The inner color 
of each box is based on our dataset, the inner frame of each box represents the results from Goyette et al.9 and 
the outer frame represents the European data from Degenhardt et al.10. (Note: We suspect that Goyette et al. did 
not distinguish between DQA1*05:01 and DQA1*05:05.) For genome-wide-significant alleles the OR and P-value 
is noted next to the allele names in bold type. The height of the box illustrates the allele frequency. Our results are 
concordant with the previous analyses by Degenhardt et al. and Goyette et al. as colors for each box are in most 
instances the same. 

 

As different alleles share attributes with each other on the protein level based on the amino 

acid sequence, we further analyzed the data for specificities in the amino acid sequence 

(Supplementary Table 4). Glutamic acid (D) at position 175 of DQA1 is the associated amino 

acid with the lowest P-value of 3.92×10-12 and an OR of 0.64 [0.56-0.72], the amino acid is 

only present in alleles with a protective direction of effect (e.g., DQA1*03:01, DQA1*02:01 and 

DQA1*03:02). Alternatively, a Lysine (L) can be present at amino acid position 175, present 

mainly in the DQA1*05 alleles, with different directions of effect or glutamine (Q) present 

mainly in the risk associated alleles and therefore also nominal significant associated (P-value 

of 3.92×10-12 and an OR of 0.64 [0.56-0.72]). The variation is based on rs2308891 

(chr6:32642232). The amino acid is in the 𝛼2-domain of the protein. 

 

Additionally, nucleotides and amino acids are stronger associated as the single alleles in our 

data set. The multiallelic variant rs9269955 (chr6:32584361) influences the amino acid 11 of 

the DRB1 allele with the nucleotide G as the strongest associated (P-value of 5.08×10-12 and 

an OR of 1.50 [1.33-1.68], MAF=0.2920). Depending on the rs17878703 (chr6:32584360) 

characteristic either an allele of the DRB1*15 and DRB1*16 group with a proline (P) in position 

11 (P-value of 1.99×10-10 and an OR of 1.54 [1.35-1.76]) or the DRB1*01 group is present for 

this risk variant. This amino acid is involved in the interaction with the peptide in binding pocket 

6 (peptide-HLA interaction as previously identified in Degenhardt et al. 202110). 

 
Other nucleotides and amino acids playing an important role in HLA-peptide interaction with 

genome-wide significant UC association are at amino acid positions 13 and 71 of the DRB1 

protein, and amino acid position 86 of DQB1. All genome-wide significantly associated amino 

acids and nucleotides are listed in Supplementary Table 4. 

 

Binding motifs of associated HLA alleles 

To figure out the similarity between the different UC-associated HLA alleles we generated a 

dendrogram based on the predicted binding peptides. The dendrogram of the HLA-DR-peptide 

interaction shows three groups of protective and risk alleles each (Supplementary Figure 
32). The biggest cluster is the HLA-DRB1*04 group with the main important alleles 
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DRB1*04:01 and DRB1*04:03 but also all other DRB1*04 alleles have at least a tendency to 

be protective if reported and except DRB1*04:02 all cluster closely together. The Second 

protective cluster combines DRB1*07:01 and DRB1*09:01. Both are the only representatives 

of their 1-field allele group in all three datasets shown. DRB1*04, DRB1*07 and DRB1*09 are 

the only alleles occurring together with the pseudogenes DRB7 and DRB8 and in most cases 

the protein coding DRB4 gene. Therefore, this signal might be either based on the similarity 

between the alleles as all of them evolved most probably from the same ancestor66 or because 

of another locus that is in LD, e.g., especially the DRB4 locus. The third protective cluster 

includes all present DRB1*03 alleles (DRB1*03:01 and DRB1*03:02). 

The risk alleles also cluster based on the 1-field classification in a cluster with DRB1*01 

(present as DRB1*01:01 and *01:03) and DRB1*15 (present as DRB1*15:01, *15:02, *15:03 

and only single cases of *15:06), additional DRB1*12:01 was identified as risk allele but in this 

case the only other allele of the same serogroup DRB1*12:02 does not support the same 

direction of effect but the allele is only present in very low frequencies and so far only Goyette 

et al. reached an association P-value below 0.05 for this allele. 

For a closer look into the binding specificities, we generated logos for the genome-wide 

associated alleles (Figure 3). The separate clusters are characterized by individual binding 

characteristics. DRB1*03:01 is especially characterized by an enrichment of acidic amino 

acids in binding pocket 4 and basic anchors in pocket 6 and 9. The DRB1*04 alleles 

DRB1*04:01, *04:03, and *04:04 are characterized by an antigen with a polar or acidic amino 

acid in position 6 with a residue with one or two carbon atoms. Similar characteristics are also 

present in anchor position 9 but here the size restriction is not as stringent and additional 

alanine (A) as a hydrophobic amino acid is present. DRB1*07:01 and DRB1*09:01 do not 

show any enrichment of acidic amino acids but in comparison to the risk alleles 

(Supplementary Fig. 33) they show an enrichment for the polar amino acids serine (S) and 

threonine (T) in position 4. 

 

The risk alleles DRB1*01:01 and DRB1*01:03 are characterized by a small residue in binding 

pocket 6 (alanine, glycine, and serine) this can be explained by the high-volume amino acids 

in position 11 (L) and 13 (F) of the beta chain. DRB1*12:01 peptides are characterized by a 

hydrophobic amino acid in pocket 4 (leucine or isoleucine) and a big uncharged amino acid in 

pocket 9 (tyrosine, phenylalanine, leucine, valine), one factor for this characteristic is that the 

allele has the smallest residue at position 9 (E) and smaller residues at position 39 and 57. 

The alleles DRB1*15:01 and DRB1*15:02 are mainly characterized by preferring aromatic 

amino acids in pocket 4 (tyrosine, phenylalanine, tryptophan). 

Overall, the logo of the DQ alleles (Supplementary Figure 34) are not as well defined as the 

motifs of the DR alleles. Here, an acidic anchor occurs in position 6 of the risk DQ haplotypes 
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DQA1*01:01-DQB1*05:01 and DQA1*01:02-DQB1*05:01 and an additional aromatic anchor 

in position 4 is present. Further, proline plays a more important role in binding peptides, but 

not in a disease-associated manner.  

 

In summary, a single consistent binding motif for all risk or protective associated alleles cannot 

be defined. However, the protective alleles do tend to bind more often acidic amino acids, 

while the risk alleles are characterized by aromatic amino acids based on the binding 

predictions. 

 
Figure 3: Binding logo plot of associated HLA-DR alleles. The upper row represents the protective associated 
alleles, the bottom line the logos of the risk alleles. The motifs are based on the NetMHCIIpan-4.0 predictions of 
the binding cores of all peptides at least annotated as weak binders. The single letters represent the one letter 
amino acid code colored by the chemical properties of the amino acids.  
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PepWAS analysis 

We performed a PepWAS analysis to investigate which self-peptides are differentially 

recognized by the UC risk and protective HLA-DRB1 proteins. For computational reasons we 

limited the analysis to UC susceptibility genes from previous studies and identified within this 

study testing the hypothesis that chronic inflammation in UC patients is driven by self-peptides 

encoded by the patient’s genome and that are presented by their own HLA molecules. Coding 

mutations in the genes encoding the peptides may additionally lead to the presence or 

absence of specific peptides in some patients and controls. 

The PepWAS resulted in 234 significant peptides after multiple hypothesis correction (P-

value<3.73×10-6 based on 13,411 peptides) for HLA-DRB1 (Supplementary Figure 35, 

Supplementary Table 5). Those peptides originate from 46 of the 76 considered GWAS 

genes (in 155 transcripts). All peptides are specific to one of the genes. Up to 18 peptides 

identified through the PepWAS are annotated to one single gene. The number of peptides 

identified within a protein correlates with the length of the amino acid sequence (Pearson’s 

product-moment correlation: R2=0.27, P-value=1.02×10-6), especially when considering 2 

peptides separately, if they have no overlap of 9 amino acids when shifted against each other 

(Pearson’s product-moment correlation: R2=0.44, P-value=4.71×10-11). 

Eight of the proteins containing PepWAS hits are described in the meta-analysis from Linggi 

et al.50 or in the analysis of treatment naïve patients by Taman et al.51 as differentially 

expressed in ulcerative colitis patients. Whereof JAK2, KIF21B, FCGR2A, NOD2, and the HLA 

genes DRB1 and DQA1 are upregulated and NXPE1 and HSD11B2 are downregulated 

(Supplementary Table 5). Of those genes KIF21B and HSD11B2 are neither reported as 

membrane proteins, nor as extracellular. Peptides of the genes JAK2, FCGR2A and HLA-

DRB1 were extracted with the peptidomes described in ElAbd et al.53. The only hit from the 

PepWAS analysis having at least nine amino acids overlap to the proteomes is the peptide 

RRVQPKVTVYPSKTS (P-value=1.52×10-6). This peptide is present in the sequence of alleles 

of the HLA-DRB1*15, -DRB1*16, and -DRB1*10 groups and of HLA-DRB4 alleles. The peptide 

was identified previously in 5 of 6 samples with a DRB1*15:01 allele using antibody-based 

HLA-pulldown and LC-MS analysis53. The other sample has a genotype with two DRB4 alleles, 

regarding the prediction the genotype of this patient (DRB1*07:01/DRB1*09:01) would not 

present this peptide. In the 9 other samples with a genotype with a DRB4 molecule but no 

DRB1*15 allele (one case with 2 haplotypes with DRB4), the peptide was not found. Side note: 

Interestingly, all haplotypes with a copy of the DRB4 gene (DRB1*04, DRB1*07 and DRB1*09) 

are associated with a protective effect. 

62 mutations are essential to generate one or more of the identified peptides, but thereof 40 

would prevent the generation of another identified peptide. In comparison to the 22 missense 

mutations that lead to the generation of a peptide identified as associated in the PepWAS 
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analysis, there are 156 missense mutations that lead to a peptide not being identified as 

significant in the PepWAS. 

All PepWAS hits were predicted to bind HLA-DRB1*15:01 and the rare HLA-DRB1*15:06 

protein. In most cases also the other tested DRB1*15 alleles (DRB1*15:02 and DRB1*15:03) 

were predicted to bind. Other alleles binding several hits are DRB1*16:01 and DRB1*16:02, 

the other alleles of the DR2 serotype and DRB1*01:03. Interestingly no peptide identified in 

the PepWAS was predicted to bind with DRB1*01:01, even though the allele shows a trend of 

being a risk factor. 

The peptide hits are enriched for isoleucine, asparagine, valine, and tyrosine and have lower 

frequencies of cysteine, glutamic acid, glycine, and arginine compared to our candidate 

transcripts. 

121 of the peptide hits were present in all individuals within our sample set, 133 are peptides 

of the reference proteome, of which 19 are not present in all individuals. The remaining 101 

peptides require at least one mutation from the reference genome to be encoded 

(Supplementary Table 5). None of the mutations shaping the peptides was statistically 

significant associated with the disease after correcting for multiple testing and no peptide 

identified in the PepWAS analysis showed significantly different frequencies in cases and 

controls. 

 

[Discussion] 
Different hypotheses on the underlying processes leading to inflammation in UC including the 

role of the HLA haplotype are discussed in the literature8. Here, we focused on the 

autoimmune hypothesis in association with autoantigens, excluding microbial peptide 

candidates from the analysis, because of the excessively larger search space. However, the 

binding preferences of the HLA alleles are general attributes and therefore parts of our results 

(and the analysis concept in general) can also be transferred to microbial candidates. While 

most of the identified genetic associations are not related to HLA antigen recognition, the 

consistent and strong association of HLA suggests that HLA peptide interaction plays an 

important role. 

 

Our GWAS results are overall in line with previous studies. The previously not described 

genome-wide significant hit at 5p14.3 is either specific for our German subpopulation or 

represents a false positive signal. This intergenic association is well supported by variants in 

LD but could not be validated in the larger IIBDGC dataset. In addition, no biologically or 

disease relevant conclusions could be made. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 17, 2023. ; https://doi.org/10.1101/2023.03.22.23286498doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.22.23286498
http://creativecommons.org/licenses/by-nc-nd/4.0/


The NOD2 gene harbors the most prominent genetic associations known for CD. It has also 

been studied previously in the context of UC62, however, no clear associations for UC have 

been described before7. The herein determined novel association of rs61736932 with UC is 

supported by two large publicly available data sets30,63. Interestingly, the identified NOD2 UC 

variants are in another location of the protein not in LD to those variants described for CD, 

suggesting a different functional role in UC. 

 

The suggestively protective variant we identified in the RBM19 gene, rs3782449, and the 

previously described risk variant with an association in ocular manifestation in IBD 

rs476669755, are located on different haplotypes. The direction of effect for rs4766697 in our 

data is protective as well, even though far from statistical significance. To our knowledge, there 

are no other studies linking RBM19 to IBD, therefore additional studies are needed to clarify 

the exact role of this candidate gene in UC disease etiology. 

 

Previous GWAS already yielded over 240 genetic variants significantly associated with IBD67, 

but still those findings only cover a part of the heritability68. Our study cohort was not sufficiently 

powered to identify low-frequency variants and variants with small effect sizes. However, 

compared to previous GWAS, we used the genome build GRCh38 (others mainly used build 

GRCh37) and we employed state-of-the-art imputation reference and exome data sets. This 

enabled us to analyze previously not, or not properly, covered genetic regions. For example, 

the signal at 9q22.2 (UNQ6494) was not covered in GRCh37, which may explain why no 

former study identified this locus as associated with IBD. Nevertheless, an independent 

replication is necessary to validate this signal. Furthermore, for the bitter taste receptor gene 

TAS2R43, where we identified a suggestive hit without LD support in the exome data, the 

genetic architecture changed between the genome builds GRCh37 and GRCh38 and is still 

not well covered by imputation. This explains why a potential identification of disease-

associated markers at this locus was nearly impossible beforehand but might be improved by 

further analyses of diverse whole genome sequencing data. It further shows the benefit of 

improving imputation reference panels and methods. 

We identified two suggestive hits located within genes involved in the TNF pathway (TNFRSF8 

and CTCF). TNF levels are typically increased in IBD patients and anti-TNF is a common 

treatment option for IBD even though the biological role of TNF is much more complex and 

treatment not effective in all patients69. Both signals were not validated in publicly available 

data sets. 

 

The genetic risk profile of the HLA region in our data is consistent with UC associations 

described in the literature for Caucasian populations9. As shown by Degenhardt et al.10, this 
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also holds true for different ethnicities in UC, even though some HLA alleles are not observed 

in Caucasian populations or more frequent in the non-Caucasian population. 

 

The main genetic association signal for UC is located within the HLA-DR and HLA-DQ genes. 

Causality of either locus for UC cannot be shown with our data due to the strong LD between 

the loci. Mechanistic follow-up studies are clearly needed to disentangle this signal. On the 

computational level, Goyette et al.9 used a gene-based analysis and identified HLA-DR as the 

most likely disease-relevant candidate gene. However, as shown in Figure 2, and discussed 

in Degenhardt et al., HLA-DQ cannot be fully ruled out, due to the very strong linkage 

disequilibrium with HLA-DRB1. 

 

The PepWAS analysis ranks peptides based on the HLA profile of the disease-associated 

HLA alleles and enables the identification of disease-relevant binding motifs. However, the 

PepWAS approach cannot differentiate disease-relevant peptides from other similar peptides 

without a prefiltering of peptides of interest, due to peptide similarity among different proteins, 

statistical restrictions, and the limitation in the specificity of the HLA profile. In our analysis, 46 

of the 76 GWAS candidate genes contained PepWAS hits. Longer protein sequences lead to 

a higher chance of identifying PepWAS hits within this sequence. This influence factor might 

be increased by the in-silico approach of defining the peptides by a sliding window. All 

candidates identified by PepWAS are DRB1*15:01 binders, this is associated to the fact that 

the allele has the largest power due to its frequency and comparably strong effect size. 

Alternative peptides would need to be predicted as binders for more than one serotype with 

the same direction of effect to be significant in the analysis. 

 

The only peptide identified by PepWAS that was also present in the 25 immunopeptidomes 

described in ElAbd et al.53 is a peptide present in DRB1*15. It needs to be considered that the 

analysis of the immunopeptidomes was based on a reference dataset including only one 

sequence for each gene, and in case of DRB1, the sequence of this gene was DRB1*15:03. 

But the peptide in the peptidome is the only PepWAS hit in HLA-DRB1. The PepWAS was 

based on the personalized peptidomes of all patients and therefore included sequences of the 

different alleles in the dataset. Whether this peptide is a strong candidate to play a role in the 

pathogenesis of UC remains to be elucidated. On the one hand, this peptide is presented 

especially strong by DRB1*15 proteins, which are related to a higher risk. On the other hand, 

the peptide is present in the sequence of the protective haplotypes including a DRB4 allele, 

and as the peptidomics data show that the peptide can be presented when carrying those 

haplotypes, even though reduced in comparison to individuals carrying a DRB1*15 allele. If 

the presentation of this peptide would play a significant role in modulating the disease, a strong 
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protective effect would be expected e.g., for DRB1*08 alleles, where the peptide is not strongly 

bound nor present in this haplotype. However, such an effect could not be observed. 

 

The peptide sets predicted to bind the risk alleles are characterized by aromatic amino acids 

in pocket 4, while the peptides binding the protective alleles are characterized by acidic amino 

acids in pocket 4. However, both characteristics do not apply to all the significantly associated 

alleles and no peptide identified in the PepWAS analysis is encoded with significantly different 

frequencies between our UC patient and control exome data. 

 

Peptides containing mutation sites are less likely to be identified by our PepWAS analysis. 

One explanation for this might be a bias based on the training dataset used for the prediction 

algorithm. As the peptidome used for NetMHCIIpan-4.046 training was derived mainly from 

mass-spectrometry data using the human reference proteome to define the peptides, and 

while the negative peptides were defined by sampling from the UniProt database, the binding 

peptides in the prediction might be biased towards the human reference proteome. Besides, 

the version 4.0 of NetMHCIIpan46 is based on immunopeptidome data and therefore the 

training data is expected to be closer to the in vivo situation than the previous versions that 

were based on peptide competition assays. Still, the prediction of HLA-peptide interaction 

does not cover the T cell specificity and therefore presents only a necessary but not complete 

part of an HLA-induced immune reaction. 

 

In summary, we employed a large exome dataset from UC patients and newly available 

reference datasets to obtain further insights into the role of the HLA in UC disease etiology. 

The initial association analysis identified promising genetic signals in NOD2, RBM19, 

TAS2R43, as well as at the intergenic loci 5p14.3 and 9q22.2. Further, additional suggestive 

hits related to the TNF pathway were identified. An additional replication of those associations 

is highly recommended but as most of them either have relatively low frequencies or are not 

well covered in older genome references, a replication within a large new dataset is necessary. 

A gene-based analysis on the rare variants revealed by exome-sequencing did not result in 

any significant results, but as for the three genes with the lowest P-value, an already described 

connection to the disease could be drawn, it is expected that a more powerful analysis 

including more samples would result in significant and relevant findings. 

Our analysis of the HLA showed again a stable association of UC with multiple HLA alleles. 

Here, we were also able to highlight some characteristics of the peptides interacting with the 

HLA even though no specific autoimmune peptide candidates could be identified, where a 

mutation impacts the peptidome in a disease-specific way. This supports either the hypothesis 
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of an external/environmental origin of a pathogenic peptide, for example from the microbiome 

or the diet, or an autoimmune interaction independent from non-synonymous mutations. 

 

[Materials and Methods] 
 

Cohort description 

 

In total 15,877 individuals from studies across Northern Germany, with mainly chronic 

inflammatory traits (arthritic dermatitis, Crohn’s disease (CD), longevity, primary sclerosing 

cholangitis, psoriasis, sarcoidosis, and ulcerative colitis (UC)) and 4,680 population controls 

with unknown phenotypes were genotyped and submitted to joint genotyping quality control 

as described in the section Array-based genotyping, quality control and imputation as a 

resource for the genetic analysis of inflammatory diseases. For reasons of feasibility, this study 

focuses on the analysis of UC only, since UC exhibits the strongest HLA associations. For this 

purpose, we included 863 ulcerative colitis patients and 4,185 population controls from the 

total available quality-controlled genotype cohort. The population control is comprised of 969 

individuals recruited within the German Food Chain Plus (FoCus) cohort, previously described 

in Barbaresko et al., 202012 and 3,216 German healthy blood donors as used and described 

in Degenhardt et al. 202213. Of the 863 UC patient samples 424 were previously described by 

Franke et al., 20084 and 439 by Bokemeyer et al., 201614. 

In total 5,048 individuals (4,185 controls, 863 UC patients) were used for analysis. A detailed 

overview of sample numbers is shown in Supplementary Table 1. 

 

Ethics approval 

The study was conducted according to the guidelines laid down in the Declaration of Helsinki 

and was approved by the Ethic Committee of the Medical Faculty of the University of Kiel 

(Germany). All participants gave written informed consent, and the recruitment protocols were 

approved by the ethics committees at the respective recruiting institutions. The following 

approvals of the project were obtained from the ethics committees: BioColitis samples 

(D 474/12)14, German blood donors (A 103/14)13 and the samples of the FoCus Cohort as well 

as the samples described in Franke et al., 20084 (A 156/03). 

 

Sample preparation/processing 

DNA was extracted by the DNA laboratory of the Institute of Clinical Molecular Biology (Kiel 

University, Kiel, Germany) from whole blood. For a detailed description of the further extraction 

protocol, we refer to Ellinghaus et al.15. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 17, 2023. ; https://doi.org/10.1101/2023.03.22.23286498doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.22.23286498
http://creativecommons.org/licenses/by-nc-nd/4.0/


Array-based genotyping, quality control and imputation 

Genotyping was performed using the Global Screening Array (GSA), version 1.0, containing 

700,078 variants pre-quality control at the Regeneron Genetics Center, U.S.A. The data were 

called on genome build GRCh37 (using the cluster file GSAMD-24v1-0-

A_4349HNR_Samples.egt). Genotype quality control (QC) was performed as implemented by 

BigWAS16. Briefly, the variants are annotated in a standard way based on a database and 

filtered on missingness (≥ 0.02 in a single batch or ≥ 0.10 in all batches), and the Hardy-

Weinberg equilibrium (false discovery rate (FDR) threshold of 10-5 in controls). Then samples 

with high missingness (≥ 0.02), increased or decreased heterozygosity rates (± 5 standard 

deviation), relatedness testing (identity by descent ≥ 0.1875) and based on the population 

structure identified by principal component analysis (PCA) (outside the ± 5*IQR in PC1 and 

PC2) are removed. Of the final sample set, additional variants are filtered for differential 

missingness between controls and diseased samples and monomorphic sites.16 After QC, a 

total of 5,048 individuals (863 cases/ 4,185 controls) and 579,352 variants remained for 

analysis (Supplementary Table 1). Only variants mapping to the autosomes were used here 

for association analysis. All genomic positions were lifted to genome build GRCh38 for further 

analysis on the TOPMed Imputation Server or for the genotyped GSA data within the 

BigWAS16 pipeline using the UCSC liftOver tool17. To increase the genotyping coverage, SNP 

imputation was performed using the TOPMed Imputation Server from the NIH using the 

TOPMed Imputation diverse reference panel (version TOPMed-r2@1.0.0) including 97,256 

deeply sequenced human genomes with a post-imputation quality score of R2 set to 0.118–20. 

In total 90,406,930 variants had an R2 larger than or equal to 0.1. In the following analysis 

13,780,246 variants with an R2 > 0.6 and a MAF above 1% were analyzed if not noted 

otherwise. 

 

Exome sequencing, genotyping and quality control 

Whole exome sequencing (WES) was performed at the Regeneron Genetics Center, U.S.A. 

Sample preparation and sequencing as well as the sequence alignment, variant identification 

and genotype assignment were done as described in Van Hout et al. 202021. An extended 

quality control was conducted with the ‘Goldilocks’ (GL) filters21 and additional filters for 

genotypes, variants and samples. In brief genotypes were set to “no call” based on the WeCall 

filters allele bias (ABPV <0.009), allele and strand bias (ABPV + SBPV <0.07), bad reads (BR 

<15), low quality (LQ <10), low mapping quality (MQ <40), quality over depth (QD <15) and 

strand bias (SBPV <0.01) and further, based on the sequencing depth (DP <7), genotyping 

quality (GQ >14) or allele balance (AB <0.25). Variants were removed if no reliable sample 

(AB ≥0.15 or homozygous) remained. For insertions and deletions (InDel) the same filtering 

was used with different parameters: genotypes with a DP <10 were removed and a reliable 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 17, 2023. ; https://doi.org/10.1101/2023.03.22.23286498doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.22.23286498
http://creativecommons.org/licenses/by-nc-nd/4.0/


sample to keep a variant was defined by an AB ≥0.20 or homozygosity.21 Further, single 

nucleotide variants (SNVs) were removed if the missingness was above 10% (variants that 

overlapped with an InDel were not considered for missingness filtering) or if the Hardy-

Weinberg-Equilibrium P-value in control individuals was below 10-5. 

Individuals were removed if they presented with an unusual rate (> 6 standard deviation 

difference to the mean) of (a) singletons (more than 737) or (b) missingness (equaling a 

missingness cutoff of 0.21), or (c) heterozygous to homozygous ratio (0.0058 < hethom < 

0.0077) or (d) transition/transversion ratio (2.14 < Ti/Tv < 2.43). Additionally, individuals were 

removed if the reported sex disagreed with the genetic sex. See Supplementary Table 1 for 

the sample numbers removed by the different criteria. 

Finally, 5,390,149 variants passed exome sequencing filters, summarized in 5,033,063 non-

overlapping positions of variation. 19,688 individuals passed QC, of which 17,138 individuals 

overlapped with the quality-controlled genotyping dataset described above and were used for 

further analysis. 

 

Genome-wide association analysis 

Genome-wide association tests were conducted using SAIGE22 (0.45.0) on both the variants 

from exome sequencing and genotype imputation implemented within the BIGWas pipeline 

that is available at GitHub ikmb/gwas-assoc16. In brief, a logistic mixed-effects model was 

applied on the UC case-control status using genotype dosage (imputed data) or genotype 

hard-call genotypes (exome data). Genotype dosages were used to appropriately consider 

imputation uncertainty. The model additionally included the first 10 PCs calculated from the 

quality-controlled genotypes from the GSA (pre-imputation and post-quality control). We 

calculated the genomic inflation factor (lamdaGC) with and without excluding the HLA region 

(chr6, 29Mb-34Mb)23. Variants with a P-value of association < 5x10-8 were defined as genome-

wide associated with UC, while variants with a P-value of association < 10-5 were considered 

to have at least a nominal (suggestive) association. Bayesian fine mapping was performed 

using the tool FINEMAP (version 1.4) with the parameters --n-causal-snps 1 --sss (shotgun 

stochastic search)24,25. 

Linkage-Disequilibrium-based (LD-based) clumping was calculated using PLINK with a 

significance threshold for the index SNP (clump-p1) of 0.00001 and a secondary significance 

for clumped SNPs (clump-p2) of 0.001 in a range of 150 kilo base pairs (kbp).  

Gene expression impacts for the associated variants was looked up using the R-package 

Qtlizer26 and gtex associated genes with a P-value below 10-5 were considered marginally 

associated. 

 

Replication of suggestive hits 
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All suggestive variants were investigated extensively using regional association plots created 

with LocusZoom27,28. Variants with insufficient LD-support (less than two additional variants 

with P-value <10-3 in ±150 kbp) and a MAF < 1% were discarded as false positive associations. 

To validate all remaining hits, we performed a lookup of variants, considering ±150 kbp around 

our lead SNP in the NHGRI-EBI GWAS Catalog v1.0.229 and in the Rapid Imputation for 

COnsortias PIpeLIne (RICOPILI; dataset IBD_UC_1KG_oct13 dataset30) considering variants 

with linkage-disequilibrium (LD) R2 > 0.9 from our lead-variants30. LD was calculated on the 

exome and TopMED imputed data using PLINK31. Variants were considered to replicate if the 

lead variant itself or variants in high LD (R2 > 0.9) had a P-value of association below 0.05. 

Further, a power analysis based on the NHGRI-EBI GWAS Catalog of genome-wide 

association studies29 data was performed to investigate replicability of known IBD variants in 

our dataset at a P-value threshold of < 10-5. For this purpose, odds ratios (OR) reported in the 

GWAS Catalog were used, together with the sample size (ncases=863, ncontrols=4,185) and allele 

frequencies derived from this study’s data. As the power calculated by a single analysis tends 

to be overestimated (referred to also as the winner’s curse)32–34, we computed a corrected 

value for power as the median power for the respective reported lead variant within 

neighborhood of ±5,000 base pairs under exclusion of the highest power value if more than 

one study was reported in the NHGRI-EBI GWAS Catalog. 

 

Gene based analysis 

 

To include the genetic variation based on rare variants (MAF < 1%), which have limited power 

in the classical analysis, a gene-based analysis was performed using SAIGE-GENE35. SAIGE-

GENE performs three different tests: 1) The Burden test analyses the correlation between the 

number of variants and the disease status and is therefore powerful if the single variants show 

the same direction of effect. 2) The sequence-based kernel association test (SKAT) 

aggregates the test statistics of the single variants and is therefore robust against variations 

in the direction of effect. 3) The SKAT-O is a linear combination of the other two tests. For 

more details see Lee et al. 201236 and Zhou et al. 202035. The analysis focusses only on the 

exome sequencing data, as we are focusing here on the genes and as rare variants cannot 

be imputed in sufficient quality. All variants with an allele-frequency <1% are grouped based 

on the gene-annotations generated by bcftools/csq37 using release 100 of the primary 

assembly of the human proteome from Ensembl38,39. A relatednessCutoff of 0.125 and the 

same 10 PCs as for the GWAS analysis were used. Additionally, the following parameters 

were applied: minMAC=0.5, LOCO=FALSE, IsSingleVarinGroupTest=TRUE, 

IsOutputAFinCaseCtrl=TRUE, IsOutputNinCaseCtrl=TRUE, 
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IsOuputHetHomCountsinCaseCtrl=TRUE. A gene is considered genome-wide significant if 

the P-value is below 2.62×10-6 (based on 19,117 genes). 

 

HLA imputation and fine mapping analysis 

Imputation of alleles in the HLA region was performed for the classical HLA class I loci HLA-

A, -B, -C and the class II loci HLA-DQA1, -DQB1, -DPA1, -DPB1, -DRB1, -DRB3/4/5 at 2-field 

full context resolution from quality-controlled SNP genotype data. Here, we extracted pre-

imputation SNP genotypes from the extended HLA region (chromosome 6: 29-34Mb) and 

used them as input for HLA genotype prediction with the random-forest based machine 

learning tool HIBAG (version 1.20.0)40 using the multi-ethnic reference model published by 

Degenhardt et al.41, which was modified to include the variants available on the GSA. We 

additionally derived amino acid and additional SNP imputation and defined marginal posterior 

probabilities for single HLA alleles across all predicted HLA genotypes as described in 

Degenhardt et al.41. Classical HLA alleles with a marginal posterior probability from imputation 

<0.3 were further excluded. Association analyses were conducted using PLINK’s logistic 

regression framework on the UC case/control status using hard-call HLA alleles, SNPs and 

amino acids from the imputation and the first 10 PCs calculated on whole-genome genotype 

information pre-imputation and post-quality control. For a closer look into the HLA haplotype 

structure, the tool disentangler was used42. 

 

Generation of personalized proteomes 

For subsequent downstream analysis of genome-wide SNP data, a personalized haplotype-

aware consequence-caller was used to predict the effect of genetic variants observed in the 

study cohort at the protein level. These genetic variants were obtained by merging WES data 

with the quality-controlled genotype data from the GSA (pre-imputation) using the Ensembl 

human genome FASTA release 10038,39 as a reference. Four main steps were performed: (1) 

Phasing of nucleotides from WES with eagle (v2.4.1)43, (2) calling of the variant effect at the 

protein level (i.e., the type and if available the effect of a variant on the protein level, for 

example, a missense variant chr4:85742C>T in ENST00000609518 with the exchange 

48P>48S), (3) filtering data for chosen candidate genes (4) translation into FASTA files. (1) 

To enable the phasing of the sparse WES data the variant files derived from WES and GSA-

based genotyping were merged. Further, multiallelic variants were transformed into different 

biallelic variants with bcftools/norm44 as eagle is not capable of dealing with multiallelic 

variants. The phasing was then conducted using eagle (v2.4.1)43 without an external 

reference. The resulting file was scanned for contradictory phased variants and rectified 
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randomly by changing the phase for one of the contradictorily phased genotypes. In detail, as 

multiallelic variants e.g., ref/alt1/alt2 are split (ref/alt1 + ref/alt2) and phased independently, 

for the rare case of heterozygous alternative variants (genotype alt1/ alt2) the phasing might 

lead to the phased genotype ref|alt1 + ref|alt2 which is contradictory as the merging back of 

the overlapping variants would lead to the ref in one haplotype and the alt1 and alt2 both in 

the second haplotype. (2) The haplotype aware variant effects were predicted using 

bcftools/csq37 on the merged WES/GSA dataset resulting in a VCF file containing 1,353,644 

protein changing variants (1,250,354 missense variants, 6,830 inframe-insertions, 17,909 

inframe-deletions, 46 inframe-altering variants, 4,904 start-loss variants, 43,201 stop-gain 

variants, 2,652 stop-loss variants and 43,994 frameshifts1). (3) For the following parts the set 

of genes was filtered to those with an association to UC. Here, we considered genes described 

previously as associated with UC at a genome-wide significant level in at least 4 different UC 

studies integrated in the NHGRI-EBI GWAS Catalog or variants not described in the catalog 

but observed here to have a nominally significant association (for the genotyping data 

additionally LD support is mandatory) with UC in this study. This resulted in a selection of 76 

genes with 322 protein coding transcripts. A list of these genes and transcripts is shown in 

Supplementary Table 2. (4) We utilized VCF2Prot45 to generate a per-patient personalized 

version of all proteins transcribed from these 322 candidate transcripts by including the amino 

acid changes of step (2) into the reference sequences from Ensembl release 10038,39. Briefly, 

the VCFs from step (2) were filtered for records containing the target transcripts into a new 

VCF file. The newly generated files along with the reference protein sequence of each 

transcript were fed into VCF2Prot and the results were stored as a FASTA file per patient 

containing all mutated isoforms. 

 

Peptide binding prediction 

The generated personalized protein sequences for the set of candidate transcripts, along with 

the reference protein sequence were fragmented into 15-mer peptides using a sliding window 

approach with a step size of 1 and the generated results were stored in an SQL database for 

downstream analysis. 

From all records stored in the database, we next created a set of unique peptides across all 

transcripts and patients. Additionally, we created a set of unique HLA-DR alleles and HLA-DQ 

alleles observed across all patients from the HLA imputation described above. For all 

combinations of unique peptides and unique HLA alleles from these lists, HLA-peptide binding 

affinities were predicted using NetMHCIIpan-4.046. 

 
1 The sum of mutations by types are more than the overall number, as the variants include multiallelic variants 
and mutations might have different effects in different transcripts.  
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Binding motifs 

The predicted binding affinities were used to generate a sequence logo of the predicted bound 

peptide repertoire for the associated HLA-DRB1 alleles and HLA-DQ (genome-wide significant 

(P <5×10-8) in Goyette et al., the European dataset of Degenhardt et al. or our dataset and no 

other effect direction in one of the other studies, for DQA1 and DQB1 pairings these conditions 

need to be true for both genes independently). This representation visualizes an enrichment 

or depletion of amino acids in comparison to the background amino acid frequency. The 

peptides are truncated to the 9-mer core predicted by NetMHCIIpan. 

We generated 2 logos for each allele: (1) The logo generated by including all peptides 

predicted as weak or strong binder (%rank score <10). (2) Only the peptides that additionally 

fulfill the criterion of not binding against any of the significant alleles with the opposite direction 

of effect. The logos present the probability-weighted Kullback-Leibler logos with pseudo 

counts47. The logos were adjusted with pseudo counts based on the BLOSUM 6248 

substitution matrix using a ß of 200, therefore adding 200 artificial peptides reflecting typical 

evolutionary mutations47. The graphical presentation was then performed using the R package 

ggseqlogo49. 

 

Peptidome-wide association study (PepWAS) 

The predicted peptide binding affinities were further used for a PepWAS analysis. Peptides 

with a percentile rank score below 2% (strong binder) were considered to be presented by an 

HLA protein. Finally, the set of bound peptides were combined with the patients’ phenotypes 

and HLA genotypes to conduct a PepWAS as described initially by Arora and colleagues11. 

The aim of PepWAS is to identify peptides that might be relevant for immune recognition based 

on their binding affinity. In brief, PepWAS discriminates peptides based on the predicted 

binding affinity in patient versus control samples. Therefore, the same logistic regression 

model as for the genetic association (GWAS) analysis was used including the first 10 PCs. 

The proteins and their peptides are analyzed for supporting factors. Those are: (1) Mutations 

in our sample set influencing the presence of the single peptides. (2) The gene expression 

signature in ulcerative colitis patients as published by Linggi et al.50 and by Taman et al. 51. (3) 

The cellular compartment of the genes52. The information of the subcellular compartments 

was exported from https://download.jensenlab.org/human_compartment_knowledge_full.tsv 

on 25.10.2022, the highest score presented for the gene ontology term GO:0005886 

(membrane proteins) and GO:0005576 (extracellular proteins) are considered relevant. (4) A 

comparison with immunopeptidome data previously published and described by ElAbd et al.53. 
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