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Abstract 

While many machine learning and deep learning-based models for clinical event prediction leverage various data 
elements from electronic healthcare records such as patient demographics and billing codes, such models face severe 
challenges when tested outside of their institution of training. These challenges are rooted in differences in patient 
population characteristics and medical practice patterns of different institutions. We propose a solution to this 
problem through systematically adaptable design of graph-based convolutional neural networks (GCNN) for clinical 
event prediction. Our solution relies on unique property of GCNN where data encoded as graph edges is only 
implicitly used during prediction process and can be adapted after model training without requiring model re-training. 
Our adaptable GCNN-based prediction models outperformed all comparative models during external validation for 
two different clinical problems, while supporting multimodal data integration. These results support our hypothesis 
that carefully designed GCNN-based models can overcome generalization challenges faced by prediction models. 

Introduction 

During each patient visit, healthcare centers record the health data of patients in digital systems referred to as 
Electronic Health Records (EHR) that consist of heterogeneous elements, including demographics, prescriptions, 
diagnosis, laboratory and radiology test results, encounter notes, procedures, and treatment plans. Structured format 
of EHR represents data that can take a value within a specified range or from a pre-defined dictionary. Examples of 
such EHR data include, but are not limited to, medical codes, medications, administrative data, vital signs, and 
laboratory test outcomes. In the era of digital age, secondary use of structured electronic health records (EHR) for 
developing machine learning (ML) and deep learning (DL) models for clinical event prediction and digital 
phenotyping1,2 is becoming widely popular and is being clinically adopted for improving the healthcare delivery. 
However, models trained on a single institution’s data often face severe challenges when applied across multiple 
different institutions and diverse populations3.  These challenges usually stem from differences in patient population 
characteristics such as age, gender, race and common comorbidities among the population, as well as differences in 
medical practice, manifested in the billing practice of medical procedures and recording and coding of comorbidities 
as CPT and ICD codes. 

ML/DL models commonly leverage ICD and CPT codes to incorporate the clinical status of patients in addition to 
their demographic features4,5. These codes are designed to convert healthcare services to billable revenue. Qualified 
healthcare coders are responsible for accuracy and completeness of these codes. However, significant differences exist 
in coding practices between different healthcare institutions6. ML/DL models often learn practice patterns of the 
training institution rather than relevant predictive features and can fail when applied to another institution7. Some 
studies have even shown that time and frequency of lab test order is more important for the model than actually the 
result of the lab test8. A survey paper recently concluded that when tested on external data, more than 20 models 
trained for prognosis for COVID-19 patients could not outperform univariable predictions made on oxygen saturation 
level at the time of admission to the hospital, calling into question the utility of ML modeling for clinical event 
prediction9. Proprietary risk prediction models are not exempt from this trend either. Recent studies have shown that 
the Epic sepsis model achieves subpar performance when validated externally9. Models also experience performance 
decay over time even when deployed in the same institution where it was trained, likely attributed to evolution of 
population characteristics and practice patterns over time10. These challenges limit the generalizability and scalability 
of ML/DL models that leverage electronic health records for tasks like clinical event prediction or patient phenotyping. 
Hence, researchers have been motivated to find remedies to the problem of limited generalizability of EHR-based 
ML/DL models. 

A popular applied remedy is the curation of refined clinical features for standardized risk prediction11, such as pooled 
cohort equations12. Clinical features are refined to eliminate practice pattern based variations that might arise in the 
recording of those features. However, curation of these features require extreme manual effort, and hence introduces 
the possibility of curation errors and is limited to generating smaller datasets. This approach also lacks 
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comprehensiveness and can potentially miss other relevant features that might be predictive for a given DL/ML task 
contained within the EHR. Such models can only focus on expert-defined clinical features and cannot make use of the 
vast amount of information available in the electronic health records in general. Research has shown that 
comprehensive models using a wide variety of EHR outperform models using curated features13. Even after valuable 
curation effort and targeted modeling based on a narrow set of curated features, this approach shows biases among 
different population groups12. Moreover, such models necessitate availability of curated clinical features thus requiring 
patients to undergo potential tests that may be part of such features. Another approach is harmonizing EHR under 
standard data models like Observational Medical Outcomes Partnership (OMOP) and Fast Healthcare Interoperability 
Resources (FHIR). These data models put well-known limitations on granularity of EHR and cannot handle variations 
in the data patterns themselves14,15. These challenges hinder wide-spread adoption of EHR-based ML/DL models 
across multiple institutions.  

Considering the limitations of the previously proposed solutions to the challenge of generalization, we propose a novel 
solution to adaptability challenges of EHR models through the design of graph-based convolutional neural networks 
(GCNN). GCNNs have been used to fuse data modalities such as radiological images and demographic information 
in their two data structures - nodes and edges1,16. A few previous studies have hinted towards generalizability 
properties of GCNN on a small scale for limited patient cohorts17. We formalize GCNN model design such that the 
trained model is generalizable in cross-institutional validation setup and adaptable to the difference between the coded 
EHR data. In our model design setup, the edge structure of the graph is used to encode patients’ similarity based on 
structured EHR data elements like ICD and CPT codes. The GCNN models are trained to learn explicitly from data 
elements selected as node features (e.g., imaging data or selected data elements from EHR) and implicitly from 
patients’ similarity patterns based on EHR data elements selected for edge formation. These similarity patterns can be 
systematically adapted to handle temporal and cross-institutional demographic and practice pattern variations while 
keeping the pre-trained GCNN model applicable as the model only operates on similarity patterns and is agnostic to 
the exact estimation process used for that similarity pattern. 

We validated our generalizable model design framework to solve two clinically relevant problems on completely 
different populations; 1) prediction of two clinical events for patients hospitalized with positive COVID-19 test: 
discharge from hospital and mortality using chest X-rays and EHR data elements such as billing codes and 
demographics features; and 2) prediction of blood transfusion in hospitalized patients using a wide range of EHR data 
elements (demographic features, CPT and ICD codes, medications, lab tests, vital signs). Hospital discharge and 
mortality prediction models were trained over data collected from Emory University Healthcare (EUH) network and 
externally validated on data collected from four geographically disparate sites of Mayo Clinic (MC). For transfusion 
prediction, data was collected from MC sites of Rochester and Arizona to serve as internal training and testing data 
while external validation was performed on publicly available MIMIC IV (Medical Information Mart for Intensive 
Care) dataset that contains data for ICU patients from Beth Israel Deaconess Medical Center in Boston, Massachusetts. 

Methodology 

Graph Convolutional Neural Network 

Graph convolutional neural network (GCNN) advanced machine learning by allowing the model designer to choose 
the definition of ‘neighborhood’ to be incorporated by the model through definition of a graph 𝐺(N, E) where 𝑁 
denotes the set of nodes and 𝐸 denotes the set of edges. In this scenario, 𝑖௧௛ sample from the cohort forms 𝑖௧௛ node 
(𝑣௜) with two feature vectors, i.e., node features (𝒏𝒊 ) and edge features (𝒆𝒊). An edge between 𝑖௧௛ and 𝑗௧௛ sample, 
denoted as 𝜀௜,௝, is decided based on edge-formation function ϵ(𝒆𝒊, 𝒆𝒋). GCNN model will learn to generate embeddings 
for 𝑖௧௛ node by manipulating nodes features of this node (𝒏𝒊), and ‘messages’ received from nodes in its edge-
connected neighbor (𝜂(𝑖)).  At 𝑘 + 1௧௛ graph convolutional layer, the following describes the process of generating 
embedding of 𝑖௧௛ node (𝒏𝒊

𝒌ା𝟏) 
𝒏𝑵(𝒊)

𝒌ା𝟏 = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒൫൛𝒏𝒋
𝒌, ∀𝑣௝ ∈ 𝜂(𝑖)ൟ൯ 

𝒏𝒊
𝒌ା𝟏 = 𝜎 ቀ𝑾𝒌ା𝟏 • 𝜙൫𝒏𝒊

𝒌, 𝒏𝑵(𝒊)
𝒌ା𝟏൯ቁ 

In a supervised leaning scenario where target label for each node is available, node embedding generated by graph 
convolutional layers is used to predict target label 𝑦ො௜ for 𝑖௧௛ node as  

𝑦ො௜ = 𝜎(𝑾𝒇𝒄 • 𝒏𝒊
𝒌ା𝟏) 

Through backpropagation of loss such as binary cross entropy defined on ground truth 𝒚 and predicted labels  𝒚ෝ, 
weight matrices 𝑾𝒌∀ 𝑘 ∈ 𝐾 and 𝑾𝒇𝒄 are optimized where the model included 𝐾 graph convolutional layers.  
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The neighborhood (𝜂௜) of 𝑖௧௛ node 𝑣௜ can be defined based on its edge-connected nodes, i.e., 𝜂௜ = ൛𝑣௝  ∀𝜀௜,௝  ∈ E ൟ. 
Messages are sent and received between nodes in a neighborhood. In essence, these messages are features of the nodes 
(𝒏𝒋, ∀𝑣௝ ∈ 𝜂௜) in the neighborhood (𝜂௜). GCNN model, through its training process, learns the function parameters to 
manipulate features of the 𝑖௧௛ node (𝒏𝒊) as well as ‘messages’ being received through various edge-connected nodes 
from its neighborhood 𝜂௜. Hence, GCNN is capable of two-fold learning. The model learns from the features of 𝑖௧௛ 
node (𝒏𝒊) directly, and implicitly learns from information used for edge formation (edge features 𝒆𝒊), through 
incorporation of ‘messages’ from edge-connected nodes (𝒏𝒋, ∀𝑣௝ ∈ 𝜂௜). However, model never directly manipulates 
edge features (𝒆𝒊).  

This is an important advantage of GCNNs as it relates to generalizing a trained model to unseen and diverse 
populations from external institutes. Since GCNN never has to manipulate edge features (𝒆𝒊) with parametric 
functions, edge features and edge formation function 𝜖(. ) can be adapted based on characteristics of the data of the 
individual institutions when shipping the trained model from one institute to the other. Thus, we based our work upon 
systematic use of this characteristic of GCNN to build generalizable models using EHR data elements. 

Adaptable GCNN Design for external use cases  

We focused on adaptable edge-formation process to ensure generalizability of our GCNN based models. Trained 
GCNN model requires consistent formation of node features (𝒏𝒊) in external cohort for its application on external 
cohort. However, the model does not directly manipulate edge features (𝒆𝒊), and hence, edge formation process 
𝜖(𝒆𝒊, 𝒆𝒋) can be adapted to suit external cohort without hindering the application of trained GCNN model on external 
cohort. The following represent two scenarios where such adaptation is crucial. 

Case – 1:  
Let us assume that edge features of internal cohort are denoted as 𝑆ா

௜௡௧ where 𝐴 = |𝑆ா
௜௡௧| and edge features of the 

external set are denoted as 𝑆ா
௘௫௧ where 𝐵 = |𝑆ா

௘௫௧| where 𝑆ா
௜௡௧ ≠ 𝑆ா

௘௫௧. Such distinct feature selection for the two cohorts 
may be the result of frequency-based selection of common features such as billing codes or administered medication. 
No existing machine learning model trained on internal feature vectors will be applicable to a separate set of external 
feature vectors. However, GCNN can tolerate such difference in internal and external cohort by employing these 
features for edge formation 𝜖(. ). As explained earlier, GCNN models do no manipulate edge feature vectors directly, 
but only implicitly use them through ‘messages’ received through these edges.    

Case – 2:  
Let us assume that edge features for internal and external cohorts are the same, i.e., 𝑆ா with 𝐴 = |𝑆ா|. However, graph 
formation process is more intelligent than simple thresholding on count-based or binary edge feature vectors for 
internal (𝒆𝒊

𝒊𝒏𝒕) and external (𝒆𝒊
𝒆𝒙𝒕) cohorts. For example, edge features may be collected over 𝑇 time intervals, and an 

edge is formed based on similarity in temporal pattern of these features for nodes 𝑖  and 𝑗, i.e., 𝒐𝒊 =

𝜏൫ൣ𝒆𝒊
𝒕ୀ𝟎, 𝒆𝒊

𝒕ୀ𝟏, … , 𝒆𝒊
𝒕ୀ𝑻 ൧൯ and 𝜖൫𝒐𝒊, 𝒐𝒋൯. Even with the same set of features, temporal patterns may be different for 

internal and external cohorts. For large academic healthcare centers, such patterns may involve both in-patient and 
out-patient data.  For databases collected for critical-care patients only, outpatient data may be missing in temporal 
patterns. Hence, temporal pattern forming function should be different for internal and external cohort, i.e., 𝜏௜௡௧ and 
𝜏௘௫௧ . Putting limitations on pattern formation function may enable traditional ML models trained on output of internal 
temporal pattern function 𝜏௜௡௧ to be   applicable to outputs of external temporal pattern function 𝜏௘௫௧ , but graph 
learning paradigm provides more flexibility. To suit the characteristics of each cohort, 𝜏௜௡௧ and 𝜏௘௫௧  may produce 
output of different dimensions (ห𝒐𝒊

𝒊𝒏𝒕ห ≠ |𝒐𝒊
𝒆𝒙𝒕| ), or operate of sequences of different length 𝑇௜௡௧𝑎𝑛𝑑 𝑇௘௫௧), or even 

work on different set of features, i.e., 𝑆ா
௜௡௧ and 𝑆ா

௘௫௧ (encompassing the scenario described in case –1). 

In terms of patients’ cohort, one node may represent a patient at a certain point in time and edge may denote that two 
connected nodes/patients are similar in terms of some demographic (e.g., age) or clinical features (e.g., comorbidities). 
This property has been exploited for detection of Alzheimer and autism spectrum disorder by building graphs with 
patients as nodes, brain imaging data as node features, and simple demographic features-based similarity used for edge 
formation1,16,18,19,20.  We move beyond such modeling by allowing much more comprehensive information to be used 
as edge features, e.g., all recorded billing codes for patients, or auto-encoder based compressed representation of 
historical patterns in recorded billing codes and medications. 
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The primary intuition of our generalizable GCNN design is to represent the measured/recorded health data (e.g. 
images, lab values) as node features which face minimal chance of variability due to practice pattern, and leverage the 
adaptability of the edge formation to represent the variable EHR information (e.g. diagnosis and procedure codes).   

Clinical use-cases of the adaptable GCNN design  

We validated our model design scheme on two clinically relevant use-cases; 1) prediction of major clinical events 
(discharge from hospital and mortality) for patients hospitalized with positive RT-PCR test for COVID-19, 2) 
prediction of need for transfusion for hospitalized patients. Figures 1-a and 1-b show frameworks for both use-cases. 
The first use-case employs a branched framework where patients marked as highly probable for discharge are 
evaluated for mortality risk and only in-patient data is used. Second use-case employs historical pattern of recorded 
procedures, comorbidities, and medication for a patient as well as data recorded during first 48 hours of hospitalization. 

Cohort Selection 

For use-case 1, internal cohort included all patients admitted to EUH between Jan-Dec 2020 with positive RT-PCR 
test and for whom chest X-ray examinations (AP view) were acquired at regular intervals during their hospital stay. 
External cohort was selected with similar criteria from MC (four sites) for the year 2020.  

For use-case 2, transfusion prediction model was trained on internal data collected from two sites (Rochester and 
Arizona) of MC. External validation was performed on two datasets; a) data collected from geographically distant site 
of MC, i.e., Florida, and b) open-source MIMIC IV dataset. Relatively small number of patients required blood 
transfusion (approximately 0.5% of hospitalizations in MC in 2019 required blood transfusion). Such a small positivity 
rate of transfusion drove us to curate a training dataset through propensity matching for the control group.  

Demographic features as well as 5 major comorbidities groups including metabolic disorders, hypertensive disease, 
heart disease, acute kidney failure adverse effects of drugs, were used as confounders to perform one-on-one 
propensity matching with cases (hospitalizations with blood transfusion) to select control groups (hospitalizations 
without blood transfusion). Case and control groups were perfectly balanced in terms of confounding variables in our 
propensity matched training data. Salient characteristics of all cohorts are described in Table 1.  

Model Design 

Figure 2 shows distributions of subgroups of billing code sets (CPT and ICD) for use-case 1 from two different 
institutions. External institute used a much larger number diagnostic tests indicated by higher bars for diagnostic 
radiology and drug assay subgroups.  While blood disease seems to be more common among patients in internal 
institute than in external institute, external cohort had a larger fraction of patients with metabolic disorders and heart 
disease. Such data elements require adaptation when experimenting from external cohort, and hence are suitable for 
edge feature formation.    

Such variations are handled by our generalizable model design which relies on unique adaptable learning paradigm 
of GCNN model as described earlier. Chest X-rays and tabular data (demographics, and CPT and ICD codes) were 
available for case-study 1. Image features extracted from pre-trained DenseNet-121 models were used as node features 
(𝒏𝒊). All tabular data elements were evaluated as edge feature vectors (𝒆𝒊) for effective edge formation. CPT and ICD 
codes were mapped to their corresponding subgroups in CPT and ICD code hierarchies respectively, and finally 
represented as one-hot feature vectors.  

Transfusion prediction model employed a larger variety of EHR features. Latest results of selected labs (recorded 
as Normal/Abnormal/Unknown), trend of change (gradient) in five important vital signs (temperature, mean arterial 
pressure (MAP), SpO2, pain score, pulse rate) recorded during the first 48 hours of hospitalization, demographic 
features, and free-text field of reason for visit vectorized under tf-idf featurization scheme were concatenated to form 
node features for this model. Edge features (𝑒௜) were generated by a temporal embedding model 𝜏(. ) for variable data 
elements like billing codes (CPT and ICD) and medication.  

Temporal  Embedding Model  

Embedding model 𝜏(. ) encodes temporal patterns recorded as three-point sequences; Timepoint 1 (T1): data collected 
between 6 and 12 months before hospitalization, Timepoint 2 (T2): data collected between 6 months before 
hospitalization to the time of hospitalization, Timepoint 3 (T3): data collected within first 48 hours of hospitalization.  
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Table 1- Cohort characteristics - Race X: American Indian/Alaskan Native, Race Y: Native Hawaiian/Pacific Islander, Ethnicity Z: Hispanic or Latino 

 
Figure 1. (a) Branched framework and graph formation for use-case 1, (b) Node and edge features processing and graph formation for use-case 2 

  COVID-19 Clinical Event Prediction Cohort Transfusion Prediction Cohort 

 Split (Patients, 
Hospitalization) 

Train 
(1578, 5741) 

Validation 
(184, 527) 

Test 
(439, 1545) 

External test 
(1082, 3800) 

Train 
(8752, 11290) 

Validation 
(993, 1286) 

Test 
(2472, 3151) 

Internal Hold-out 
site (3041, 4042) 

External test 
(68,68) 

Age mean+/-std 58.9 +/- 17.5 59.4 +/- 18.0 61.0 +/- 17.1 65.3 +/- 15.4 62.1 +/- 18.2 62.6 +/- 19.2 62.3 +/- 18.3 63.5 +/- 14.6 69.0 +/- 15.3 

Sex Female 
Male 

785(49.7%) 
793(50.3%) 

90(48.9%) 
94(51.1%) 

215(49.0%) 
224(51.0%) 

400(37.0%) 
682(63.0%) 

3989(45.6%) 
4763(54.4%) 

438(44.1%) 
555(55.9%) 

1141(46.2%) 
1331(53.8%) 

1459(48.0%) 
1582(52.0%) 

26(38.2%) 
42(61.8%) 

Race White 
Black 
Asian 
Race X 
Race Y 
Unknown 

384(24.3%) 
1014(64.3%) 

36(2.3%) 
7(0.4%) 
4(0.3%) 

133(8.4%) 

43(23.4%) 
121(65.8%) 

6(3.3%) 
0(0%) 
0(0%) 

14(7.6%) 

127(28.9%) 
270(61.5%) 

9(2.1%) 
4(0.9%) 
2(0.5%) 

27(6.2%) 

892(82.4%) 
86(7.9%) 
46(4.3%) 
14(1.3%) 
2(0.2%) 

42(3.9%) 

7688(87.8%) 
291(3.3%) 
207(2.4%) 
126(1.4%) 
23(0.3%) 

417(4.8%) 

869(87.5%) 
33(3.3%) 
20(2.0%) 
13(1.3%) 

0(0%) 
58(5.8%) 

2175(88.0%) 
91(3.7%) 
59(2.4%) 
32(1.3%) 
9(0.4%) 

106(4.3%) 

2332(76.7%) 
455(15.0%) 
101(3.3%) 
10(0.3%) 
9(0.3%) 

134(4.4%) 

48(70.6%) 
8(11.8%) 

0(0%) 
0(0%) 
0(0%) 

12(17.6%) 

Ethnicity 
 

Not Z 
Z 
Unknown 

1362(86.3%) 
114(7.2%) 
102(6.5) 

155(84.2%) 
19(10.3%) 
10(5.4%) 

377(85.9%) 
30(6.8%) 
32(7.3%) 

971(89.7%) 
99(9.1%) 
12(1.1%) 

8036(91.8%) 
421(4.8%) 
295(3.4%) 

896(90.2%) 
62(6.2%) 
35(3.5%) 

2276(92.1%) 
112(4.5%) 
84(3.4%) 

2767(91.0%) 
167(5.5%) 
107(3.5%) 

56(82.4%) 
0(0%) 

12(17.6%) 

Comorbidities Diabetes 
Hypertension 
Heart Disease 
Kidney Disease 

746(47.3%) 
1076(68.2%) 
831(52.7%) 
266(16.9%) 

84(45.7%) 
119(64.7%) 
83(45.1%) 
22(12.0%) 

205(46.7%) 
311(70.8%) 
230(52.4%) 
79(18.0%) 

409(37.8%) 
711(65.7%) 
814(75.2%) 
554(51.2%) 

2533(28.9%) 
5508(62.9%) 
5705(65.2%) 
3932(44.9%) 

268(27.0%) 
620(62.4%) 
659(66.4%) 
449(45.2%) 

713(28.8%) 
1575(63.7%) 
1647(66.6%) 
1164(47.1%) 

1050(34.5%) 
2176(71.6%) 
1925(63.3%) 
1526(50.2%) 

0(0.0%) 
48(70.6%) 
0(0.0%) 
0(0.0%) 
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Figure 2 - Billing codes distribution; a) ICD, b) CPT, in internal and external sets for COVID-19 patients’ cohorts 
 

Temporal embedding model τ(.) is essentially an LSTM based encoder-decoder architecture. The feature vector at 
each time point is encoded to a latent space such that when decoded, it generates the feature vector of the next time 
point. Hence, the model is trained in a self-supervised fashion with no regard to any downstream prediction label. 
Once the model has been trained, the last hidden state vector generated in response to an input sequence can be used 
as an embedded edge feature vector 𝑒௜ encompassing temporal information encoded in the data elements used as input. 
Our transfusion prediction model operates on a graph of patients where edges between patients are decided based on 
similarity in their embedded vectors 𝑒௜. As explained in Methodology section, this temporal embedding model is 
trained separately for external data, while keeping the GCNN-based transfusion prediction model trained on internal 
cohort applicable over external cohort. 

Three timepoints sequence design was selected experimentally as further finer-grained splitting of historical data 
resulted in many empty timepoints (time interval with no available data). This is due to the nature of data collected as 
inpatient vs outpatient. Most historical data is outpatient data except for cases where a patient was hospitalized in the 
last one year as well. Outpatient data is much more sparse than inpatient data. Note that external data was collected 
from MIMIC IV which is very different from the internal cohort. MIMIC data records patient hospitalizations with no 
outpatient data. Hence historical data is only available if the patient was hospitalized within the last one year as well. 
Still, retraining the embedding model provided a chance for adaptation to such a different scenario.   

Results 

We performed thorough experimental evaluation for both use-cases. As both use-cases involve multiple data elements 
(including EHR data elements and chest X-rays) and the proposed approach is based on fusion of all data elements 
through GCNN-based models, an intuitive comparative baseline is formed by single-modality models, each using only 
one of the data elements. Therefore, we trained and evaluated such single modality models for all three clinical events. 
In addition, we also employed a traditional fusion modeling approach, i.e., late fusion, which gathered target label 
probability estimates from single modality models and processed them together through a meta-learner for final target 
prediction.  Tables 2 and 3 show performance of clinical event predictors for use-cases 1 and 2, respectively, for both 
internal held-out test sets and external sets.  

For use case 1, other than the obvious difference in coding patterns (Figure 2), the patient populations are significantly 
different between EUH and MC (internal and external institutions, respectively) - (1) 49% female patients in EUH 
while 37% female in MC; (2) 61.5% African American in EUH and 7.9% in MC; (3) as comorbidities, 16.9% kidney 
disease in EUH and 51.2% in MC; 52.4% cardiovascular disease in EUH while 75.2% in MC (Table 1). For use-case 
2, the external cohort was significantly small (68 patients); however similar variations in patient population were also 
observed.    
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Table 2 - Performance of clinical event prediction models for COVID-19 patients 

Table 3 - Performance of all models for prediction of transfusion for hospitalized patients; ‘--’ were added to the 
places where the performance cannot be computed due to missing data. 

Model Internal External 

Sensitivity Specificity AUROC Sensitivity Specificity AUROC 

Hospital Discharge Prediction 

Non-imaging 
(EHR) 

72.9 [71.7-74.1] 59.9 [58.2-61.5] 71.5 [70.4-72.5] 48.9 [48.2-49.7] 64.1 [62.8-65.4] 57.8 [56.9-58.7] 

Images (X-
rays) 

71.7 [70.5-72.9] 65.9 [64.2-67.4] 74.9 [73.8-76.0] 59.6 [58.9-60.3] 54.6 [53.4-56.0] 60.0 [59.1-60.9] 

Late fusion 69.7 [68.4-70.8] 65.5 [64.1-67.2] 74.5 [73.4-75.6] 51.2 [50.4-51.9] 61.3 [60.0-62.7] 58.1 [57.2-59.0] 

GCNN-Demo 70.2 [69.0-71.4] 68.9 [67.3-70.5] 76.0 [75.0-77.0] 60.7 [60.0-61.4] 62.2 [60.9-63.5] 65.2 [64.3-66.1] 

GCNN-CPT 71.1 [69.9-72.3] 69.6 [68.2-71.4] 77.1 [76.1-78.2] 64.8 [64.1-65.4] 57.4 [55.9-58.8] 64.6 [63.7-65.5] 

GCNN-ICD 69.5 [68.2-70.6] 70.2 [68.7-71.8] 76.2 [75.1-77.3] 64.5 [63.7-65.2] 66.3 [65.1-67.5] 70.0 [68.7-70.4] 

 Mortality Prediction 

Non-imaging 
(EHR) 

86.4 [84.2-89.4] 83.8 [82.5-85.3] 86.7 [84.9-88.5] 79.3 [77.2-81.5] 81.4 [80.3-82.6] 86.7 [85.7-87.7] 

Images (X-
rays) 

86.4 [84.0-89.0] 77.8 [76.4-79.5] 88.1 [86.9-89.3] 64.9 [62.3-67.5] 35.6 [34.2-37.1] 48.7 [46.9-50.4] 

Late fusion 85.6 [83.0-88.5] 81.1 [79.8-82.8] 88.6 [87.2-90.2] 76.0 [74.0-78.3] 82.2 [81.1-83.4] 81.6 [80.3-82.9] 

GCNN-Demo 84.7 [82.3-87.6] 81.1 [79.7-82.6] 89.4 [88.4-90.7] 78.1 [76.1-80.2] 86.1 [85.1-87.2] 88.8 [87.9-89.8] 

GCNN-CPT 74.6 [71.3-78.0]  84.5 [83.0-85.9] 86.6 [85.2-88.0] 83.1 [81.3-84.8] 86.1 [85.2-87.4] 91.4 [90.6-92.3] 

GCNN-ICD 84.7 [82.3-87.9] 82.5 [81.1-83.9] 90.1 [89.0-91.3] 81.4 [79.6-83.5] 74.6 [73.2-76.0] 85.3 [84.2-86.5] 

Model Internal Held-out site External 
Sensitivity Specificity AUROC  Sensitivity Specificity AUROC  Sensitivity 

Demographi
cs 

54.0 
[52.0-56.0] 

51.5 
[50.0-52.9] 

54.2 
[52.8-55.6] 

53.8 
[52.2-55.7] 

45.7 
[44.3-47.0] 

50.5 
[49.3-51.9] 

60.0 
[50.0-75.0] 

66.7 
[63.2-70.2] 

63.3 
[54.2-76.3] 

CPT 54.8 
[52.8-56.8] 

66.1 
[64.8-67.4] 

61.4 
[59.9-62.9] 

57.0 
[55.3-58.7] 

61.6 
[60.3-62.7] 

59.7 
[58.4-60.9] 

-- -- -- 

ICD 59.0 
[56.9-60.9] 

63.0 
[61.7-64.4] 

62.3 
[60.9-63.7] 

62.0 
[60.3-63.7] 

63.3 
[62.2-64.6] 

63.7 
[62.5-64.9] 

60.0 
[50.0-75.0] 

71.4 
[68.4-75.5] 

58.6 
[52.2-66.5] 

Lab Test 59.8 
[57.8-61.7] 

62.3 
[60.9-63.6] 

64.5 
[63.1-65.7] 

50.5 
[48.6-52.2] 

59.0 
[57.9-60.3] 

56.3 
[54.9-57.4] 

60.0 
[50.0-75.0] 

49.2 
[45.3-52.8] 

45.1 
[34.2-54.2] 

Medications 58.1 
[56.2-59.9] 

62.9 
[61.5-64.3] 

63.2 
[61.7-64.6] 

57.0 
[55.1-58.7] 

61.8 
[60.6-63.0] 

61.1 
[59.8-62.3] 

60.0 
[50.0-75.0] 

69.8 
[66.7-73.7] 

61.0 
[50.0-76.3] 

Reason for 
visit 

35.2 
[33.4-37.2] 

79.6 
[78.5-80.8] 

58.2 
[57.0-59.7] 

31.1 
[29.4-32.7] 

77.0 
[76.1-78.1] 

55.5 
[54.3-56.6] 

-- -- -- 

Vitals 61.6 
[59.7-63.4] 

58.0 
[56.6-59.3] 

62.8 
[61.4-64.1] 

60.9 
[59.3-62.7] 

54.5 
[53.2-55.7] 

59.4 
[58.1-60.6] 

80.0 
[75.0-
100.0] 

31.7 
[28.1-35.2] 

43.2 
[32.0-49.2] 

Late Fusion 64.0 
[62.1-66.0] 

64.2 
[62.9-65.5] 

69.9 
[68.6-71.2] 

68.0 
[66.4-69.4] 

60.9 
[59.8-62.2] 

68.3 
[67.2-69.4] 

60.0 
[50.0-75.0] 

54.0 
[50.8-57.9] 

44.4 
[31.3-56.0] 

GNN 73.8 
[72.0-75.6] 

65.4 
[64.1-66.7] 

77.4 
[76.3-78.5] 

70.2 
[68.6-71.7] 

70.0 
[68.9-71.2] 

77.1 
[76.1-78.1] 

80.0 
[66.0-95.0] 

69.8 
[66.7-73.6] 

70.8 
[62.5-84.7] 
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Table 4 - Performance of GCNN models on external cohorts with and without edge adaptation on external cohorts 

 
In the challenging scenario formed by vast differences in internal and external datasets, individual modality classifiers 
and traditional fusion models struggle when presented with external data. On the other hand, GNN based models tend 
to fare better under similar settings. For use-case 1, late fusion model achieved 0.58 [0.52 - 0.59] AUROC on the 
external dataset for hospital discharge prediction while the GCNN achieved 0.70 [0.68-0.70]. For mortality prediction,  
late fusion model achieved 0.81[0.80-0.82] AUROC on external dataset while the GCNN model achieved 0.91 [ 0.90 
- 0.92]. For the use-case 2, we observed more gaps in performance due to missing/incomplete data in the external 
dataset -  late fusion achieved 0.44[0.31-0.56] while the GCNN model achieved 0.7 [0.62-0.84]. 

We hypothesize that superior performance of GCNN on external data is due to the adaptation of the edge formation 
function. To test this hypothesis, we applied GCNN based models without adaptation of edge formation function on 
external for all our clinical event prediction tasks and compared results with application of GCNN based models with 
edge formation function adaptation. The models suffer significant performance loss in majority of the cases when used 
without edge formation function adaptation (Table 4). Hence, we can safely conclude that the generalization and 
adaptability capabilities of GCNN based models arise from its unique ability to adapt edge formation process to suit 
new population even after model training. 

 
Discussion 
As highlighted in the literature7,8, the challenges related to generalization limit the application scope of ML/DL models 
that could otherwise leverage the rich electronic health records for tasks such as clinical event prediction or patient 
phenotyping.  In this study, we propose an adaptable GCNN framework for EHR modeling that can be easily 
generalizable across institutions where the difference in patient population and coding practices are significant. The 
GCNN framework allows to choose the definition of patient/case similarity to be incorporated into the model through 
definition of a graph which not only mimics the parts of clinical decision making but can also be utilized to overcome 
the generalizability limitation of traditional ML/DL models. While the GCNN model learns from the features of node 
directly, it implicitly learns from information used for edge formation through incorporation of  edge-connected nodes. 
Thus, our generalizable GCNN design primarily represents the measured/recorded health data (e.g. images, lab values) 
as node features which usually have minimal variability across sites, and leverage the adaptability of the edge 
formation to represent the variable EHR information (e.g. diagnosis and procedure codes).  

We validated the proposed generalizable GCNN model design framework to solve two important clinical use-cases; 
1) prediction of adverse clinical events for COVID-19 patients, and 2) prediction of blood transfusion in hospitalized 
patients. We trained the GCNN models using data from one institution (EUH/MC) and validated externally on MC 
and publicly available MIMICIV datasets, respectively. During our experimentations, even though the performances 
on the internal datasets were close, GCNN models consistently outperformed the traditional ML/DL models on the 
external datasets. We hypothesized that this performance trend is due to the ability of graph-based models to adapt 
their edge formation functions without requiring any re-training or fine tuning the model itself. 

To our knowledge, we are the first to report the edge adaptable GCNN property to improve the generalizability of 
ML/DL model in healthcare settings. Our proposed design has several important advantages. First, the model trained 
on an internal dataset does not need fine-tuning or retraining on the external data, even when the EHR data structure 

Model With adaptation Without adaptation 
Sensitivity Specificity AUROC Sensitivity Specificity AUROC 

Hospital Discharge Prediction 
GCNN-CPT 64.8 [64.1-65.4] 57.4 [55.9-58.8] 64.6 [63.7-65.5] 63.4 [62.7-64.1] 58.0 [56.5-59.4] 64.2 [63.4-65.1] 

GCNN-ICD 64.5 [63.7-65.2] 66.3 [65.1-67.5] 70.0 [68.7-70.4] 63.3 [62.6-64.0] 61.3 [59.9-62.6] 65.8 [65.0-66.7] 

 Mortality prediction 
GCNN-CPT 83.1 [81.3-84.8] 86.1 [85.2-87.4] 91.4 [90.6-92.3] 69.4 [67.2-71.7] 74.4 [73.1-75.8] 79.6 [78.3-80.9] 

GCNN-ICD 81.4 [79.6-83.5] 74.6 [73.2-76.0] 85.3 [84.2-86.5] 73.6 [71.4-76.0] 74.9 [73.4-76.2] 82.3 [81.0-83.5] 

 Transfusion Prediction 
GCNN 80.0 [66.7-100.0] 69.8 [65.4-74.6] 70.8 [57.9-85.6] 60.0 [33.3-75.0] 74.6 [70.4-79.2] 63.2 [49.4-76.8] 
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and coding frequency differs significantly between the institutions. Second, the graph design implicitly models the 
similarity between the patients and thus mimics the clinical decision making. Third, the adaptable edge formation 
technique allows to explore institution specific variables to define the patient/case similarity and provide flexible 
design choice. Fourth, graph design allows integration of multi-modal data (images + EHR). 

There are several limitations in this study, such as those associated with a retrospective design of both use-cases. In 
addition, for the MIMIC dataset, the timestamp associated with the CPT code and reason for admission were missing, 
thus we were not able to evaluate the model performance using those data elements. Given the low prevalence, we 
used propensity score matching to select the control cases which provided only a selective sample for validation.   

Conclusion 

We proposed a novel solution to the challenges faced by machine learning and deep learning-based models relying on 
electronic health records for predictive modeling for patient populations. Generally, such models suffer from poor 
generalization capabilities due to differences in medical practice patterns and patient population characteristics when 
applied outside of their institute of training. Our systematic design of graph based convolutional neural networks 
implicitly learns from such varying data elements of electronic health records through their use in the edge formation 
process. Edge formation function can be adapted to suit the new population when models are to be tested externally 
without needing any retraining of the originally trained model. We proved the benefits of our approach through its 
application on two clinically relevant problems; each tested on two diverse populations. We included a wide variety 
of electronic health records data elements as well as imaging information, indicating that our approach is capable of 
handling complex multi-modal data while developing highly adaptable models. 
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