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2

Key Points 53 
 54 

Question Can a deep learning model (DL)° based on high resolution images of the distal 55 

forearm predict fragility fractures? 56 

 57 

Findings In the setting of 3 pooled population-based cohorts, the DL model predicted 58 

fractures substantially better than areal bone mineral density and FRAX, especially in women 59 

≥65 years. 60 

 61 

Meaning Our DL model may become an easy to use way to identify postmenopausal women 62 

at risk for fracture to improve fracture prevention. 63 

 64 
 65 

 66 
Abstract  67 

 68 
Importance Fragility fractures are a public health problem.  Over 70% of women having 69 

fractures have osteopenia or normal BMD, but they remain unidentified and untreated 70 

because the definition of ‘osteoporosis’, a bone mineral density (BMD) T-Score ≤ -2.5SD, is 71 

often used to signal bone fragility.   72 

 73 

Objective As deep learning facilitates investigation of bone’s multi-level hierarchical 74 

structure and soft tissue, we tested whether this approach might better identify women at risk 75 

of fracture before fracture. 76 

 77 

Design We pooled data from three French and Swiss prospective population-based cohorts 78 

(OFELY, QUALYOR, GERICO) that collected clinical risk factors for fracture, areal BMD 79 

and distal radius measurements with high resolution peripheral quantitative tomography 80 

(HRpQCT). Using only three-dimensional images of the distal radius, ulna and soft tissue 81 

acquired by HRpQCT, an algorithm, a Structural Fragility Score-Artificial Intelligence (SFS-82 
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AI), was trained to distinguish 277 women having fractures from 1401 remaining fracture-free 83 

during 5 years and then was tested in a validation cohort of 422 women. 84 

 85 

Setting European postmenopausal women 86 

 87 

Participants We have studied postmenopausal women considered as representative of the 88 

general population, who were followed for a median 9.4 years in OFELY, 5.4 years in 89 

QUALYOR  and 5.7 years in GERICO. 90 

 91 

Main outcome and measure All types of incident fragility fractures 92 

 93 

Results We used data from 2666 postmenopausal women, with age range of 42-94. In women 94 

≥  65 years having ‘All Fragility Fractures’ or ‘Major Fragility Fractures’, SFS-AI generated 95 

an AUC of 66-70%, sensitivities of 60-68% and specificity of 71%.  Sensitivities were greater 96 

than achieved by the fracture risk assessment (FRAX) with BMD or BMD (6.7-26.7%) with 97 

lower specificities than these diagnostics (~95%).   98 

 99 

Conclusion and relevance The SFS-AI is a holistic surrogate of fracture risk that pre-100 

emptively identifies most women needing prompt treatment to avert a first fracture.   101 

 102 

  103 

Key words:  Artificial Intelligence, Bone Structure, Bone Fragility, Deep Learning, Fractures 104 

 105 

 106 

 107 
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Introduction 109 

 110 

Fragility fractures are a public health problem because fractures impose high morbidity, 111 

mortality and cost to the community.1 To identify women with fragile bones before fracture, a 112 

W.H.O group designated women as having ‘osteoporosis’ if femoral neck bone mineral 113 

density (BMD) T-Score was ≤ -2.5 standardized deviations (SD) below the premenopausal 114 

mean.2 Epidemiological studies confirmed that fracture risk increases as BMD decreases, but 115 

the frequency distribution around the age-related decline in mean BMD remains normal. 116 

 117 

Because of this normal frequency distribution, most postmenopausal women in the 118 

community have osteopenia (T-score -2.5 to -1.0 SD) or normal BMD (T-score > -1.0 SD).  119 

These women form the source of 75% of all fragility in the community, only 25% arise 120 

among the smaller subset of women in the community with osteoporosis as defined by 121 

BMD.3-9 The women with osteopenia or normal BMD having fragility fractures remain 122 

unidentified and untreated using the definition of osteoporosis, a BMD T-Score ≤ - 2.5 SD, to 123 

signal bone fragility.  Treatment is not offered, even in the presence of a prevalent or incident 124 

fracture, because the absence of osteoporosis is incorrectly interpreted as being evidence of 125 

absence of bone fragility.10 126 

 127 

Osteoporosis and bone fragility are used interchangeably even though they are not 128 

synonymous terms.11-13 Absence of osteoporosis does not exclude bone fragility.  Bone 129 

fragility is not binary, present in women with osteoporosis (T-Score ≤ -2.5 SD) and absent in 130 

women without osteoporosis (T-Score > -2.5 SD).  Even when bone loss only reduces BMD 131 

into the low normal or osteopenia range, the bone is unlikely to be ‘normal’.  Bone mass is 132 

reduced relative to premenopausal women and many qualities of bone responsible for its 133 

strength may be compromised.14-18 134 
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 135 

For example, advancing age deteriorates the composition of the mineralized matrix.19,20 Bone 136 

loss disrupts the spatial configuration of bone’s three-dimensional architecture.15,21 These 137 

changes produce a non-linear increase in bone fragility, disproportionate to both the bone loss 138 

causing the deterioration and the reduction in BMD.20,22 Resistance to bending is a 7th power 139 

function of bone’s cortical porosity and a 3rd power function of its trabecular density.22  140 

 141 

Consequently, even modest disruption of the spatial configuration of bone at nano-, and 142 

micro-levels of resolution compromise bone strength independent of BMD.  In addition, soft 143 

tissue changes like loss of muscle mass (sarcopenia) impair mobility and balance predisposing 144 

to falls, fractures and mortality.23 Thus, reducing the population burden of fractures requires a 145 

diagnostic that complements BMD by identifying women at risk of fracture due to bone 146 

fragility caused by compromised bone morphology not captured by BMD ≤ - 2.5 SD, by an 147 

increased risk of falls due to deteriorated soft tissues such as muscle mass, or both.  Non-148 

invasive evaluation of bone microarchitecture improves fracture prediction  compared with 149 

FRAX plus BMD or BMD alone.8,9 150 

 151 

A promising area of innovation in the promotion of human health is the use of Artificial 152 

Intelligence (AI). Application of Deep Learning to medical imaging24 facilitates the 153 

investigation of bone’s multilayered qualities and has been reported to identify patients with 154 

prevalent fractures or osteoporosis in cross sectional studies.25-27 However, no prospective 155 

studies have applied deep learning using only the high resolution 3-dimensional images of 156 

bone and soft tissue to determine whether an algorithm, a Structural Fragility Score derived 157 

by Artificial Intelligence (SFS-AI), might capture deteriorated bone qualities and soft tissue.  158 

If so, this holistic surrogate of fracture risk is likely to serve as a diagnostic that pre-emptively 159 
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identifies women at risk of a first or subsequent fracture needing prompt treatment and would 160 

do so better than the fracture risk assessment (FRAX) score with BMD or BMD alone. 161 

 162 

 163 

 164 

 165 

 166 

 167 

 168 

 169 

 170 

 171 

 172 

 173 
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 175 
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 179 

 180 

 181 

 182 
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 184 
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Methods 186 

 187 

Participants We studied (i) 568 postmenopausal women, median age 68.2 years, range 42-188 

94 of Os des FEmmes de LYon, OFELY, France followed for a median [interquartile range] 189 

of 9.4 [1.0] years,9,28,29 (ii) 1427 women of the Qualité Osseuse Lyon Orléans, QUALYOR 190 

cohort (1042 recruited in Lyon, 497 in Orléans), median age 65.9 (range 50-87) years 191 

followed for 5 years30 and (iii) 671 women of the Geneva Retirees Cohort, GERICO, in 192 

Switzerland median age 65 (range 63-68) years followed 5.7 years (range 2-8).31 The studies 193 

were approved by the institutional review boards.  Participants provided informed consent.  194 

Fractures (excluding head, toes and fingers) were confirmed using radiographs.  195 

 196 

Bone microarchitecture, bone densitometry, FRAX with BMD HRpQCT (voxel size of 197 

82 μm³) was used to scan the non-dominant forearm (Scanco Medical AG, Switzerland).32 198 

Radiation exposure was ~3 microsievert.  Quality control was monitored by daily scans of 199 

hydroxyapatite rods (QRM, Moehrendorf, Germany).  Femoral neck BMD was quantified 200 

using Hologic DXA scanners in the French cohorts and Hologic QDR Discovery in the Swiss 201 

cohort.  T-scores were calculated using NHANES III.  FRAX with femoral neck BMD 202 

provides a 10-year risk for Major Fragility Fractures (proximal humerus, wrist, distal forearm, 203 

clinical spine, or hip).33 204 

 205 

Deep Learning network To avoid bias towards any one of the three cohorts, we 206 

combined the three cohorts and then we randomly divided the combined data set into a 207 

training and testing data set. No training data was used as testing data. Figure S2 shows 208 

participants were randomly allocated to five groups, four used for training (n=1678), the fifth 209 

used for testing (n = 422).  Scores were calculated for each testing group with the median 210 

forming the SFS-AI (see Supplement Figure S2). Deep learning was applied to images of the 211 
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distal radius and ulna and the surrounding soft tissue acquired using HR-pQCT (see 212 

Supplement).34-37 Training the algorithm to identify women sustaining fractures faced two 213 

challenges: (i) extraction of features within the three-dimensional image captured by a matrix 214 

of 110*1560*1560 voxels conferring fracture risk and (ii) limited data for training 215 

predisposing to model over-fitting.  We used the DenseNet121 as the feature extraction 216 

network (Figure S1).  Features conferring fracture risk were learnt collectively by densely 217 

connected layers in the neural network.  The input to the feature extraction network was the 218 

110 slices acquired by the HR-pQCT at the distal radius (including the ulna and surrounding 219 

soft tissues).  The output from the feature extraction network is a feature vector of 256 220 

numbers.    221 

 222 

To achieve robust feature extraction, a multi-task learning strategy was used to overcome 223 

model overfitting.  To provide pictorial representation of the fracture risk prediction, extracted 224 

features were displayed as a heat map overlaid upon a 2D projection of the images.  Red 225 

reflects greater relevance of the region’s bone or soft tissue to fracture prediction.    226 

 227 

Statistical Analyses Analyses were conducted using data in women of any age and those 65 228 

years and over.  Follow-up was to fracture or freedom from fracture for five years since HR-229 

pQCT scanning.  SFS-AI, FRAX with BMD and BMD were not normally distributed and so 230 

are presented as median and interquartile range (IQR).  Values are adjusted for age and cohort 231 

because of cohort differences in age and follow-up duration. (Tables S1 and S2.) Comparison 232 

of the diagnostics in women having fractures and those remaining fracture-free was carried 233 

out using analysis of covariance adjusted for age and cohort and estimated by robust 234 

regression. (Table 1.)   235 

 236 
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The performance of SFS-AI as a continuous trait was assessed using the area under the curve 237 

(AUC) and was estimated using a parametric probit model38 and logistic regression to derive 238 

Odds Ratios (ORs) for fracture.  Both analyses are presented unadjusted and adjusted for age 239 

and cohort effect. The sensitivity and specificity of SFS-AI as a binary trait used a threshold 240 

of 0.5. (Addressed in Table 2.)   241 

 242 

We also assessed the performance of FRAX with BMD and BMD as continuous traits using 243 

ROC analysis and computed sensitivity and specificity using thresholds of 20% for FRAX 244 

with BMD and – 2.5 SD for BMD denoting high fracture risk.  Logistic regression was then 245 

used to assess any association of these diagnostics with fracture, separately and combined, for 246 

women of any age and women aged 65 years and over. (Addressed in Figure 1 and Table 247 

S3.)  248 

 249 

Linear regression was used to assess the association of SFS-AI with age, separately for 250 

women with fractures and women remaining fracture-free. (Addressed in Figure 2.)  Age, 251 

cortical porosity, trabecular density, FRAX with BMD and BMD were used in linear 252 

regression to compute an overall R-squared and to determine the proportion of variance in 253 

SFS-AI explained by these independent variables.  The percentage contribution of each trait 254 

to the overall R-squared was computed using the Shapley method.39 (Addressed in Table S5 255 

and Figure 3.) 256 

 257 

 258 

 259 

 260 

 261 

 262 
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Results 263 

 264 

Table 1 shows SFS-AI was higher in women having ‘All’ or ‘Major Fragility Fractures’ than 265 

women remaining fracture-free (both p < 0.001).  Neither FRAX with BMD nor BMD alone 266 

differed in women having fractures versus those remaining fracture-free (p > 0.15).   267 

 268 

SFS-AI pre-emptively identifies women at risk of ‘All’ and ‘Major Fragility Fractures’ 269 

 270 

Table 2 shows that in the testing cohort of 422 women of any age and the 236 women ≥ 65 271 

years of age, the SFS-AI as a continuous trait generated AUCs of 73-74% for ‘All Fragility 272 

Fractures’ and ‘Major Fragility fractures’ with adjusted ORs ranging from 2.53 to 2.67 per 273 

standard deviation.  The SFS-AI as a categorical trait (using a threshold of 0.5), had 274 

sensitivities ranging from 58.1% to 74.0% and specificities ranging from 71.0% to 77.3% (all 275 

significant, p < 0.001 for OR and AUC. 276 

 277 

Comparing SFS-AI with FRAX with BMD and BMD   278 

 279 

Women of any age Comparisons of the diagnostics was confined to participants having all 280 

three measurements.  Figure 1 shows the diagnostics as continuous traits.  For ‘All Fragility 281 

Fractures’ and ‘Major Fragility Fractures’, the AUCs for SFS-AI were 72% and 69% 282 

respectively (p < 0.05).  Table S3 shows unadjusted and adjusted SFS-AI predicted women 283 

having either category of fractures (ORs ranged from 2.07 to 2.41, all p < 0.001).  Neither of 284 

the other two diagnostics predicted either category of fracture. Figure 1 also shows the 285 

diagnostics as categorical traits.  For SFS-AI, sensitivities were 59.3% and 50.0% for 286 

detecting women having ‘All Fragility Fractures’ or ‘Major Fragility Fractures’ respectively, 287 

values that were significantly greater than sensitivities of FRAX with BMD or BMD (which 288 
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ranged 4.2 to 16.7%).  Specificities of SFS-AI were 77.1%, significantly lower than 289 

specificities of the other two diagnostics (which ranged 94.6 to 96.6%).   290 

 291 

Women aged ≥ 65 years Supplementary Figure S3 shows the performance of the 292 

diagnostics as continuous traits.  For ‘All Fragility Fractures’ and ‘Major Fragility Fractures’, 293 

the AUCs for SFS-AI were 70% and 66% respectively.  Table S4 shows unadjusted and 294 

adjusted SFS-AI predicted both categories of fractures (OR 1.68 to 2.15, all p < 0.05).  295 

Neither of the other two diagnostics predicted either category of fracture.  Figure S3 also 296 

shows the performance of the diagnostics as categorical traits.  For SFS-AI, sensitivities were 297 

67.6% and 60.0% for detecting women having ‘All Fragility Fractures’ or ‘Major Fragility 298 

Fractures’ respectively, values significantly greater than the sensitivities of FRAX with BMD 299 

or BMD (ranging 6.67 to 26.7%).  Specificities of SFS-AI were 70.7%, significantly lower 300 

than specificity of 94.6% for the other two diagnostics.   301 

 302 

The morphological basis of the SFS-AI Figure 2 shows that SFS-AI increased across 303 

age in women having fragility fractures and in women remaining fracture-free.  Red regions 304 

of the heat map overlying bone and soft tissue identify regions of high relevance to risk of 305 

incident fractures compared to the blue regions.  Figure 3 shows that SFS-AI correlated with 306 

microarchitecture; directly with cortical porosity and FRAX with BMD, and negatively with 307 

trabecular density and BMD.  Figure 3 and Supplementary Table S5 show that 46% of the 308 

variance in SFS-AI was explained by variance in age (p = 0.002), cortical porosity and 309 

trabecular density (both p < 0.001) but not with BMD or FRAX with BMD; 54% of the 310 

variance remained unexplained.  311 

 312 

 313 

 314 
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Discussion 315 

 316 

A deep learning algorithm was trained to identify women having fragility fractures using only 317 

the high-resolution three-dimensional images of bone and soft tissue.  No other information 318 

was used.  When training no longer improved predictive strength, the algorithm was tested in 319 

a cohort without knowledge of their fracture status during the ensuing 5 years.  This algorithm 320 

served as a surrogate of fracture risk, predicting the incidence of ‘All Fragility Fractures’ and 321 

‘Major Fragility Fractures’ and did so in women 65 years and older with a sensitivity and 322 

specificity of 60-70%, out-performing BMD and FRAX with BMD, neither of which 323 

predicted fractures.   324 

 325 

This surrogate of fracture risk, a Structural Fragility Score derived by deep learning artificial 326 

intelligence, increased across advancing age, was higher in women having incident fractures 327 

than those remaining fracture-free, and correlated directly with cortical porosity and 328 

negatively with trabecular density.  Deterioration of these two traits produces a nonlinear 329 

increase in bone fragility,22 predicts incident fractures,8,9 prevalent fractures40 and predicts 330 

estimated bone strength independent of BMD.41 Deterioration of these two traits accounted 331 

for most of the 48% explained variance in SFS-AI.  BMD was not an independent predictor of 332 

SFS-AI.   333 

 334 

Many qualities of bone not captured by BMD but not yet quantifiable non-invasively, may 335 

contribute to the 54% of the unexplained variance in this surrogate of fracture risk.14-19 For 336 

example, heterogeneity in bone’s material composition forms discontinuities, edges, that 337 

defend against fracture by increasing the energy required to initiate and propagate a crack.42 338 

Small changes in the degree of mineralization increase matrix stiffness but reduce its ductility 339 

(ability to absorb energy by deforming).43 Heterogeneity in the size and number of osteons,44 340 
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the cement line around each osteon,45,46 the differing orientation of mineralized collagen 341 

fibres of adjacent concentric osteonal lamellae,47-49 the extent glycation,50 hydration51 and 342 

other factors52,53 influence the mechanical properties of bone. The heat map implicated 343 

deterioration of soft tissue as well as bone.  The nature of soft tissue deterioration is not 344 

known but if it is sarcopenia then the SFS-AI algorithm might capture a component of risk for 345 

falls.23  346 

 347 

Most studies using machine learning are cross sectional and examine the ability to identify 348 

persons with prevalent fractures or osteoporosis (BMD T-Score ≤ - 2.5 SD).24-27 This is the 349 

first prospective study using deep learning to derive an algorithm that identifies women 350 

having incident fractures during five years.  The algorithm was developed by interrogating the 351 

three-dimensional images of bone and soft tissue, no other information was used.  This 352 

Structural Fragility Score serves as a surrogate of fracture risk that is likely to assist in 353 

reducing the population burden of fragility fractures.  It provides a diagnostic able to identify 354 

most women at risk of fracture and provides fast processing, easy access to risk assessment 355 

allowing prompt initiation and monitoring of preventative treatment at the community level.   356 

 357 

High resolution peripheral quantitative computed tomography (HRpQCT) technology is no-358 

longer confined to the research domain.  Commercial devices are now CE marked and FDA 359 

cleared for multiple clinical settings.  Analysis requires only the acquisition of the three-360 

dimensional image of the distal radius, ulna and soft tissue and cloud-based computer 361 

technology provides prompt diagnosis allowing initiation or monitoring of therapy.   362 

 363 

This study has several limitations.  Further studies are needed to determine whether including 364 

factors predisposing to falls such as muscle mass and function, age, height, weight and other 365 
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covariates improves the performance of the diagnostic.  The sample sizes were insufficient to 366 

evaluate performance of the diagnostic in predicting individual types of fracture.    367 

 368 

Advancing age is accompanied by deterioration in bone mass, its material composition, 369 

architecture and muscle mass - factors contributing to fragility fractures, a public health 370 

problem.  High-resolution quantitative computed tomography and deep learning provide a 371 

Structural Fragility Score that serves as a holistic surrogate of fracture risk.  This diagnostic is 372 

an accurate, safe, rapid and easily accessible tool that captures the deterioration of bone 373 

qualities contributing to bone fragility independent of BMD and perhaps deterioration of 374 

muscle predisposing falls.  This surrogate identifies women at high risk of fracture needing 375 

prompt treatment to avert fracture and may allow monitoring the success or failure of 376 

treatment.   377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 
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Legends for Figures for manuscript 392 

 393 

Figure 1.  Left two panels: Receiver Operator Characteristic (ROC) curves for Structural 394 

Fragility Score Artificial Intelligence (SFS-AI), Fracture Risk Assessment Score (FRAX) with 395 

bone mineral density (BMD) and BMD as a continuous trait predicting for ‘All Fragility 396 

Fractures’ and ‘Majority Fragility Fractures’ for women of any age.  Area under the Curves 397 

(AUCs) with 95% Confidence Intervals (CI) were significant (*p < 0.05) for SFS-AI only.  398 

Right two panels: Sensitivity and specificity of SFS-AI, FRAX with BMD and BMD as 399 

categorical traits.     400 

 401 

Figure 2.  Left panels: Advancing age is associated with a higher Structural Fragility Score-402 

Artificial Intelligence (SFS-AI) in women having ‘All Fragility Fractures’ or Major Fragility 403 

Fractures (closed circles) and in women remaining fracture-free (open circles).  The images of 404 

the distal radius and ulna with the heat map illustrate regions commonly encountered in 405 

women having fractures.   406 

 407 

Figure 3.  Left panels.  The Structural Fragility Score-Artificial Intelligence (SFS-AI) was 408 

associated directly with cortical porosity, FRAX with BMD and negatively with trabecular 409 

density and BMD.  Right diagram.  Of the 47% of explained variance in the SFS-AI, most 410 

was attributed to trabecular density, cortical porosity, age and the FRAX with BMD.  The 411 

contribution of BMD was not significant.  The remaining 53 percent remained unexplained. 412 

 413 

Legends for Figures in supplementary material 414 

 415 

Figure S1.  Structure of the deep learning model used to predict fracture. The input is the 110 416 

slices of a wrist scan used to acquire the three-dimensional image of the distal radius, distal 417 
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ulna and adjacent soft tissue.  DenseNet121 is used as the neural network backbone.  The 418 

output feature after the global average pool is a 256-dimension feature.  A multi-task (age 419 

prediction, fracture prediction and non-fracture years prediction) learning strategy was used to 420 

achieve robust extraction of relevant features. 421 

 422 

Figure S2.  We studied women from OFELY (n = 568), Qualyor (n = 1427) and Gerico (n = 423 

671).  (A) There were 526, 1187 and 387 images remaining from the respective cohorts for 424 

analysis after excluding images from women remaining fracture-free followed for under 5 425 

years and images from women having traumatic (non-fragility).  (B) Women having a 426 

fragility fracture during 5 years were denoted as (+), women remaining fracture-free as (-).  427 

(C) Participants from each cohort were randomly allotted into five groups with approximately 428 

equal numbers of (+) and (-) subjects.  See Methods section. 429 

 430 

Figure S3.  Left two panels. Receiver Operator Characteristic (ROC) curves for Structural 431 

Fragility Score Artificial Intelligence (SFS-AI), Fracture Risk Assessment Score (FRAX) with 432 

bone mineral density (BMD) and BMD as continuous traits predicting ‘All Fragility 433 

Fractures’ and ‘Major Fragility Fractures’ in women 65 years of age and over.  Area under the 434 

Curves (AUCs) with 95% Confidence Intervals (CI) were significantly different from 0.5 (*p 435 

< 0.05) for SFS-AI only.  Right two panels.  Sensitivity and specificity of the SFS-AI, FRAX 436 

with BMD and BMD as categorical traits predicting women having ‘All Fragility Fractures’ 437 

or ‘Major Fragility Fractures’.     438 

 439 

 440 

 441 

 442 

 443 

 444 
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 784 
Supplementary AI methods 785 
 786 
Deep Learning Network, training and the heat map DenseNet used dense connection 787 
between layers and achieved efficacy in feature extraction.  The first layer had a 110-dimension 788 
input instead of 3-dimension input in the original DenseNet.34 We added a transition layer using 789 
1*1 convolution after the last denseblock of DenseNet to reduce the feature dimension from 790 
1024 to 256 to extract a compact feature.  A multi-task learning strategy was used to achieve 791 
more robust features.  Extracted features were used to predict fractures during the ensuing 5-792 
years, to predict the patient's age at the time of scanning and the duration of the fracture-free 793 
years of follow-up since scanning.  The latter two tasks are included in the training to produce 794 
generalized feature representations powerful enough to be shared across different tasks.   795 
 796 
We used a pretrained model as the initial model and 0.5 as the classification threshold for the 797 
training and validation.  During training, cross-entropy loss was used as the fracture situation 798 
prediction loss, and used the mean squared error loss as the loss of age prediction and non-799 
fracture year prediction.  L1 regularization is performed on the weights of the classification layer 800 
to reduce overfitting.  The model is optimized by ADAM optimizer using the four losses with 801 
weight 1 on the first three losses and weight 0.01 on the L1 regularization loss.35 The learning 802 
rate is set as 5e-6 for the DenseNet backbone and 5e-5 for the other layers, including the 803 
transition layer and the three multi-learning branches. Pytorch is chosen to implement the model 804 
training and testing.36 The Grad-CAM is utilized to generate the heatmap to represent the 805 
features that are extracted by the deep learning model.37   806 
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