1

Validity of Dried Blood Spot Testing for Sexually Transmitted and Blood-Borne Infections: A Narrative Systematic Review

François Cholette^{1, 2, &, *}, Simone Périnet^{3, &}, Bronwyn Neufeld^{1, &}, Maggie Bryson⁴, Jennifer Macri⁵, Kathryn M. Sibley⁶, ⁷, John Kim¹, S. Michelle Driedger⁶, Marissa L. Becker⁶, Paul Sandstrom^{1, 2}, Adrienne F. A. Meyers^{1,2}, Dana Paquette^{4, 8}

¹National Sexually Transmitted and Blood Borne Infection Laboratory, National Microbiology Laboratory at the J. C.
 ¹Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada
 ²Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
 ³Sexually Transmitted and Blood Borne Infection Surveillance Division, Centre for Communicable Diseases and
 ¹Infection Control, Public Health Agency of Canada, Ottawa, Canada
 ⁴Horizontal Surveillance Operations Division, Centre for Corporate Surveillance Coordination, Public Health Agency of Canada, Ottawa, Canada
 ⁵Office of Public Health Field Services and Training, Center for Emergency Preparedness, Public Health Agency of Canada, Ottawa, Canada
 ⁶Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
 ⁷George & Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Canada
 ⁸School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada

[&]These authors contributed equally to this work.

*Corresponding author: François Cholette

National Sexually Transmitted and Blood Borne Infection Laboratory

National Microbiology Laboratory at the J. C. Wilt Infectious Diseases Research Centre

Public Health Agency of Canada

745 Logan Ave., Winnipeg, Manitoba R3E 3L5

2

Tel: +1 (204) 789-6513

Email: Francois.Cholette@phac-aspc.gc.ca

Declarations

Funding: KMS is supported by a Tier 2 Canada Research Chair in Integrated Knowledge Translation in

Rehabilitation Sciences.

Conflict of interest: The authors declare no competing interests.

Ethics approval: Not applicable.

Consent to participate: Not applicable.

Consent for publication: Not applicable.

Availability of data and material: All data generated or analysed during this study are included in this published

article (and its Supplementary Information files).

Code availability: Not applicable.

Author contributions: FC, SP, BN, and JM performed data analysis, curated data, and wrote the initial draft. FC, MB,

KMS, JK, SMD, MB, and DP conceived and designed the protocol. MB, KMS, JK, SMD, MB, PS, AM, and DP

provided supervision and critical review of the initial draft.

Word Count

Abstract: 239

Body of the text: 3400

3

1 Abstract

- 2 **Objective:** Testing for human immunodeficiency virus (HIV) and hepatitis C virus (HCV) using dried blood spot
- 3 (DBS) specimens has been an integral part of bio-behavioural surveillance in Canada for almost two decades. A
- 4 systematic review was conducted to assess the current evidence regarding the validity of sexually transmitted and
- 5 blood-borne infection (STBBI) testing using DBS specimens.
- 6 Methods: A literature search was conducted using a peer-reviewed search strategy. Eligibility criteria included
- 5 studies reporting use of DBS specimens for STBBI testing in populations 15 years of age or older. The intervention of
- 8 interest was either commercially available or "in-house" tests used to detect STBBI from DBS specimens. Studies that
- 9 reported a measure of validity such as sensitivity, specificity, positive and negative predictive values were eligible for
- 10 inclusion. Quality of studies and risk of bias were assessed using the QUADAS-2 tool.
- 11 **Results:** A total of 6,706 records were identified. Of these records, 169 full-text articles met the criteria for inclusion.
- 12 The STBBI with the most articles reporting a measure of validity for testing on DBS was HIV (*n*=73), followed by
- 13 HCV (*n*=63), HBV (*n*=33), syphilis (*n*=7), HAV (*n*=5), HSV (*n*=5), HTLV (*n*=3), and HPV (*n*=1). The majority of studies
- 14 reported high sensitivity (≥90%) and specificity (≥90%). However, the quality of the studies varied greatly. No
- 15 evidence was found on the validity of chlamydia and gonorrhoea testing using DBS specimens.
- 16 **Conclusion**: Our findings support the validity of DBS testing for STBBI surveillance where sufficient evidence was
- 17 available, but validity is highly dependent on thorough method development and validation.
- 18 Keywords: dried blood spot testing, sexually transmitted diseases, blood-borne infections, biosurveillance
- 19
- 20
- 21
- 22
- 23
- 24
- 25

4

26 Introduction

27 Dried blood spot (DBS) specimens consist of blood spotted and dried on filter paper. They have been used for 28 biological sampling in clinical and research settings for nearly a century (Gruner, Stambouli, & Ross, 2015; Malsagova 29 et al., 2020). Compared to conventional biological specimens like plasma or serum, DBS offers several advantages, 30 including high acceptability among research participants (Landy et al., 2022) and compatibility with self-collection 31 (Takano et al., 2018). DBS specimens are also stable at room temperature and do not require refrigeration during 32 transportation, providing opportunities for biological sampling in remote and isolated communities (Lim, 2018). DBS 33 sampling is typically deployed in resource-constrained settings for infectious disease diagnostics (Sherman, Stevens, 34 Jones, Horsfield, & Stevens, 2005), surveillance (Buckton, 2008), and patient monitoring (Chevaliez & Pawlotsky, 35 2018), but it also has the potential to be an effective tool for infectious disease surveillance in high resource settings 36 like Canada given the country's numerous northern, remote, and isolated communities scattered across challenging 37 geography. DBS sampling has also been shown to have a high acceptability as an approach of screening for sexually 38 transmitted and blood-borne infections (STBBIs) in communities across Canada (Landy et al., 2022; Young et al., 39 2022). 40 DBS sampling was thrust into the spotlight during the COVID-19 pandemic, as it became routine for 41 surveillance and epidemiological studies while limiting face-to-face interactions and overcoming healthcare staff 42 shortages by allowing individuals to reliably collect their samples at home (Miesse, Collier, & Grant, 2022). For 43 example, Statistics Canada's Canadian COVID-19 Antibody and Health Survey (CCAHS) relied on DBS self-44 collection to assess COVID-19 seroprevalence nationally 45 (www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=5339). As a result, lessons learned from 46 implementing large-scale DBS sampling for SARS-CoV-2 surveillance could inform STBBI surveillance moving 47 forward. 48 Diagnostic assays have shown excellent clinical performance on DBS specimens. Most validation studies 49 have been performed for HIV screening, but more recent studies have demonstrated the feasibility of using DBS 50 specimens for the diagnosis of viral hepatitis (Tuaillon et al., 2010). However, it is difficult to ascertain if DBS are a 51 suitable specimen for STBBI surveillance considering the many experimental conditions (i.e. DBS punching and

52	elution protocols), combinations of reference and index tests, and study populations. Special consideration is also
53	needed for key populations where dual-infections are more prevalent, including HCV/HIV co-infection among
54	people who inject drugs and HIV/syphilis co-infection in men who have sex with men (Gobran, Ancuta, & Shoukry,
55	2021; Roberts & Klausner, 2016). The presence of dual-infections is important to consider as it may have the potential
56	to impact assay performance (McArdle, Turkova, & Cunnington, 2018). However, most validation studies focus on a
57	single STBBI and therefore performance metrics are presented for a single index test, pathogen, and population,
58	making it difficult to draw broader conclusions on the validity of using DBS specimens for STBBI surveillance.
59	The objective of this systematic review is to compile data on measures of validity to ascertain if the current
60	literature supports the use of DBS, in the context of surveillance, for the detection of the following STBBI: HIV-1,
61	HIV-2, hepatitis viruses (A, B, and C), herpes simplex virus (type 1 and 2), human T-cell lymphotropic virus (type 1
62	and 2), human papilloma virus, chlamydia (Chlamydia trachomatis), gonorrhoea (Neisseria gonorrhoeae), and syphilis
63	(<i>Treponema pallidum</i>). Measures of validity include sensitivity, specificity, positive predictive values (PPV), negative
64	predictive values (NPV), limit of quantification (LOQ), and/or limit of detection (LOD). Additionally, we aim to
65	identify factors which may influence test performance.
66	Methods
67	Information Sources
68	Peer-reviewed original research was identified by searching Excerpta Medica dataBASE (EMBASE), Medical
69	Literature Analysis and Retrieval System Online (Ovid MEDLINE) and Elsevier Scopus. Grey literature was
70	identified by searching key websites including Public Health Ontario, BC Centre for Excellence in HIV/AIDS,
71	Canadian AIDS Treatment Information Exchange (CATIE), Institut national d'excellence en santé et services sociaux,
72	Open Grey, Public Health Agency of Canada, American Society of Microbiology, Infectious Disease Society of
73	America, American Society of Virology, International AIDS Society, International Society for Sexually Transmitted
74	Diseases Research, Conference on Retroviruses and Opportunistic Infections (CROI), International AIDS Conference,

- 75 Centre for Disease Control (CDC), Public Health England, European Centre for Disease Prevention and Control,
- 76 World Health Organization (WHO) and the French National Agency for AIDS Research (ANRS).
- 77 Search Strategy

78	Literature searching was conducted under the guidance of a librarian (Janice Linton, University of
79	Manitoba) using a peer-reviewed search strategy (McGowan et al., 2016). The search strategy consisted of both
80	controlled vocabulary such as the National Library of Medicine's MeSH (medical subject heading) and keywords
81	(Supplementary File 1). Retrieval was limited to human populations, English and French language documents, and
82	results were not limited by publication date up to May 2022.
83	Eligibility Criteria
84	Populations were eligible if they provided DBS specimens tested for the following STBBIs: human
85	immunodeficiency virus type 1 and 2 (HIV-1 and HIV-2), hepatitis virus A, B, and C (HAV, HBV, and HCV), human
86	T-cell lymphotropic virus type 1 and 2 (HTLV-1 and HTLV-2), human papilloma virus (HPV), Chlamydia trachomatis
87	(chlamydia), Neisseria gonorrhea (gonorrhoeae) and Treponema pallidum (syphilis). Studies were eligible if they were
88	conducted on populations 15 years of age or older, regardless of socio-demographic characteristics and setting.
89	The intervention of interest was either commercially available or in-house tests used to detect STBBIs from
90	DBS specimens. Inclusion criteria for commercial tests were limited to 3 rd generation or greater enzyme
91	immunoassays (EIAs) and nucleic acid tests, since older HIV testing methodologies (i.e., 1 st and 2 nd generation EIAs)
92	are likely no longer manufactured (Alexander, 2016), and therefore are irrelevant.
93	The intervention was compared to either commercially available or in-house tests used to detect STBBIs
94	from "gold-standard" biological specimens (ex: whole blood, plasma and serum) used for routine STBBI testing.
95	Commercial tests were limited to 3 rd generation or greater EIAs and nucleic acid tests.
96	Included studies had to report measures of the intervention's validity such as sensitivity, specificity, positive
97	predictive values (PPV), negative predictive values (NPV), limit of quantification (LOQ) and/or limit of detection
98	(LOD).
99	Exclusion Criteria
100	Peer-reviewed or grey literature were excluded if (1) the pathogen of interest was not included in the list of
101	STBBIs mentioned above, (2) measures of the testing methodology's validity were not reported, (3) biological
102	specimens other than blood were collected on filter paper, (4) DBS were used to measure adherence to pre-exposure
103	prophylaxis and/or anti-retroviral medication, (5) DBS were analyzed for the purpose of investigation of drug
104	resistance or genotyping, (6) participants were under 15 years of age, (7) the intervention was out of scope (i.e., blood

dried on matrix other than filter paper), (8) the work was not original research, or (9) the reports were in a language

7

106 other than English or French. 107 **Document Screening** 108 Titles and abstracts were initially screened by one reviewer (FC or BN) with 10% peer-reviewed by a second 109 reviewer (SP or FC). A full-text review was then conducted of potential articles for inclusion by one reviewer (FC or 110 BN) with 10% being peer-reviewed by a second reviewer (SP or FC). Disagreements were resolved by a third 111 reviewer (MB). 112 **Data Extraction** 113 Data was collected from each document on the inclusion list (e.g., study population, sampling method, 114 sample size, index test, reference test, STBBI, DBS preparation method, sensitivity, specificity, accuracy, PPV, NPV, 115 LOQ and/or LOD) and entered into a standardized table. For each document, descriptive data were also extracted, 116 including information on the authors, year of publication, country, setting, participant characteristics, description of 117 the intervention, description of the comparators, and other key findings related to the research question. One 118 reviewer (FC or BN) extracted descriptive and outcome data, while a second reviewer (SP or FC) was responsible for 119 verifying the data extraction for accuracy. 120 **Quality Assessment** 121 The QUADAS-2 tool was used to assess the quality and risk of bias of each document retained for data 122 extraction to critically appraise the validity of DBS testing (Whiting et al., 2006). One reviewer (FC or BN) assessed 123 the quality of each document using the QUADAS-2 tool available from the QUADAS website (www.quadas.org), 124 and a second reviewer (SP or FC) verified the assessment. A third reviewer, MB, resolved disagreements. 125 Data Analysis 126 Data extracted from selected documents were synthesized through a narrative synthesis approach (Mays, 127 Pope, & Popay, 2005). A narrative approach to synthesis was chosen because we had anticipated significant 128 heterogeneity among documents in terms of context, patient populations, and index tests. Synthesized findings were 129 compiled in tabulated form organized by STBBI, population, sample size, index test, and collection method. In 130 addition, inductive thematic analysis was conducted in order to identify key themes and relationships in included

131 studies.

8

132 Results

133	We identified 7,631 abstracts in database searches. After 925 duplicates were removed, 6,706 titles and
134	abstracts were screened, and 6,139 excluded. 567 reports were assessed for eligibility, with 397 further excluded. Of
135	these, 230 were excluded due to no available data on measures of validity, 52 were excluded based on the study
136	intervention, and 31 did not have full-text reports available. A further 23 studies were excluded for utilizing
137	specimens other than blood, while 22 reports involved ineligible populations, and 15 were conducted for the
138	purposes of genotyping or drug resistance studies designating them ineligible for inclusion. 16 studies were deemed
139	ineligible on the basis of being unoriginal research. Eight reports were excluded as they were written in languages
140	other than English or French. A total of 168 studies met the inclusion criteria and were included in the review. A
141	PRISMA flow diagram (Page et al., 2021) representing the study selection is shown in Figure 1.
142	Study Characteristics
143	Characteristics of included studies are summarized in Supplementary File 2. A large proportion of included
144	studies reported on the use of DBS for HIV testing (n =73; 43.5%). The remaining studies (n =115) reported on HCV
145	(<i>n</i> =62; 36.9%), HBV (<i>n</i> =33; 19.6%), syphilis (<i>n</i> =7; 4.2%), HAV (<i>n</i> =5; 3.0%), HSV (<i>n</i> =4; 2.4%), HTLV (<i>n</i> =3; 1.8%), and
146	HPV (<i>n</i> =1; 0.6%). No studies reported on chlamydia or gonorrhea. Several studies reported on more than one STBBI
147	(e.g., (Villar et al., 2011)), leading to a total of outcomes above the total number of studies included in this systematic
148	review.
149	STBBI Test Performance with DBS Specimens
150	Overall, included studies demonstrated high sensitivity and specificity for STBBI testing with DBS
151	specimens (Fig. 2). HIV studies reported a wide range of values for sensitivity (9.0 to 100%) and specificity (4.0 to
152	100%). The majority of sensitivity measurements ($n=137$; 55.0%) were equal to or above 90.0%. Specificity
153	measurements were also high, with most observations ($n=172$; 79.3%) above 90.0%. HCV studies reported sensitivity
154	and specificity ranging from 36.0% to 100% and 85.7% to 100%, respectively. Most sensitivity (<i>n</i> =130; 77.4%) and
155	specificity ($n=116$; 98.3%) measurements concerning HCV were equal to or above 90.0%. HBV studies reported
156	sensitivity and specificity ranging from 40.0% to 100% and 2.5% to 100%,%, respectively. Approximately half of
157	sensitivity measurements ($n=34$; 47.2%) and most specificity ($n=60$; 83.3%) measurements concerning HBV were equal

158	to or above 90.0%. Studies involving syphilis reported high sensitivity and specificity, with ranges of 90.0% to 100%
159	and 99.0% to 100%, respectively. HAV studies reported sensitivity and specificity ranging from 31.0% to 100% and
160	75.0% to 100%, respectively. Most sensitivity ($n=4$; 66.7%) and specificity ($n=5$; 83.3%) measurements concerning HAV
161	were equal to or above 90.0%. HSV studies reported sensitivity and specificity ranging from 9.0% to 100% and 4.5%
162	to 100%, respectively. Most sensitivity measurements ($n=5$; 55.6%) and almost half of specificity measurements ($n=4$;
163	44.4%) concerning HSV were equal to or above 90.0%. HTLV studies reported a range in sensitivity of 81.0% to 100%,
164	while all included studies reported 100% specificity. The single HPV study reported an overall sensitivity and
165	specificity of 98.0% and 92.0%, respectively. Approximately one-quarter of studies (<i>n</i> =47; 27.8%) reported LOD
166	and/or LOQ values (Table 1). A meta-analysis was not undertaken due to the significant methodological
167	heterogeneity among the included studies. This led us to identify several parameters that could influence index test
168	performance.
169	Test Cut-Offs
170	Studies generally reported improved test performance by adjusting cut-off values – typically optimized for
171	serum/plasma by manufacturers – for DBS specimens (Table 2). For example, García-Cisneros et al. (García-Cisneros
172	et al., 2019) found that the IgG-G2 Human ELISA test (Human Diagnostics, Germany; HSV-2) performed better on
173	DBS (specificity of 4.5% [95% CI=3%, 6.5%] versus 87.1% [95% CI=81.2%, 91.4%]) when using a cut-off value based on
174	a receiver operating characteristic (ROC) curve. Villar et al. (Villar et al., 2011) also observed lower sensitivity (95.5%
175	[95% CI=84.5%, 99.4%] versus 97.6% [95% CI=87.4%, 99.9%]; ETI-MAK-4 test, DiaSorin) and specificity (81.3% [95%
176	CI=70.7%, 89.4%] versus 97.3% [95% CI=90.7%, 99.7%]; ETI-AB-AUK-3 test, DiaSorin) values when relying on
177	manufacturer recommended cut-offs compared to cut-off values based on ROC curve analysis for the detection of
178	HBV in DBS specimens. Ultimately, we observed that the choice of cut-off value (manufacturer recommended versus
179	established in-house) influenced test performance when analyzing DBS specimens.
180	DBS Specimen Preparation
181	DBS specimens prepared from venous blood instead of capillary blood (i.e., finger pokes) appear to produce
182	higher sensitivity and specificity values (Table 3). This was particularly evident with regards to HIV. Multiple studies
183	reported better HIV serological and nucleic acid test performance when analyzing DBS specimens prepared from
184	venous blood (Fajardo et al., 2014; Mwau et al., 2021; Rutstein et al., 2014). A few papers examined test performance

10

185	between DBS specimens prepared from venous and capillary blood for HCV testing, with the majority of those
186	finding similar or greater sensitivity when using DBS specimens prepared with venous blood. Prinsenberg et al.
187	(Prinsenberg et al., 2020) reported a small advantage in sensitivity (96.4% [95% CI=81.7%, 99.9%] versus 95.7% [78.1%
188	99.9]) when using venous blood to prepare DBS specimens, while Tran et al. (Tran et al., 2020) and Vetter et al.
189	(Vetter et al., 2021) both reported nearly identical test performance with DBS prepared from venous and capillary
190	blood (Table 3). In general, how DBS are prepared (venous versus capillary blood) could influence test performance,
191	with DBS prepared from venous blood contributing to better test performance.
192	Dual Infections
193	The presence of dual infections may influence test performance depending on the STBBI of interest (Table 4)
194	This was particularly evident when testing for HBV and HCV on DBS collected from individuals living with HIV.
195	Flores et al. (Flores, Cruz, Potsch, et al., 2017) reported lower sensitivity and specificity in persons living with HIV
196	compared to those without HIV for the detection of both HBV surface antigens (HBsAg) and anti-hepatitis B core
197	total antibodies (Anti-HBc) on the Elecsys platform (Roche; Table 4). Similar findings have also been observed in
198	HCV testing. De Crignis et al. (De Crignis, Re, Cimatti, Zecchi, & Gibellini, 2010), Saludes et al. (Saludes et al., 2018),
199	and Flores et al. (Flores et al., 2018) all reported reduced HCV test sensitivity in people living with HIV (Table 3). In

200 contrast, Flores et al. (Flores et al., 2021) reported increased HCV test performance in people living with HIV

201 compared to those who were not, but chronic kidney disease among study participants may have confounded these

202 findings. Nonetheless, the presence of potential co-infections should be taken into consideration when validating a

203 test for use with DBS specimens.

204 Antiretroviral Therapy

In studies which included people living with HIV, assay performance was typically assessed in patients undergoing antiretroviral therapy (ART) in comparison to ART-naïve patients to detect treatment failure (Table 5). Balinda et al. (Balinda et al., 2016) reported differences in the performance of an in-house HIV RT-qPCR assay in participants living with HIV who were undergoing ART compared to those who were ART-naïve (79.4% sensitivity, 54.5% specificity), with the highest performance observed in patients who had undergone ART for longer periods (12 – 36 months; 88.9% sensitivity, 98.1% specificity). Similarly, Taeib et al. (Taieb et al., 2018) reported greater specificity in patients on ART for \geq 6 months compared to those on ART for <6 months but, found no difference in sensitivity.

11

212 Quality Assessment

213	All 168 included studies were assessed for quality using the QUADAS-2 tool (Fig. 3). The overall quality of
214	studies was low, with high scores in risk of bias and applicability. Risk of bias was found to be high across most
215	domains, with 117 studies (69.6%) rated as having high risk of bias in patient selection, 85 (50.6%) as high risk of bias
216	for the index test, and 134 (79.8%) as high risk of bias for the reference standard. In addition, a small number ($n=12$;
217	7.1%) of studies were rated as high risk of bias related to flow and timing. Similarly, a significant proportion of
218	studies were rated as high concern regarding the applicability of the study to the research question. The proportion
219	of studies rated as high concern regarding the applicability of population, index test, and reference standard was
220	found to be 23.2%, 47.6%, and 47.6%, respectively.
221	Discussion
222	This review describes the validity of using DBS specimens for STBBI testing. DBS specimens showed high
223	sensitivity compared to the reference standard of plasma or serum in the included studies encompassing a wide
224	range of experimental conditions, demonstrating a promising opportunity for the adoption of DBS specimens in
225	STBBI testing globally. The high sensitivity and specificity observed across studies provide evidence for the
226	suitability of DBS for the surveillance of STBBIs, including those not routinely detected in DBS specimens, such as
227	HAV, HTLV and syphilis.
228	DBS specimens offer a promising alternative to plasma and serum samples for STBBI testing, though assay

229 performance depends on several factors. We identified multiple factors which could influence test performance with 230 DBS specimens. Adjustment of test cut-off values for DBS specimens improved overall performance (García-Cisneros 231 et al., 2019), making it imperative for individual laboratories (or manufacturers) to validate specific cut-off values for 232 use with DBS specimens. The presence of dual infections within a population also influenced assay performance 233 (Flores, Cruz, Potsch, et al., 2017), resulting in decreased sensitivity, especially for HBV and HCV testing in 234 participants living with HIV. This finding is relevant for future test development and validation for future 235 surveillance in key populations where dual infections may be more prevalent and in geographies which experience 236 overlapping STBBI burdens (Shayan, Nazari, & Kiwanuka, 2021). Approaches to DBS preparation (venous versus 237 capillary blood) also affected test performance (Prinsenberg et al., 2020). Although DBS prepared from venous blood

12

238 appears to offer better test performance (especially for HIV nucleic acid testing), DBS prepared from capillary blood 239 still offer excellent test performance and reflects more closely "real-world" DBS collection, especially considering 240 self-collection. Enhanced reporting of DBS validation studies could lead to further improvements in the performance 241 of DBS testing using capillary blood. Finally, test performance may fluctuate depending on the duration of ART 242 among people living with HIV. Our review supports the validity of using DBS specimens for detecting certain 243 STBBIs. DBS specimens perform well particularly well in HIV and HCV testing, though no conclusions can be made 244 for chlamydia or gonorrhoea surveillance as no studies investigated DBS testing with either pathogen. However, test 245 performance relies on several experimental conditions, and standardized approaches to reporting DBS experiments 246 should be adopted moving forward to ensure internal and external test validity. 247 Due to considerable heterogeneity observed across studies, we could not conduct a meta-analysis. General 248 poor reporting of experimental conditions also created challenges in directly comparing studies - this was also 249 reflected in our quality assessment using the QUADAS-2 tool. There is currently no consensus on how DBS studies 250 should be reported. We propose that new standardized guidelines for reporting DBS experiments should be 251 developed and implemented similarly to the MIQE guidelines for quantitative real-time PCR experiments (Bustin et 252 al., 2009) or the STARD checklist (Bossuyt et al., 2015). Reporting guidelines should include the minimum 253 information required to evaluate DBS studies, including information on DBS preparation (venous or capillary blood), 254 drying and storage conditions, type of filter paper used, and DBS elution protocols (for example volume, type of 255 buffer, and agitation conditions). This would allow for a more direct comparison of studies and assist in conducting 256 robust meta-analyses to further investigate the validity of DBS specimens for STBBI testing. Though we did not 257 record storage temperature and humidity in this review, these factors have been examined by (Amini et al., 2021) in a 258 systematic review on on reliability of antibody measurement in DBS specimens. Though their objective differs from 259 our review and includes fewer papers (n=40), the similar observations of heterogeneity in experimental conditions 260 and reporting further our observation that it is necessary to record a large number of influential variables to allow for 261 standardized assessment of studies. 262 While treatment failure was not explicitly part of our objective, it is an important component of 263 surveillance. More specifically, it can provide insights into the cascade of care and progress toward HIV and HCV

elimination targets (Dore & Bajis, 2021; UNAIDS, 2014). Viral load testing alone is not sufficient for the purposes of

13

265	surveillance as persons undergoing treatment may present undetectable viral loads, and therefore must be used in
266	combination with serological assays to establish disease status. We decided to include studies investigating viral load
267	with DBS specimens as viral load data still provide valuable insight into the cascade of care or other metrics towards
268	elimination. It should be noted that the LOD for most HIV tests included in this review was determined to be
269	approximately 800 copies/mL. The WHO defines virological suppression as <1,000 copies/mL, which should be
270	reliably detected by most assays in this review (Patricia Alvarez et al., 2015; Erba et al., 2015). This finding is in
271	agreement with a recent systematic review conducted by Vojnov et al. (2022) which concluded DBS specimens are
272	suitable for HIV viral load testing at the treatment failure threshold of 1,000 copies/mL (Vojnov et al., 2022)[X].
273	Although we consider DBS specimens suitable for certain STBBI surveillance, careful attention should be paid to the
274	LOD of each assay under consideration and consider definitions of treatment failure for the STBBI of interest.
275	Limitations of this review include the unavailability of any studies on DBS testing for chlamydia and
276	gonorrhoea. We limited our biological specimen of interest to blood, and therefore did not include any papers on
277	dried urine spots for chlamydia or gonorrhoea detection. Additionally, we were unable to conduct a meta-analysis as
278	a result of the large amount of heterogeneity between studies. Finally, we did not examine acceptability of DBS
279	testing among participants versus traditional methods, as this is beyond the scope of this review and warrants its
280	own investigation.
281	Conclusion
282	Over the course of the COVID-19 pandemic, the use of DBS specimens increased in popularity as many
283	studies adopted them for serological studies (Cholette et al., 2022; Madhi et al., 2022; Miesse et al., 2022; Wong et al.,
284	
	2022). We anticipate that this increase in DBS usage will carry forward and result in a greater number of studies
285	2022). We anticipate that this increase in DBS usage will carry forward and result in a greater number of studies using DBS specimens for STBBI testing. This review highlights the validity of DBS sampling for use in STBBI testing
285 286	
	using DBS specimens for STBBI testing. This review highlights the validity of DBS sampling for use in STBBI testing

289 Acknowledgments

290	We thank Janice Linton (Indigenous Health Librarian & Liaison Librarian for Community Health Sciences at
291	University of Manitoba, Winnipeg, Canada) for generously giving her time and assistance with the initial literature
292	search.
293	References
294	Alexander, T. S. (2016). Human Immunodeficiency Virus Diagnostic Testing: 30 Years of Evolution. Clinical and
295	<i>Vaccine Immunology, 23</i> (4), 249-253. doi:10.1128/CVI.00053-16
296	Alvarez, P., Martin, L., Prieto, L., Obiang, J., Vargas, A., Avedillo, P., Holguin, A. (2015). HIV-1 Variability and
297	Viral Load Technique Could Lead to False Positive HIV-1 Detection and to Erroneous Viral Quantification
298	in Infected Specimens. Journal of Infection, 71, 368-376. doi:10.1016/j.jinf.2015.05.011
299	Amini, F., Auma, E., Hsia, Y., Bilton, S., Hall, T., Ramkhelawon, L., Le Doare, K. (2021). Reliability of Dried Blood
300	Spot (DBS) Cards in Antibody Measurement: A Systematic Review. PLoS ONE, 16(3), e0248218.
301	doi:10.1371/journal.pone.0248218
302	Balinda, S. N., Ondoa, P., Obuku, E. A., Kliphuis, A., Egau, I., Bronze, M., consortium, AA. (2016). Clinical
303	Evaluation of an Affordable Qualitative Viral Failure Assay for HIV Using Dried Blood Spots in Uganda.
304	<i>PLoS ONE, 11</i> (1), e0145110. doi:10.1371/journal.pone.0145110
305	Bossuyt, P. M., Reitsma, J. B., Bruns, D. E., Gatsonis, C. A., Glasziou, P. P., Irwig, L., Group, S. (2015). STARD
306	2015: An Updated List of Essential Items for Reporting Diagnostic Accuracy Studies. BMJ, 351, h5527.
307	doi:10.1136/bmj.h5527
308	Buckton, A. J. (2008). New Methods for the Surveillance of HIV Drug Resistance in the Resource Poor World. Current
309	Opinion in Infectious Diseases, 21(6), 653-658. doi:10.1097/QCO.0b013e3283186d1a
310	Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Wittwer, C. T. (2009). The MIQE
311	Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical
312	<i>Chemistry</i> , 55(4), 611-622. doi:10.1373/clinchem.2008.112797
313	Chevaliez, S., & Pawlotsky, J. M. (2018). New Virological Tools for Screening, Diagnosis and Monitoring of Hepatitis
314	B and C in Resource-Limited Settings. Journal of Hepatology, 69(4), 916-926. doi:10.1016/j.jhep.2018.05.017

- 15
- 315 Cholette, F., Fabia, R., Harris, A., Ellis, H., Cachero, K., Schroeder, L., ... Kim, J. (2022). Comparative Performance
- 316 Data for Multiplex SARS-CoV-2 Serological Assays from a Large Panel of Dried Blood Spot Specimens.
- 317 *Heliyon*, 8(9), e10270. doi:10.1016/j.heliyon.2022.e10270
- 318 De Crignis, E., Re, M. C., Cimatti, L., Zecchi, L., & Gibellini, D. (2010). HIV-1 and HCV Detection in Dried Blood
- 319 Spots by SYBR Green Multiplex Real-Time RT-PCR. *Journal of Virological Methods*, 165(1), 51-56.
- 320 doi:10.1016/j.jviromet.2009.12.017
- 321 Dore, G. J., & Bajis, S. (2021). Hepatitis C Virus Elimination: Laying the Foundation for Achieving 2030 Targets.
- 322 Nature Reviews Gastroenterology & Hepatology, 18(2), 91-92. doi:10.1038/s41575-020-00392-3
- 323 Erba, F., Brambilla, D., Ceffa, S., Ciccacci, F., Luhanga, R., Sidumo, Z., . . . Giuliano, M. (2015). Measurement of Viral
- 324 Load by the Automated Abbott Real-Time HIV-1 Assay Using Dried Blood Spots Collected and Processed in
- 325 Malawi and Mozambique. South African Medical Journal, 105(12), 1036-1038.
- 326 doi:10.7196/SAMJ.2015.v105i12.9673
- 327 Fajardo, E., Metcalf, C. A., Chaillet, P., Aleixo, L., Pannus, P., Panunzi, I., . . . Mwenda, R. (2014). Prospective
- 328 Evaluation of Diagnostic Accuracy of Dried Blood Spots from Finger Prick Samples for Determination of
- HIV-1 Load with the NucliSENS Easy-Q HIV-1 Version 2.0 Assay in Malawi. *Journal of Clinical Microbiology*,
- 330 52(5), 1343-1351. doi:10.1128/jcm.03519-13
- 331 Flores, G. L., Barbosa, J. R., Cruz, H. M., Miguel, J. C., Potsch, D. V., Pilotto, J. H., ... Villar, L. M. (2021). Dried Blood
- 332 Spot Sampling as an Alternative for the Improvement of Hepatitis B and C Diagnosis in Key Populations.
- 333 World Journal of Hepatology, 13(4), 504-514. doi:10.4254/wjh.v13.i4.504
- 334 Flores, G. L., Cruz, H. M., Miguel, J. C., Potsch, D. V., Pilotto, J. H., Lewis-Ximenez, L. L., ... Villar, L. M. (2018).
- Assessing Hepatitis B Immunity Using Dried Blood Spot Samples from HIV+ Individuals. *Journal of Medical Virology*, 90(12), 1863-1867. doi:10.1002/jmv.25275
- 337 Flores, G. L., Cruz, H. M., Potsch, D. V., May, S. B., Brandao-Mello, C. E., Pires, M. M. A., ... Villar, L. M. (2017).
- 338Evaluation of HBsAg and Anti-HBc Assays in Saliva and Dried Blood Spot Samples According HIV Status.
- 339 *Journal of Virological Methods*, 247, 32-37. doi:10.1016/j.jviromet.2017.05.004
- 340 García-Cisneros, S., Sanchez-Aleman, M. A., Conde-Glez, C. J., Lara-Zaragoza, S. J., Herrera-Ortiz, A., Plett-Torres, T.,
- 341 & Olamendi-Portugal, M. (2019). Performance of ELISA and Western Blot to Detect Antibodies Against

342 HSV-2 Using	g Dried Blood S	pots. Journal o	f Infection a	ind Public Health,	12(2), 224-228.
-----------------	-----------------	-----------------	---------------	--------------------	-----------------

- 343 doi:10.1016/j.jiph.2018.10.007
- Gobran, S. T., Ancuta, P., & Shoukry, N. H. (2021). A Tale of Two Viruses: Immunological Insights Into HCV/HIV
 Coinfection. *Frontiers in Immunology*, *12*, 726419. doi:10.3389/fimmu.2021.726419
- 346 Gruner, N., Stambouli, O., & Ross, R. S. (2015). Dried Blood Spots Preparing and Processing for Use in
- 347 Immunoassays and in Molecular Techniques. Journal of Visualized Experiments, 97, e52619. doi:10.3791/52619
- Landy, R., Atkinson, D., Ogilvie, K., St Denys, R., Lund, C., Worthington, C., . . . team, S. (2022). Assessing the
- 349 Acceptability of Dried Blood Spot Testing for HIV and STBBI Among Metis People in a Community Driven
- 350 Pilot Project in Alberta, Canada. BMC Health Services Research, 22(1), 1496. doi:10.1186/s12913-022-08763-z
- 351 Lim, M. D. (2018). Dried Blood Spots for Global Health Diagnostics and Surveillance: Opportunities and Challenges.
- 352 American Journal of Tropical Medicine and Hygiene, 99(2), 256-265. doi:10.4269/ajtmh.17-0889
- 353 Madhi, S. A., Kwatra, G., Myers, J. E., Jassat, W., Dhar, N., Mukendi, C. K., . . . Mutevedzi, P. C. (2022). Population
- Immunity and Covid-19 Severity with Omicron Variant in South Africa. *New England Journal of Medicine*,
 386(14), 1314-1326. doi:10.1056/NEJMoa2119658
- Malsagova, K., Kopylov, A., Stepanov, A., Butkova, T., Izotov, A., & Kaysheva, A. (2020). Dried Blood Spot in
 Laboratory: Directions and Prospects. *Diagnostics*, 10(4). doi:10.3390/diagnostics10040248
- 358 Mays, N., Pope, C., & Popay, J. (2005). Systematically Reviewing Qualitative and Quantitative Evidence to Inform
- 359 Management and Policy-Making in the Health Field. *Journal of Health Services Research & Policy*,
 360 10(Supplement 1), 6-20.
- McArdle, A. J., Turkova, A., & Cunnington, A. J. (2018). When do Co-Infections Matter? *Current Opinion in Infectious Diseases*, 31(3), 209-215. doi:10.1097/QCO.0000000000447
- 363 McGowan, J., Sampson, M., Salzwedel, D. M., Cogo, E., Foerster, V., & Lefebvre, C. (2016). PRESS Peer Review of
- 364 Electronic Search Strategies: 2015 Guideline Statement. *Journal of Clinical Epidemiology*, 75, 40-46.
 365 doi:10.1016/j.jclinepi.2016.01.021
- 366 Miesse, P. K., Collier, B. B., & Grant, R. P. (2022). Monitoring of SARS-CoV-2 Antibodies Using Dried Blood Spot for
- 367 At-Home Collection. Scientific Reports, 12(1), 5812. doi:10.1038/s41598-022-09699-4

a (a	
368	Mwau, M., Danda, J., Mbugua, J., Handa, A., Fortunko, J., Worlock, A., & Nair, S. V. (2021). Prospective Evaluation of
369	Accuracy of HIV Viral Load Monitoring Using the Aptima HIV Quant Dx Assay with Fingerstick and
370	Venous Dried Blood Spots Prepared Under Field Conditions in Kenya. PLoS ONE, 16(4), e0249376.
371	doi:10.1371/journal.pone.0249376
372	Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Moher, D. (2021). The
373	PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ, 372, n71.
374	doi:10.1136/bmj.n71
375	Prinsenberg, T., Rebers, S., Boyd, A., Zuure, F., Prins, M., van der Valk, M., & Schinkel, J. (2020). Dried Blood Spot
376	Self-Sampling at Home is a Feasible Technique for Hepatitis C RNA Detection. <i>PLoS ONE</i> , 15(4), e0231385.
377	doi:10.1371/journal.pone.0231385
378	Roberts, C. P., & Klausner, J. D. (2016). Global Challenges in Human Immunodeficiency Virus and Syphilis Co-
379	Infection Among Men Who Have Sex With Men. Expert Review of Anti-Infective Therapy, 14(11), 1037-1046.
380	doi:10.1080/14787210.2016.1236683
381	Rutstein, S. E., Kamwendo, D., Lugali, L., Thengolose, I., Tegha, G., Fiscus, S. A., Mataya, R. (2014). Measures of
382	Viral Load Using Abbott RealTime HIV-1 Assay on Venous and Fingerstick Dried Blood Spots from
383	Provider-Collected Specimens in Malawian District Hospitals. Journal of Clinical Virology, 60(4), 392-398.
384	doi:10.1016/j.jcv.2014.05.005
385	Saludes, V., Folch, C., Morales-Carmona, A., Ferrer, L., Fernandez-Lopez, L., Munoz, R., Martro, E. (2018).
386	Community-Based Screening of Hepatitis C with a One-Step RNA Detection Algorithm from Dried-Blood
387	Spots: Analysis of Key Populations in Barcelona, Spain. Journal of Viral Hepatitis, 25(3), 236-244.
388	doi:10.1111/jvh.12809
389	Shayan, S. J., Nazari, R., & Kiwanuka, F. (2021). Prevalence of HIV and HCV Among Injecting Drug Users in Three
390	Selected WHO-EMRO Countries: A Meta-Analysis. Harm Reduction Journal, 18(1), 59. doi:10.1186/s12954-021-
391	00505-4
392	Sherman, G. G., Stevens, G., Jones, S. A., Horsfield, P., & Stevens, W. S. (2005). Dried Blood Spots Improve Access to
393	HIV Diagnosis and Care for Infants in Low-Resource Settings. Journal of Acquired Immune Deficiency
394	Syndromes, 38(5), 615-617.

395	Taieb, F., Tran Hong	g, T., Ho, H. T., Ngư	yen Thanh, B., Pham F	huong, T., Viet Ta, D.,	Madec, Y. (2018). First Field
0,0	rates, i, indition	b, 1, 110, 11, 11, 10, 10	fen maning bij mann i	maong, m, meena, bi,	(1) (2010) (100)

- 396 Evaluation of the Pptimized CE Marked Abbott Protocol for HIV RNA Testing on Dried Blood Spot in a
- 397 Routine Clinical Setting in Vietnam. *PLoS ONE*, 13(2), e0191920. doi:10.1371/journal.pone.0191920
- 398 Takano, M., Iwahashi, K., Satoh, I., Araki, J., Kinami, T., Ikushima, Y., . . . Group, H. I. V. C. S. (2018). Assessment of
- 399 HIV Prevalence Among MSM in Tokyo Using Self-Collected Dried Blood Spots Delivered Through the
- 400 Postal Service. BMC Infectious Diseases, 18(1), 627. doi:10.1186/s12879-018-3491-0
- Tran, T. H., Nguyen, B. T., Nguyen, T. A., Pham, T. T. P., Nguyen, T. T. T., Mai, H. T. B., . . . Madec, Y. (2020). Dried
 Blood Spots Perform Well to Identify Patients with Active HCV Infection in Vietnam. *Journal of Viral*
- 403 *Hepatitis*, 27(5), 514-519. doi:10.1111/jvh.13263
- 404 Tuaillon, E., Mondain, A. M., Meroueh, F., Ottomani, L., Picot, M. C., Nagot, N., . . . Ducos, J. (2010). Dried blood spot

405 for hepatitis C virus serology and molecular testing. *Hepatology*, 51(3), 752-758. doi:10.1002/hep.23407

- 406 UNAIDS. (2014). *Fast-Track: Ending the AIDS Epidemic by* 2030. Retrieved from Geneva, Switzerland:
- 407 Vetter, B. N., Reipold, E. I., Ongarello, S., Fajardo, E., Tyshkovskiy, A., Ben, I., & Vasylyev, M. (2021). Prospective
- 408 Evaluation of Hepatitis C Virus Antibody Detection in Whole Blood Collected on Dried Blood Spots with
- 409 the INNOTEST HCV Ab IV Enzyme Immunoassay. *Journal of Clinical Virology*, 137, 104783.
- 410 doi:10.1016/j.jcv.2021.104783
- 411 Villar, L. M., de Oliveira, J. C., Cruz, H. M., Yoshida, C. F., Lampe, E., & Lewis-Ximenez, L. L. (2011). Assessment of
- 412 Dried Blood Spot Samples as a Simple Method for Detection of Hepatitis B Virus Markers. *Journal of Medical* 413 *Virology*, 83(9), 1522-1529. doi:10.1002/jmv.22138
- 414 Vojnov, L., Carmona, S., Zeh, C., Markby, J., Boeras, D., Prescott, M. R., . . . Consortium, D. B. S. f. V. D. I. (2022). The
- 415 Performance of Using Dried Blood Spot Specimens for HIV-1 Viral Load Testing: A Systematic Review and
 416 Meta-Analysis. *PLoS Medicine*, *19*(8), e1004076. doi:10.1371/journal.pmed.1004076
- 417 Whiting, P. F., Weswood, M. E., Rutjes, A. W., Reitsma, J. B., Bossuyt, P. N., & Kleijnen, J. (2006). Evaluation of
- 418 QUADAS, A Tool for the Quality Assessment of Diagnostic Accuracy Studies. BMC Medical Research
- 419 *Methodology*, 6(9). doi:10.1186/1471-2288-6-9

19

420	Wong, M. P., Meas, M. A., Adams, C., Hernandez, S., Green, V., Montoya, M., Harris, E. (2022). Development and
421	Implementation of Dried Blood Spot - Based COVID-19 Serological Assays for Epidemiologic Studies.
422	Microbiology Spectrum, 10(3), e0247121.
423	Young, J., Ablona, A., Klassen, B. J., Higgins, R., Kim, J., Lavoie, S., Lachowsky, N. J. (2022). Implementing
424	Community-Based Dried Blood Spot (DBS) Testing for HIV and Hepatitis C: A Qualitative Analysis of Key
425	Facilitators and Ongoing Challenges. BMC Public Health, 22(1), 1085. doi:10.1186/s12889-022-13525-x
426	
427	
428	
429	
430	
431	
432	
433	
434	
435	
436	
437	
438	
439	
440	
441	Figure 1

442 PRISMA flow diagram

447 Proportion of reported performance measurements with <50%, 50-89%, or $\ge90\%$ sensitivity, specificity, negative predictive

449

451 **Figure 3**

452 Proportion of studies with low, high, or unclear risk of bias and concerns regarding applicability based on the QUADAS-2 tool

- 453
- 454
- 455 **Table 1**
- 456

457 Studies reporting limit of detection and/or limit of quantification with DBS specimens

_	~
2	3

Study	Index Test	STBBI	LOD	LOQ	Notes
(Aitken et al., 2013)	In-house RT-qPCR	HIV	1,000 copies/mL	NR	DBS stored at ambient temperature (2 to 192 days)
	In-house RT-qPCR	HIV	1,000 copies/mL	NR	DBS stored at - 20°C (45 to 112 days)
	In-house RT-qPCR	HIV	1,000 copies/mL	NR	DBS stored at - 70°C (270 to 515 days)
(Patricia Alvarez et al., 2015)	COBAS AmpliPrep/TaqMan HIV-1 Quantitative Test v2.0 (Roche)	HIV	400 copies/mL	NR	Mothers and infants (ART naïve)
	COBAS AmpliPrep/TaqMan HIV-1 Quantitative Test v2.0 (Roche)	HIV	400 copies/mL	NR	Mothers and infants (on ART)
	COBAS AmpliPrep/TaqMan HIV-1 Quantitative Test v2.0 (Roche)	HIV	400 copies/mL	NR	Mothers and infants (all)
	Versant HIV-1 RNA 1.0 (Siemens)	HIV	~880 copies/mL	NR	Mothers and infants (ART naïve)
	Versant HIV-1 RNA 1.0 (Siemens)	HIV	~880 copies/mL	NR	Mothers and infants (on ART)
	Versant HIV-1 RNA 1.0 (Siemens)	HIV	~880 copies/mL	NR	Mothers and infants (all)
(Andreotti et al., 2010)	COBAS TaqMan RT- qPCR (Roche)	HIV	313 copies/mL	NR	Pregnant women (ART naïve)
	COBAS TaqMan RT- qPCR (Roche)	HIV	313 copies/mL	NR	Pregnant women (on ART)
(Choudhary et al., 2013)	In-house PCR	HIV	1,300 CEM cells	NR	HIV-1 proviral test
(Erba et al., 2015)	m2000sp, m2000rt (Abbott)	HIV	616 copies/mL	NR	(Erba et al., 2015)
(Fiscus, Brambilla, Grosso, Schock, & Cronin, 1998)	NASBA HIV-1 QT (Organon Teknika)	HIV	1,000 copies/mL	NR	
(Huang, Erickson, Mak, Salituro, & Abravaya, 2011)	RealTime HIV-1 Qualitative Assay (Abbott)	HIV	2,469 copies/mL	NR	DBS prepared with material from the Virology Quality Assurance Laboratory (AIDS Clinical Trial Group)
	RealTime HIV-1 Qualitative Assay (Abbott)	HIV	3,085 copies/mL	NR	DBS prepared from the WHO 2 nd International

					Standard
(Kane et al., 2008)	NucliSENS HIV-1 EasyQ (bioMérieux)	HIV	870 IU/mL	NR	
(Marconi et al., 2009)	m2000sp, m2000rt (Abbott)	HIV	200 – 1,000 copies/mL	NR	
(Nugent et al., 2009)	Aptima HIV-1 RNA Qualitative Assay (Gen-Probe)	HIV	2,384 copies/mL	NR	
(Tang et al., 2017)	m2000 RealTime HIV- 1 RNA (Abbott)	HIV	839 copies/mL	839 copies/mL	
(Templer et al., 2016)	TaqMan HIV-1 v2.0 (Roche)	HIV	221.8 copies/mL	NR	
, ,	TaqMan HIV-1 v1.0 (Roche)	HIV	1,090 copies/mL	NR	
	RealTime HIV-1 Qualitative (Abbott)	HIV	2,500 copies/mL	NR	
(van Deursen et al., 2010)	NucliSENS EasyQ HIV-1 v2.0 (bioMérieux)	HIV	800 copies/mL	NR	
(Viljoen et al., 2010)	Generic HIV Viral Load (Biocentric)	HIV	3,100 copies/mL	NR	Durban (infants)
·	Generic HIV Viral Load (Biocentric)	HIV	1,550 copies/mL	NR	Bobo-Dioulasso (mothers and infants)
(Zeh et al., 2017)	m2000 RealTime HIV- 1 RNA (Abbott)	HIV	1,222 copies/mL	NR	
(Fajardo et al., 2014)	NucliSENS EasyQ HIV-1 v2.0 (bioMérieux)	HIV	NR	100 copies/mL	
(Mavedzenge et al., 2015)	NucliSENS EasyQ HIV-1 v2.0 (bioMérieux)	HIV	NR	100 copies/mL	
(Bennett et al., 2012)	In-house RT-qPCR	HCV	250 IU/mL	NR	
(Catlett et al., 2019)	Aptima HCV Quant DX (Hologic)	HCV	13 IU/mL	525 IU/mL	
(De Crignis et al., 2010)	In-house RT-qPCR	HCV	2,500 copies/mL	NR	
(Mahajan, Choudhary, Kumar, & Gupta, 2018)	m2000rt HCV (Abbott)	HCV	1,000 IU/mL	NR	
(B. L. C. Marques et al., 2016)	In-house RT-qPCR	HCV	58.5 copies/mL	NR	
(Nguyen et al., 2018)	Generic HCV Assay (Biocentric)	HCV	3,000 IU/mL	NR	
(Vazquez-Moron et al., 2018)	In-house RT-qPCR	HCV	5,000 copies/mL	NR	
(Weber, Sahoo, Taylor, Shi, & Pinsky, 2019)	Aptima HCV Quant DX (Hologic)	HCV	267 IU/mL	NR	
(Parr et al., 2018)	m2000 RealTime HCV	HCV	1,196 IU/mL	NR	6 mm DBS

		1			
	Viral Load (Abbott)				punches
	m2000 RealTime HCV Viral Load (Abbott)	HCV	494 IU/mL	NR	12 mm DBS punches
(Santos et al.,	, ,	HCV	50 IU/mL	NR	punches
(Santos et al., 2012)	In-house RT-qPCR	nev	50 IO/IIIL		
(Shepherd, Baxter,	m2000 RealTime HCV	HCV	178 – 1,779	NR	
· ·		пси		INK	
& Gunson, 2019)	Viral Load (Abbott)	1101/	IU/mL	NID	
(Solmone et al.,	In-house RT-qPCR	HCV	960 IU/mL	NR	
2002)		1101/		NID	
(Saludes et al.,	In-house RT-qPCR	HCV	541 UI/mL	NR	
2018)	L 1 DCD	11017	501 10 111/ 1	NID	
(Stene-Johansen et	In-house qPCR	HBV	501.19 IU/mL	NR	
al., 2016)	L 1 DOD	11017	2 000		
(Jardi et al., 2004)	In-house qPCR	HBV	2,000	NR	
			copies/mL		
(Mohamed et al.,	Chemiluminescent	HBV	0.30 ± 0.08	NR	HBAg
2013)	microparticle		IU/mL		
	immunoassay (Abbott)				
	Chemiluminescent	HBV	18.11 ± 6.05	NR	Anti-HBs
	microparticle		IU/mL		
	immunoassay (Abbott)				
	AmpliPrep/COBAS	HBV	914.1 ± 157.8	NR	HBV DNA
	TaqMan HBV Test v2.0		IU/mL		
	(Roche)				
(Vinikoor et al.,	AmpliPrep/COBAS	HBV	1,000 IU/mL	NR	
2015)	TaqMan HBV v2.0				
	(Roche)				
(Wilson P., 2018)	ARCHITECT	HBV	0.75 IU/mL	NR	
	Qualitative HBsAg				
	Assay (Abbott)				
(Lira et al., 2009)	HBV Monitor COBAS	HBV	2,000	NR	
	Amplicor v1.5 (Roche)		copies/mL		
(Zhang & Wang,	In-house PCR	HBV	5 copies/mL	NR	
2010)					
(Jackson et al.,	RealTime HBV Viral	HBV	389 IU/mL	NR	
2022)	Load (Abbott)				
(Roger et al., 2020)	Aptima HBV Quant	HBV	445 IU/mL	NR	
	DX (Hologic)				
(Shimakawa et al.,	LUMIPULSE CLEIA	HBV	19,115 IU/mL	NR	HBV core-related
2021)	(Fujirebio)				antigen
(Bezerra et al.,	In-house qPCR	HBV	852.5	NR	
2022)			copies/mL		
(Bezerra, Portilho,	In-house qPCR	HBV	20 copies/mL	NR	High Pure Viral
Frota, & Villar,					Nuleic Acid Kit
2021)					(Roche)
(Bezerra et al.,	In-house PCR	HBV	2,000	NR	QIAamp DNA
2021)			copies/mL		Blood Mini Kit
					(Qiagen)
	In-house PCR	HBV	2,000	NR	Invisorb Spin
			copies/mL		Blood Midi Kit
					(Invitek)
	In-house PCR	HBV	20,000	NR	DBS Genomic

			copies/mL		DNA Isolation
					Kit (Norgen
					Biotek)
(Bargain, Heslan,	GeneXpert HBV	HBV	NR	400 IU/mL	
Thibault, &	(Cepheid)				
Pronier, 2020)					
(Noda, Eizuru,	In-house PCR	HTLV	Single HUT102	NR	
Minamishima,			cell		
Ikenoue, & Mori,					
1993)					

ART = antiretroviral therapy; DBS = dried blood spot; IU/mL = international units/mL; LOD = limit of detection; LOQ
 = limit of quantification; NR = not reported; STBBI = sexually transmitted and blood-borne infection

Table 2

Studies reporting test performance according to test cut-off values

Study	STBB	Index Test	Cut-Off	Sensitivit	Specificit	PPV	NPV	Notes
	Ι			у	у	(95%	(95%	
				(95% CI)	(95% CI)	CI)	CI)	
(García-	HSV-	IgG-G2 Human	≥1.15ª	99.7	4.5	37.3	96.3	
Cisneros et	2	(Human		(98.3-	(3.0-6.5)	(34.1-	(81.0-	
al., 2019)		Diagnostics)		100.0)		40.6)	99.9)	
·		× · ·	≥4.61 ^b	90.4	87.1	84.7	92.0	
				(84.4-94.4)	(81.2-91.4)	(77.9-	(86.7-	
						89.8)	95.4)	
(Villar et al.,	HBV	ETI-AB-COREK	Mean of 3	89.2	97.5	97.1	90.8	
2011)		Plus	calibrator	(79.8-95.2)	(91.4-99.7)	(89.8-	(82.7-	
,		(DiaSorin)	s x 0.3ª		· · · ·	99.6)	96.0)	
			≤0.951 ^b	100.0	2.5	48.4	100.0	
				(95.1-	(0.3-8.6)	(40.2-	(15.8-	
				100.0)	. ,	56.6)	100.0	
				,		,)	
			≤0.261 ^b	90.5	92.6	91.8	91.5	
				(81.5-96.1)	(84.6-97.2)	(83.0-	(83.2-	
					· · · · ·	96.9)	96.5)	
		ETI-AB-AUK-3	Mean of	83.1	81.3	77.8	85.9	
		(DiaSorin)	kit	(71.0-91.6)	(70.7-89.4)	(65.5-	(75.6-	
		, ,	calibrator	, ,	· · · · ·	87.3)	93.0)	
			1ª			,	, í	
			>0.119 ^b	66.1	98.7	97.5	78.7	
				(52.6-77.6)	(92.8-	(86.8-	(69.1-	
				,	100.0)	99.9)	86.5)	
			>0.095 ^b	78.0	97.3	95.8	84.9	
				(65.3-87.7)	(90.7-99.7)	(85.8-	(75.5-	
						99.5)	91.7)	
		ETI-MAK-4	Mean of	95.5	70.8	61.8	96.9	
		(DiaSorin)	negative	(84.5-99.4)	(60.2-80.0)	(49.2-	(89.3-	
			control +			73.3)	99.6)	
			0.03ª					
			>0.100ь	93.2	98.9	97.6	96.7	

				(81.3-98.6)	(93.9- 100.0)	(87.4- 99.9)	(90.7- 99.3)	
			>0.115 ^b	97.6 (87.4-99.9)	96.7 (90.7-99.3)	93.2 (81.3- 98.6)	99.3) 98.9 (93.9- 100.0	
(Catlett et al., 2019)		Aptima HCV Quant Dx (Hologic)	Detected	96.4 (89.8-99.3)	95.8 (78.9-99.9)	NR) NR	
			≥15 IU/mL	95.1 (88.0-98.7)	96.0 (79.7-99.9)	NR	NR	
			≥1,000 IU/mL	100 .0 (95.3- 100.0)	100.0 (88.4- 100.0)	NR	NR	
(Brandão et al., 2013)	HCV	Monolisa HCV AgAb ULTRA EIA (Bio-Rad)	Not specified ª	95.0 (83.1-99.4)	100.0 (98.9- 100.0)	100.0 (90.8- 100.0	99.4 (97.9- 99.9)	
			0.108 ^b	97.5 (86.8-99.9)	97.2 (94.9-98.6)) 79.6 (65.7- 89.8)	99.7 (98.4- 99.0)	
			0.287 ^b	97.5 (86.8-99.9)	99.7 (98.4- 100.0)	100.0 (91.0- 100.0	100.0 (99.0- 100.0	
		Murex HCV AgAb Combination EIA (DiaSorin)	Not specifiedª	82.5 (67.2-92.7)	98.0 (95.9-99.2)	82.5 (67.2- 92.7)	98.0 (95.9- 99.2)	
			0.514 ^b	80.0 (64.3-90.9)	99.4 (97.9-99.9)	94.1 (80.3- 99.3)	97.7 (95.6- 99.0)	
			0.239 ^b	97.5 (86.8-99.9)	96.0 (93.3-97.8)	73.6 (93.3- 97.8)	100 (98.3- 100.0)	
(Erba et al., 2015)	HIV	m2000SP, m2000RT (Abbott)	≥40 copies/mL	74.0 (66.9-80.3)	99.0 (94.5-99.8)	99.2 (95.8- 99.9)	68.3 (60.0- 75.8)	
			≥1,000 copies/mL	94.2 (88.9-97.5)	98.6 (94.9-99.8)	98.5 (94.6- 99.8)	94.5 (89.4- 97.6)	
(Fajardo et al., 2014)	HIV	NucliSENS EasyQ HIV-1 v2.0 (bioMérieux)	≥1,000 copies/mL	88.7 (81.1-94.0)	97.8 (96.1-98.9)	NR	NR	DBS prepared from capillary blood (finger pokes)
			≥3,000 copies/mL	84.9	99.8	NR	NR	DBS prepared

				(76.0-91.5)	(98.9- 100.0)			from capillary blood (finger pokes)
			≥5,000 copies/mL	83.0 (73.4-90.1	100.0 (99.3- 100.0)	NR	NR	DBS prepared from capillary blood (finger pokes)
			≥1,000 copies/mL	91.4 (84.4-96.0)	97.2 (95.4-98.5)	NR	NR	DBS prepared from venous blood
			≥3,000 copies/mL	90.0 (82.2-95.4)	99.4 (98.3-99.9)	NR	NR	DBS prepared from venous blood
			≥5,000 copies/mL	88.5 (79.9-94.3)	99.8 (98.9- 100.0)	NR	NR	DBS prepared from venous blood
(Gui chet et al., 2018)	HIV	In-house RT-qPCR	≥1,000 copies/mL ≥5,000 copies/mL	90.0 (83.0- 96.0) 74.0 (62-86.0)	49.0 (37.0- 61.0) 77.0 (69.0-85.0)	NR NR	NR NR	NucliSENS (bioMérieux) NucliSENS (bioMérieux)
			≥1,000 copies/mL ≥5,000 copies/mL	80.0 (71.0-89.0) 79.0 (68.0-90.0)	(47.0-71.0) 68.0 (59.0-72.0)	NR NR	NR NR	m2000SP (Abbott) m2000SP (Abbott)
			≥1,000 copies/mL	80.0 (71.0-89.0)	100.0 (100.0- 100.0)	NR	NR	NucliSENS (bioMérieux) , Turbo DNase-Free (Ambion)
			≥5,000 copies/mL	23.0 (12.0-34.0)	100.0 (100.0- 100.0)	NR	NR	NucliSENS (bioMérieux) , Turbo DNase-Free (Ambion)
			≥1,000 copies/mL	27.0 (17.0-37.0)	81.0 (70.0-90.0)	NR	NR	NucliSENS (bioMérieux) , HL- dsDNase (TATAA Biocenter AB)
			≥5,000 copies/mL	51.0 (37.0-65.0)	92.0 (86.0-97.0)	NR	NR	NucliSENS (bioMérieux) , HL- dsDNase (TATAA

								Biocenter AB)
			≥1,000 copies/mL	60.0 (49.0-71.0)	82.0 (73.0-91.0)	NR	NR	NucliSENS (bioMérieux) , FVE protocol
			≥5,000 copies/mL	49.0 (35.0-62.0)	99.0 (97.0- 100.0)	NR	NR	NucliSENS (bioMérieux) , FVE protocol
			≥1,000 copies/mL	83.0 (75.0-91.0)	58.0 (46.0-70.0)	NR	NR	m2000SP, m2000RT (Abbott)
			≥5,000 copies/mL	75.0 (63.0-87.0)	89.0 (83.0-95.0)	NR	NR	m2000SP, m2000RT (Abbott)
(Halfon et al., 2012)	HBV	HBV COBAS TaqMan (Roche)	≥1,400 IU/mL	98.0 (95.0- 100.0)	100.0 (100.0- 100.0)	NR	NR	
			≥2,000 IU/mL	91.0 (85.0-97.0)	100.0 (100.0- 100.0)	NR	NR	
· · ·	HSV- 2	Kalon HSV-2 ELISA (Kalon Biological Ltd)	>1.1ª	98.8 (92.7-99.9)	98.9 (93.4-99.9)	NR	NR	
			>1.5 ^b	98.8 (93.6-99.8)	98.9 (94.2-99.8)	NR	NR	
(Judd et al., 2003)	HCV	Ortho HCV 3.0 (Bio-Rad)	0.100ª	99.2	100.0			
			Negative mean + 1 SD ^b	100.0	92.4	NR	NR	
			Negative mean + 2 SD ^b	100.0	96.9	NR	NR	
			Negative mean + 3 SD ^b	99.6	99.7	NR	NR	
			Negative mean + 4 SD ^b	99.6	99.7	NR	NR	
			Negative mean + 5 SD ^b	99.6	100.0	NR	NR	
			Negative mean + 6 SD ^b	99.2	100.0	NR	NR	
(Makadzang e et al., 2017)	HIV	COBAS AmpliPrep/COBA S TaqMan (Roche)	Detected	77.0 (69.4-85.5)	100.0 (97.1- 100.0)	100.0 (96.8- 100.0	78.5 (71.2- 84.6)	

	I	1		1		1	, · ·	
			≥1,000	92.7	100.0	100.0	94.3	
			copies/mL	(88.6-96.6)	(97.6-	(96.8-	(89.5-	
					100.0)	100.0	97.4)	
)		
			≥5,000	70.9	100.0	100.0	82.0	
			copies/mL	(61.8-79.0)	(97.6-	(95.7-	(75.8-	
					100.0)	100.0	87.2)	
)		
(B. L.	HCV	ETI-AB-HCVK-4	0.592ª	88.9	96.1	74.1	98.6	
Marques et		(DiaSorin)		(76.0-96.3)	(93.6-97.9)	(60.4-	(96.7-	
al., 2012)				, , , , , , , , , , , , , , , , , , ,	,	85.0)	99.5)	
			0.648 ^b	88.9	96.4	75.5	98.6	
			0.010	(76.0-96.3)	(93.9-98.1)	(61.7-	(96.7-	
				(70.0-90.0)	(55.5-56.1)	86.2)	99.5)	
			1.345 ^b	88.9	98.6	88.9		
			1.345°				98.6 (06.8	
				(76.0-96.3)	(96.8-99.6)	(76.0-	(96.8-	
			0.047	075		96.3)	99.6)	
		HCV Ab (Radim)	0.347ª	97.5	99.5	95.1	99.7	
				(86.8-99.9)	(98.1-99.9)	(83.5-	(98.5-	
						99.4)	100.0	
)	
			0.351 ^b	97.5	99.5	95.1	99.7	
				(86.8-99.9)	(98.1-99.9)	(83.5-	(98.5-	
						99.4)	100.0	
)	
			0.284 ^b	97.5	99.2	92.9	99.7	
				(86.8-99.9)	(97.7-99.8)	(80.5-	(98.5-	
						98.5)	100.0	
)	
(McCarron et	HCV	Monolisa anti-	>0.99 ^b	100.0	87.5	NR	NR	
al., 1999)		HCV (Sanofi						
. ,		Pasteur)						
			>1.99 ^b	97.2	100.0	NR	NR	
(Neogi et al.,	HIV	m2000RT,	2.17 to 3	50.0	100.0	NR	NR	
2012)		m2000SP (Abbott)	\log^{10}					
,		, , ,	copies/mL					
			>3 to 3.7	90.0	100.0	NR	NR	
			log ¹⁰					
			copies/mL					
			>3.7 log ¹⁰	100.0	100.0	NR	NR	
			copies/mL					
(Nugent et	HIV	Aptima HIV-1	≥500	65.0	NR	NR	NR	
al., 2009)		RNA Qualitative	copies/mL					
		Assay (Gen-Probe)	-					
		· · · /	≥2,500	92.0	NR	NR	NR	
			copies/mL					
			≥5,000	100	NR	NR	NR	
			copies/mL					
	1		≥10,000	100	NR	NR	NR	
			210,000	100	1 11	1 111	1 410	

γ	1
റ	
~	

(Pannus et	HIV	NucliSENS EasyQ	≥1,000	78.6	100.0	100.0	98.2	DBS
al., 2013)		v2.0 (bioMérieux)	copies/mL	(59.0-91.7)	(98.9- 100.0)	(84.6- 100.0)	(96.1- 99.3)	prepared from capillary blood (finger
								pokes)
			≥1,000	89.3	99.7	96.2	99.1	DBS
			copies/mL	(71.8-97.7)	(98.3-	(80.4-	(97.3-	prepared
					100.0)	99.9)	99.8)	from venous blood
			≥5,000	69.6	100.0	100.0	97.9	DBS
			copies/mL	(47.1-86.8)	(89.9-	(79.4-	(95.7-	prepared
			1		100.0)	100.0	99.2)	from
)		capillary
								blood (finger
			>F 000	60.9	100.0	100.0	97.3	pokes) DBS
			≥5,000 copies/mL	(38.5-80.3)	(98.9-	(76.8-	97.3 (95.0-	prepared
			copica/int	(30.3-00.3)	100.0)	100.0	98.8)	from venous
					100.07)	, , , , , , , , , , , , , , , , , , , ,	blood)
(Pirillo et al.,	HIV	VERSANT HIV-1	≥37	88.2	69.2	94.9	47.4	
2011)		RNA 1.0 (Siemens)	copies/mL	(79.4-93.6)	(42.0-87.4)	(90.1-	(24.9-	
			-		, , , , , , , , , , , , , , , , , , ,	99.8)	69.8)	
			≥5,000	85.1	96.1	95.2	87.5	
			copies/mL	(76.5-88.6)	(88.2-99.3)	(85.6-	(80.3-	
						99.1)	90.4)	
(Pollack et	HIV	COBAS	≥1,000	98.8	74.3	31.5	99.8	Guanidinium
al., 2018)		AmpliPrep/COBA	copies/mL	(93.3-	(70.8-77.5)	(25.8-	(98.9-	pre-
		S TaqMan (Roche)		100.0)		37.6)	100.0	extraction
			≥5,000	92.4	97.9	83.9	99.1	Guanidinium
			copies/mL	(84.2-97.2)	(96.6-98.9)	(74.5-	(98.1-	pre-
						90.9)	99.7)	extraction
			≥1,000	95.1	98.8	90.6	99.4	Correction
			copies/mL	(87.8-98.6)	(97.7-99.5)	(82.3-	(98.5-	factor
						95.8)	99.8)	applied (0.3 log ¹⁰
								copies/mL)
			≥5,000	96.3	98.2	86.7	99.6	Correction
			copies/mL	(89.6-99.2)	(96.9-99.1)	(77.9-	(98.7-	factor
						92.9)	99.9)	applied (0.3
								log ¹⁰ copies/mL)
			≥1,000	65.8	100.0	100.0	96.2	Correction
			copies/mL	(54.3-76.1)	(99.5-	(93.2-	(94.5-	factor
			1 ·		100.0)	100.0	97.5)	applied (0.7
					,)	,	log ¹⁰ copies/mL)
			≥5,000	84.8	99.7	97.1	98.3	Correction
			copies/mL	(75.0-91.9)	(98.9-	(89.9-	(97.0-	factor

								log ¹⁰
								copies/mL)
(Rutstein et	HIV	m2000RT,	≥1,000	100.0	97.1	75.0	100.0	DBS
al., 2014)		m2000SP (Abbott)	copies/mL					prepared
. ,			1					from venous
								blood
			≥1,000	100.0	94.9	63.2	100.0	DBS
			copies/mL					prepared
			1 '					from
								capillary
								blood (finger
								pokes)
			≥5,000	100.0	98.6	83.3	100.0	DBS
			copies/mL	10010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0010	10010	prepared
			copies,me					from venous
								blood
			≥5,000	100.0	97.8	76.9	100.0	DBS
			copies/mL	100.0	27.0	70.9	100.0	prepared
			copies/iii					from
								capillary
								blood (finger
								pokes)
(Sawadogo et	HIV	COBAS	≥1,000	99.0	26.0	29.0	99.0	p onco)
al., 2014)	1111	AmpliPrep/COBA	copies/mL	(97.0-	(22.0-29.0)	(26.0-	(96.0-	
		S TaqMan (Roche)	copies/int	100.0)	(22.0-29.0)	33.0)	100.0	
		b ruquiun (noene)		100.0)		33.0)		
)	
			≥5,000	99.0	55.0	33.0	100.0	
			copies/mL	(96.0-	(51.0-59.0)	(29.0-	(98.0-	
				100.0)		37.0)	100.0	
)	
(Schmitz et	HIV	COBAS	≥1,000	90.1	93.1	NR	NR	DBS
al., 2017)		AmpliPrep/COBA	copies/mL	(85.7-936)	(90.6-95.2)			prepared
		S TaqMan (Roche)						from venous
								blood
		COBAS	≥1,000	90.3	94.9	NR	NR	DBS
		AmpliPrep/COBA	copies/mL	(85.7-93.7)	(92.6-96.6)			prepared
		S TaqMan (Roche)						from
								capillary
								blood
								(microtainer)
		COBAS	≥1,000	88.1	94.5	NR	NR	DBS
		AmpliPrep/COBA	copies/mL	(83.3-92.0)	(92.1-96.3)			prepared
		S TaqMan (Roche)						from
								capillary
								blood (finger
								pokes)
		RealTime HIV-1	≥1,000	94.4	33.0	NR	NR	DBS
		(Abbott)	copies/mL	(90.6-97.0)	(28.9-37.3)			prepared
								from venous
								blood
		COBAS	≥3,000	85.2	98.0	NR	NR	DBS
		AmpliPrep/COBA	copies/mL	(80.1-89.4)	(96.4-99.1)			prepared

		S TaqMan (Roche)						from venous blood
		COBAS AmpliPrep/COBA S TaqMan (Roche)	≥3,000 copies/mL	88.1 (83.3-92.0)	97.6 (95.9-98.8)	NR	NR	DBS prepared from capillary blood (microtainer)
		COBAS AmpliPrep/COBA S TaqMan (Roche)	≥3,000 copies/mL	85.2 (80.0-89.4)	97.8 (96.2-98.9)	NR	NR	DBS prepared from capillary blood (finger pokes)
		RealTime HIV-1 (Abbott)	≥3,000 copies/mL	88.4 (83.5-92.2)	60.9 (56.6-65.2)	NR	NR	DBS prepared from venous blood
		COBAS AmpliPrep/COBA S TaqMan (Roche)	≥5,000 copies/mL	83.1 (77.8-87.6)	98.4 (96.9-99.3)	NR	NR	DBS prepared from venous blood
		COBAS AmpliPrep/COBA S TaqMan (Roche)	≥5,000 copies/mL	83.9 (78.6-88.3)	98.6 (97.2-99.4)	NR	NR	DBS prepared from capillary blood (microtainer)
		COBAS AmpliPrep/COBA S TaqMan (Roche)	≥5,000 copies/mL	82.2 (76.7-86.9)	98.8 (97.4-99.6)	NR	NR	DBS prepared from capillary blood (finger pokes)
		RealTime HIV-1 (Abbott)	≥5,000 copies/mL	79.7 (74.0-84.7)	77.0 (73.1-80.5)	NR	NR	DBS prepared from venous blood
(Taieb et al., 2018)	HIV	m2000SP, m2000RT (Abbott)	Detected	95.8 (88.1-99.1)	63.6 (54.8-71.8)	NR	NR	
			≥839 copies/mL	91.5 (82.5-96.8)	95.5 (90.3-98.3)	NR	NR	
			≥1,000 copies/mL ≥3,000	90.1 (80.7-95.9) 84.5	96.2 (91.4-98.8) 99.2	NR NR	NR NR	
			23,000 copies/mL	84.5 (74.0-92.0)	99.2 (95.9- 100.0)		INK	
			≥5,000 copies/mL	80.3 (69.1-88.8)	100.0 (97.2- 100.0)	NR	NR	
(Taieb et al.,	HIV	COBAS	≥1,000	54.9	100.0	NR	NR	

2016)		AmpliPrep/COBA S TaqMan HIV-1 v2.0 (Roche)	copies/mL	(40.3-68.9)	(97.5- 100.0)		
			≥3,000 copies/mL	45.2 (29.8-61.3)	100.0 (97.7-	NR	NR
					100.0)		
			≥5,000	47.5	100.0	NR	NR
			copies/mL	(31.5-63.8)	(97.7- 100.0)		
		Real-Time HIV-1	≥1,000	93.3	94.8	NR	NR
		(Abbott)	copies/mL	(81.7-98.6)	(90.0-97.7)		
			≥3,000	97.4	96.3	NR	NR
			copies/mL	(86.2-99.9)	(92.0-98.6)		
			≥5,000	100	98.8	NR	NR
			copies/mL	(90.5- 100.0)	(95.6-99.8)		
(Vidya et al., 2012)		m2000RT (Abbott)	≤1,000 copies/mL	62.0	NR	NR	NR
			1,000- 3,000 copies/mL	88.0	NR	NR	NR
			>3,000	100.0	NR	NR	NR
			copies/mL				
(Zeh et al.,	HIV	COBAS	≥400	100.0	4.0	75.8	100.0
2017)		AmpliPrep/COBA	copies/mL	(97.6-	(0.5-13.7)	(69.2-	(15.8-
		S TaqMan (Roche)		100.0)		81.6)	100.0)
			≥1,000	100.0	17.3	NR	NR
			copies/mL	00.0	265	NID	ND
			≥2,000	98.0	36.5	NR	NR
			copies/mL ≥3,000	97.3	54.0	NR	NR
			copies/mL	97.5	54.0	INIX	
			≥4,000	96.0	82.7	NR	NR
			copies/mL	-			
			≥5,000	95.3	84.6	NR	NR
			copies/mL				
		m2000RT (Abbott)	≥550	93.9	88.0	100.0	85.3
			copies/mL	(88.8-97.2)	(82.2-92.4)	(97.4-	(73.8-
						100.0	93.0)
)	
			≥1,000 copies/mL	96.6	90.4	NR	NR
			≥2,000 copies/mL	95.3	94.2	NR	NR
			≥3,000 copies/mL	94.6	98.1	NR	NR
			≥4,000 copies/mL	93.2	98.1	NR	NR

			≥5,000 copies/mL	93.0	98.1	NR	NR	
(Biondi et al., 2019)	HCV	ARCHITECT Core Antigen (Abbott)	>3 fmol/L	94.1 (88.5-99.7)	NR	NR	NR	DBS stored at -80°C
			>10 fmol/L	85.3 (76.4-94.2)	NR	NR	NR	DBS stored at -80°C
			>3 fmol/L	94.1 (88.5-99.7)	NR	NR	NR	DBS stored at 4°C
			>10 fmol/L	85.3 (76.4-94.2)	NR	NR	NR	DBS stored at 4°C
			>3 fmol/L	91.2 (84.3-98.1)	NR	NR	NR	DBS stored at ambient °C
			>10 fmol/L	80.9 (70.8-91.0)	NR	NR	NR	DBS stored at ambient °C
			>3 fmol/L	92.7 (86.4-98.9)	NR	NR	NR	DBS stored at 37°C
			>10 fmol/L	80.9 (70.8-91.0)	NR	NR	NR	DBS stored at 37°C
			>3 fmol/L	92.7 (86.4-98.9)	NR	NR	NR	DBS stored at 37°C followed by 4°C
			>10 fmol/L	85.3 (76.4-94.2)	NR	NR	NR	DBS stored at 37°C followed by 4°C
(Catlett et al., 2019)	HCV	Aptima HCV Quant Dx (Hologic)	≥12 IU/mL	90.7 (80.0-97.0)	100.0 (97.0- 100.0)	NR	NR	
			≥1,000 IU/mL	92.5 (82.0-98.0)	100.0 (97.0- 100.0)	NR	NR	
			≥3,000 IU/mL	92.5 (92.0-98.0)	100.0 (97.0- 100.0)	NR	NR	
(Saludes et al., 2019)	HCV	In-house RT-qPCR	~12 IU/mL	88.3 (83.0-92.0)	NR	NR	NR	
			≥12 IU/mL	90.1 (85.0-93.5)	NR	NR	NR	
			≥1,000 copies/mL	96.1 (92.1-98.1)	NR	NR	NR	
			≥3,000 copies/mL	97.2	NR	NR	NR	

				(93.5-98.8)				
			≥50,000 copies/mL	100.0 (97.6- 100.0)	NR	NR	NR	
(Saludes et al., 2020)	HCV	Xpert HCV VL Fingerstick (Cepheid)	~10 IU/mL	93.7 (84.8-97.5)	100.0 (90.1- 100.0)	NR	NR	
			≥10 IU/mL	96.7 (88.8-99.1)	100.0 (90.1- 100.0)	NR	NR	
			≥1,000 IU/mL	98.3 (91.1-99.7)	100.0 (90.1- 100.0)	NR	NR	
			≥3,000 IU/mL	98.3 (91.0-99.7)	100.0 (90.1- 100.0)	NR	NR	
(Tola et al., 2021)	HIV	m2000 RealTime HIV-1 (Abbott)	≥1,000 copies/mL	85.2 (81.1-89.3)	91.5 (88.7-94.3)	NR	NR	DBS prepared from capillary blood (microtainer)
			≥3,000 copies/mL	72.5 (67.3– 77.7)	96.9 (95.2– 98.6)	NR	NR	DBS prepared from capillary blood (microtainer)
			≥5,000 copies/mL	65.8 (60.3– 71.4)	97.2 (95.5– 98.8)	NR	NR	DBS prepared from capillary blood (microtainer)
			≥1,000 copies/mL	85.6 (81.5– 89.6)	90.9 (88.1– 93.8)	NR	NR	DBS prepared from capillary blood (finger pokes)
			≥3,000 copies/mL	71.5 (66.2– 76.7)	96.6 (94.9– 98.4)	NR	NR	DBS prepared from capillary blood (finger pokes)
			≥5,000	62.7	97.4	NR	NR	DBS
37

	copies/mL	(57.1–	(95.9–			prepared
	copressine.	68.3)	99.0)			from
		00.0)	,,,,,,,			capillary
						blood (finger
						pokes)
	≥1,000	89.1	86.6	NR	NR	DBS
	copies/mL	(85.5-	(83.2-			prepared
	-	92.7)	90.0)			from venous
		,	,			blood
	≥3,000	76.4	96.1	NR	NR	DBS
	copies/mL	(71.5-	(94.2-			prepared
	-	81.3)	98.1)			from venous
		,	,			blood
	≥5,000	67.2	96.6	NR	NR	DBS
	copies/mL	(61.8–	(95.2-			prepared
	-	72.7)	98.6)			from venous
		,	,			blood

467

468 ^aManufacturer recommended

469

470 ^bEstablished in-house

471

NPV=negative predictive value; NR=not reported; PPV=positive predictive value; STBBI=sexually transmitted and
 blood-borne infection;

474475 Table 3

476

477 Studies comparing DBS prepared from venous and capillary blood

Study	STBB	Index Test	Preparation	Sensitivit	Specificit	PPV	NPV	Notes
	Ι		_	у	y	(95%	(95%	
				(95% CI)	(95% CI)	CI)	CI)	
(Prinsenberg	HCV	COBAS	Capillary	95.7	NR	NR	NR	
et al., 2020)		AmpliPrep/COBA	(finger poke)	(78.1-99.9)				
		S TaqMan (Roche)						
			Venous	96.4	NR	NR	NR	
				(81.7-99.9)				
	HIV		Capillary	100.0	NR	NR	NR	
			(finger poke)	(69.2-				
				100.0)				
			Venous	100.0	NR	NR	NR	
				(73.5-				
				100.0)				
(Tran et al.,	HCV	m2000SP,	Capillary	98.6	NR	NR	NR	DBS
2020)		m2000RT (Abbott)	(finger poke)	(92.2-				stored at
				100.0)				ambient
								°C (6-14
								days)
			Venous	97.9	NR	NR	NR	
				(92.7-99.7)				
			Capillary	97.8	NR	NR	NR	DBS

			(finger poke)	(94.4-99.4)				stored at ambient °C (≥15 days)
			Venous	98.1	NR	NR	NR	
(Vetter et al., 2021)	HIV	INNOTEST HCV Ab IV (Fujirebio)	Capillary (finger poke)	(94.4-99.6) 100.0 (97.5- 100.0)	100.0 (95.7- 100.0)	NR	NR	
			Venous	100.0 (97.5- 100.0)	100.0 (95.7- 100.0)	NR	NR	
(Fajardo et al., 2014)	HIV	NucliSENS EasyQ HIV-1 v2.0 (bioMérieux)	Capillary (finger poke)	88.7 (81.1-94.0)	97.8 (96.1-98.9)	NR	NR	≥1,000 copies/m L
				84.9 (76.0-91.5)	99.8 (98.9- 100.0)	NR	NR	≥3,000 copies/m L
				83.0 (73.4-90.1)	100.0 (99.3- 100.0)	NR	NR	≥5,000 copies/m L
			Venous	91.4 (84.4-96.0)	97.2 (95.4-98.5)	NR	NR	≥1,000 copies/m L
				90.0 (82.2-95.4)	99.4 (98.3-99.9)	NR	NR	≥3,000 copies/m L
				88.5 (79.9-94.3)	99.8 (98.9- 100.0)	NR	NR	≥5,000 copies/m L
(Mwau et al., 2021)	HIV	Aptima HIV-1 Quant Dx (Hologic)	Capillary (finger poke)	92.3 (87.0-95.5)	92.2 (85.3-96.0)	94.7 (90.0- 97.3)	88.7 (81.2- 93.4)	
			Venous	97.4 (93.6-99.0)	92.2 (85.3-96.0)	95.0 (90.4- 97.4)	95.9 (90.0- 98.4)	
(Rutstein et al., 2014)	HIV	m2000SP, m2000RT (Abbott)	Capillary (finger poke)	100	94.9	63.2	100	≥1,000 copies/m L
				100	97.8	76.9	100	≥5,000 copies/m L
			Venous	100	97.1	75.0	100	≥1,000 copies/m L
				100	98.6	83.3	100	≥5,000 copies/m L
(Schmitz et al., 2017)	HIV	COBAS AmpliPrep/COBA	Capillary (finger poke)	88.1 (83.3-92.0)	94.5 (92.1-96.3)	NR	NR	≥1,000 copies/m

		S TaqMan v2.0 (Roche)						L
				85.2 (80.0-89.4)	97.8 (96.2-98.9)	NR	NR	≥3,000 copies/m L
				82.2 (76.7-86.9)	98.8 (97.4-99.6)	NR	NR	≥5,000 copies/m L
			Capillary (microtainer)	90.3 (85.7-93.7)	94.9 (92.6-96.6)	NR	NR	≥1,000 copies/m L
				88.1 (83.3-92.0)	97.6 (95.9-98.8)	NR	NR	L ≥3,000 copies/m L
				83.9 (78.6-88.3)	98.6 (97.2-99.4)	NR	NR	≥5,000 copies/m L
			Venous	90.1 (85.7-93.6)	93.1 (90.6-95.2)	NR	NR	≥1,000 copies/m L
				85.2 (80.1-89.4)	98.0 (96.4-99.1)	NR	NR	≥3,000 copies/m L
				83.1 (77.8-87.6)	98.4 (96.9-99.3)	NR	NR	≥5,000 copies/m L
(Tang et al., 2017)	HIV	m2000SP, m2000RT (Abbott)	Capillary (finger poke)	93.0 (88.7-95.2)	95.0 (92.0-97.4)	NR	NR	
				93.0 (85.3-97.1)	95.0 (90.9-97.6)	NR	NR	Analysis limited to people living with HIV currently receiving ART
			Venous	93.0 (89.6-95.8)	95.0 (91.0-96.8)	NR	NR	
				95.0 (87.1-97.9)	95.0 (90.9-97.6)	NR	NR	Analysis limited to people living with HIV currently receiving ART
(Tola et al., 2021)	HIV	m2000SP, m2000RT (Abbott)	Capillary (finger poke)	85.6 (81.5– 89.6)	90.9 (88.1– 93.8)	NR	NR	≥1,000 copies/m L
				71.5 (66.2–	96.6 (94.9–98.4	NR	NR	≥3,000 copies/m L

				76.7)				
				62.7	97.4	NR	NR	≥5,000
						INK	INK	≥5,000 copies/m
				(57.1–68.3	(95.9– 99.0)			L L
			0 11	05.0		NID	NID	
			Capillary	85.2	91.5	NR	NR	≥1,000
			(microtainer)	(81.1-89.3)	(88.7-94.3)			copies/m L
				72.5	96.9	NR	NR	≥3,000
				(67.3–	(95.2–			copies/m
				77.7)	98.6)			L
				65.8	97.2	NR	NR	≥5,000
				(60.3–	(95.5–			copies/m
				71.4)	98.8)			L
			Venous	89.1	86.6	NR	NR	≥1,000
				(85.5-	(83.2-			copies/m
				92.7)	90.0)			L
				76.4	96.1	NR	NR	≥3,000
				(71.5-	(94.2-	1 110	1410	copies/m
				81.3)	98.1)			L
				67.2	96.6	NR	NR	≥5,000
				(61.8–	90.0 (95.2–	INIX	INIX	≥3,000 copies/m
				72.7)	•			L
/T/ 11	1 113 /	CODAG	0 11		98.6)	NID	NID	
(Kerschberge	HIV	COBAS	Capillary	89.2	96.8	NR	NR	
r et al., 2019)		AmpliPrep/COBA S TaqMan HIV-1 v2.0 (Roche)	(finger poke)	(79.1-95.6)	(94.0-98.5)			
			Venous	88.2	98.6	NR	NR	
			(phlebotomist	(78.1-94.8)	(96.5-99.6)			
			Venous	85.3	94.5	NR	NR	
						INK	INK	
			(laboratory technician)	(74.6-92.7)	(91.3-96.8)			
		Biocentric	Capillary	87.1	95.4	NR	NR	
			(finger poke)	(76.1-94.3)	(92.3-97.5)			
						.	.	
			Venous	87.7	97.6	NR	NR	
			(phlebotomist)	(77.2-94.5)	(95.2-99.0)			
			Venous	89.2	94.6	NR	NR	
			(laboratory technician)	(79.1-95.6)	(91.3-96.9)			
(Pannus et	HIV	NucliSENS Easy Q	Capillary	78.6	100.0	100.0	98.2	≥1,000
al., 2013)		v2.0 (bioMérieux)	(finger poke)	(59.0-91.7)	(98.9-	(84.6-	(96.1-	copies/m
' '				(0).0)1.1)	100.0)	100.0	100.0	L
					100.07			
))	
				69.6	100.0	100.0	97.9	≥5,000
				(47.1-86.6)	(89.9-	(79.4-	(95.7-	copies/m
					100.0)	100.0	99.2)	L

41

	1	1	1		1	-	1	
)		
			Venous	89.3 (71.8-97.7)	99.7 (98.3- 100.0)	96.2 (80.4- 99.9)	99.1 (97.3- 99.8)	≥1,000 copies/m L
				60.9 (38.5-80.3)	100.0 (98.9- 100.0)	100.0 (76.8- 100.0)	97.3 (95.0- 98.8)	≥5,000 copies/m L
(Biondi et al., 2019)	HCV	ARCHITECT Core Antigen Assay (Abbott)	Capillary (finger poke)	91.8 (84.2-99.5)	NR	NR	NR	≥3 fmol/L; 1 spot (75 μL)
				81.6 (70.8-92.5)	NR	NR	NR	≥10 fmol/L; 1 spot (75 µL)
				93.9 (87.2- 100.0)	NR	NR	NR	≥3 fmol/L; 2 spot (150 µL)
				85.7 (75.9-95.5)	NR	NR	NR	≥10 fmol/L; 2 spot (150 µL)
			Venous	91.8 (84.2-99.5)	NR	NR	NR	≥3 fmol/L; 1 spot (75 µL)
				87.8 (79.0-97.0)	NR	NR	NR	≥10 fmol/L; 1 spot (75 µL)
				93.9 (87.2- 100.0)	NR	NR	NR	≥3 fmol/L; 2 spot (150 µL)
				87.8 (79.0-97.0)	NR	NR	NR	≥10 fmol/L; 2 spot (150 µL)

479

480 NPV=negative predictive value; NR=not reported; PPV=positive predictive value; STBBI=sexually transmitted and

481 blood-borne infection;

482

483 **Table 4**

484

485 Studies assessing test performance on DBS specimens collected from participants with co-infections

Study	STBBI	Index Test	Participants	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)	Notes
(Flores, Cruz,	HCV	Murex AB (DiaSorin)	HIV +ve, HCV –ve	NA	100.0 (96.3-100.0)	NR	NR	

42

Marques,								
et al., 2017)			HIV –ve, HCV	93.9	NA	NR	NR	
			+ve	(90.0-96.6)	INA		INK	
			HIV +ve, HCV	NA	98.6	NR	NR	
			–ve		(95.1-99.8)			
			HIV +ve, HCV	83.3	NA	NR	NR	
			+ve	(69.7-92.5)				
(Flores et al., 2021)	HBV	Elecsys HBsAg II (Roche)	Coagulopathy	100.0	100.0	100.0	100.0	
			Chronic kidney disease	100.0	99.6	92.9	100.0	
			HIV +ve	85.0	94.7	81.0	95.9	
		Elecsys anti-HBc II (Roche)	Coagulopathy	81.3	100.0	100.0	92.1	
			Chronic kidney disease	79.6	97.1	94.7	87.8	
			HIV+ve	97.2	88.9	85.4	98.0	
	HCV	Elecsys anti-HCV II (Roche)	Coagulopathy	83.3	96.3	95.2	86.7	
			Chronic kidney disease HIV +ve	93.5	99.2	95.6	98.7	
(Saludes et al., 2019)	HCV	In-house RT-qPCR	HIV +ve	85.4 (72.8-92.8)	NR	NR	NR	~12 IU/mL
				87.2 (74.8-94)	NR	NR	NR	≥12 IU/mL
				97.6 (87.7-99.6)	NR	NR	NR	≥1,000 IU/mL
				97.6 (87.7-99.6)	NR	NR	NR	≥3,000 IU/mL
				100.0 (91.0-100.0)	NR	NR	NR	≥50,000 IU/mL
			HIV -ve	89.2 (83.2-93.2)	NR	NR	NR	~12 IU/mL
				91.0 (85.2-94.7)	NR	NR	NR	≥12 IU/mL
				95.6 (90.7-98.0)	NR	NR	NR	≥1,000 IU/mL
				97.0 (92.6-98.8)	NR	NR	NR	≥3,000 IU/mL
				100.0 (96.9-100.0)	NR	NR	NR	≥50,000 IU/mL

487

488 NPV=negative predictive value; NA = not applicable; NR=not reported; PPV=positive predictive value;

489 STBBI=sexually transmitted and blood-borne infection;

Table 5

493 Studies assessing test performance on DBS specimens collected from participants undergoing ART and ART-naïve participants

Study	STBBI	Index Test	Participants	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)	Notes
(P. Alvarez et al., 2015)	HIV	COBAS AmpliPrep/COBAS TaqMan HIV-1 Quantitative Test v2.0 (Roche)	ART-naïve	94.7 (74.0-99.9)	90.5 (77.4-97.3)	NR	NR	
			Undergoing ART	96.2 (86.8-99.5)	90.5 (80.4-96.4)	NR	NR	
			All	95.8 (88.1-99.1)	89.5 (82.0-94.7)	NR	NR	
		Versant HIV-1 RNA 1.0 (Siemens)	ART-naïve	84.2 (60.4-96.6)	100.0 (91.0- 100.0)	NR	NR	
			Undergoing ART	64.7 (50.4-77.6)	100.0 (93.4- 100.0)	NR	NR	
			All	70.0 (57.9-80.4)	100.0 (96.1- 100.0)	NR	NR	
(Balinda et al., 2016)	HIV	In-house RT-qPCR	ART-naïve	79.4	54.5	89.0	36.4	
			Undergoing ART (>6 months)	75.7	95.5	65.1	97.3	
			Undergoing ART (12-36 months)	88.9	98.1	72.7	99.3	
(Ondoa et al., 2014)		COBAS AmpliPrep/COBAS TaqMan HIV-1 Quantitative Test v2.0 (Roche)	ART-naïve	61.9	99.0	NR	NR	≥5,000 copies/mL
			Undergoing ART	9.0	100.0	NR	NR	≥5,000 copies/mL
(Taieb et al., 2018)		m2000SP, m2000RT (Abbott)	Undergoing ART (<6 months)	87.5 (47.3-99.7)	87.1 (70.1-96.4)	NR	NR	
			Undergoing ART (≥6 months)	85.2 (66.3-95.6)	99.0 (94.3- 100.0)	NR	NR	
			All	90.1 (80.7-95.9)	96.2 (91.4-98.8)	NR	NR	

44

496	Aitken, S. C., Kliphuis, A., Bronze, M., Wallis, C. L., Kityo, C., Balinda, S., Schuurman, R. (2013). Development and
497	Evaluation of an Affordable Real-Time Qualitative Assay for Determining HIV-1 Virological Failure in

- 498 Plasma and Dried Blood Spots. Journal of Clinical Microbiology, 51(6), 1899-1905. doi:10.1128/JCM.03305-12
- 499 Alexander, T. S. (2016). Human Immunodeficiency Virus Diagnostic Testing: 30 Years of Evolution. Clinical and

```
500 Vaccine Immunology, 23(4), 249-253. doi:10.1128/CVI.00053-16
```

- 501 Alvarez, P., Martin, L., Prieto, L., Obiang, J., Vargas, A., Avedillo, P., ... Holguin, A. (2015). HIV-1 variability and
- viral load technique could lead to false positive HIV-1 detection and to erroneous viral quantification in
 infected specimens. *J Infect*, 71(3), 368-376. doi:10.1016/j.jinf.2015.05.011
- Alvarez, P., Martin, L., Prieto, L., Obiang, J., Vargas, A., Avedillo, P., ... Holguin, A. (2015). HIV-1 Variability and
- 505 Viral Load Technique Could Lead to False Positive HIV-1 Detection and to Erroneous Viral Quantification
 506 in Infected Specimens. *Journal of Infection*, 71, 368-376. doi:10.1016/j.jinf.2015.05.011
- Amini, F., Auma, E., Hsia, Y., Bilton, S., Hall, T., Ramkhelawon, L., . . . Le Doare, K. (2021). Reliability of Dried Blood
 Spot (DBS) Cards in Antibody Measurement: A Systematic Review. *PLoS ONE*, *16*(3), e0248218.
- 509 doi:10.1371/journal.pone.0248218
- 510 Andreotti, M., Pirillo, M., Guidotti, G., Ceffa, S., Paturzo, G., Germano, P., . . . Giuliano, M. (2010). Correlation
- 511Between HIV-1 Viral Load Quantification in Plasma, Dried Blood Spots, and Dried Plasma Spots Using the512Roche COBAS Taqman Assay. Journal of Clinical Virology, 47(1), 4-7. doi:10.1016/j.jcv.2009.11.006
- 513 Balinda, S. N., Ondoa, P., Obuku, E. A., Kliphuis, A., Egau, I., Bronze, M., . . . consortium, A.-A. (2016). Clinical
- 514 Evaluation of an Affordable Qualitative Viral Failure Assay for HIV Using Dried Blood Spots in Uganda.

515 *PLoS ONE, 11*(1), e0145110. doi:10.1371/journal.pone.0145110

516 Bargain, P., Heslan, C., Thibault, V., & Pronier, C. (2020). Combined Use of Dried Blood Spot and Rapid Molecular

- 517 Systems: A Robust Solution to Monitor Hepatitis B Virus Infection with Potential for Resource-Limited
- 518 Countries. Journal of Virological Methods, 283, 113908. doi:10.1016/j.jviromet.2020.113908
- 519 Bennett, S., Gunson, R. N., McAllister, G. E., Hutchinson, S. J., Goldberg, D. J., Cameron, S. O., & Carman, W. F.
- 520 (2012). Detection of Hepatitis C virus RNA in Dried Blood Spots. *Journal of Clinical Virology*, 54(2), 106-109.

521 doi:10.1016/j.jcv.2012.02.004

- 522 Bezerra, C. S., Portilho, M. M., Barbosa, J. R., de Azevedo, C. P., Mendonca, A., da Cruz, J. N. M., . . . Villar, L. M.
- 523 (2022). Dried Blood Spot Sampling for Hepatitis B Virus Quantification, Sequencing and Mutation Detection.
- 524 *Scientific Reports*, 12(1), 1651. doi:10.1038/s41598-022-05264-1
- 525 Bezerra, C. S., Portilho, M. M., Frota, C. C., & Villar, L. M. (2021). Comparison of Four Extraction Methods for the
- 526 Detection of Hepatitis B Virus DNA in Dried Blood Spot Samples. *Microbiologyopen*, 10(2), e1161.
- 527 doi:10.1002/mbo3.1161
- Biondi, M. J., van Tilborg, M., Smookler, D., Heymann, G., Aquino, A., Perusini, S., . . . Feld, J. J. (2019). Hepatitis C
 Core-Antigen Testing from Dried Blood Spots. *Viruses*, *11*(9). doi:10.3390/v11090830
- 530 Bossuyt, P. M., Reitsma, J. B., Bruns, D. E., Gatsonis, C. A., Glasziou, P. P., Irwig, L., . . . Group, S. (2015). STARD
- 531 2015: An Updated List of Essential Items for Reporting Diagnostic Accuracy Studies. *BMJ*, 351, h5527.
- 532 doi:10.1136/bmj.h5527
- 533 Brandão, C. P., Marques, B. L., Marques, V. A., Villela-Nogueira, C. A., Do, O. K., de Paula, M. T., ... Villar, L. M.
- (2013). Simultaneous Detection of Hepatitis C Virus Antigen and Antibodies in Dried Blood Spots. *Journal of Clinical Virology*, 57(2), 98-102. doi:10.1016/j.jcv.2013.02.014
- Buckton, A. J. (2008). New Methods for the Surveillance of HIV Drug Resistance in the Resource Poor World. *Current Opinion in Infectious Diseases*, 21(6), 653-658. doi:10.1097/QCO.0b013e3283186d1a
- 538 Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., ... Wittwer, C. T. (2009). The MIQE
- 539 Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. *Clinical*
- 540 *Chemistry*, 55(4), 611-622. doi:10.1373/clinchem.2008.112797
- 541 Catlett, B., Carrera, A., Starr, M., Applegate, T. L., Lowe, P., Grebely, J., & Philip Cunningham, H. (2019).
- 542 Performance Evaluation of the Hologic Aptima HCV Quant Dx Assay for Detection of HCV RNA from
- 543 Dried Blood Spots. Journal of Clinical Virology, 112, 40-44. doi:10.1016/j.jcv.2019.01.010
- Chevaliez, S., & Pawlotsky, J. M. (2018). New Virological Tools for Screening, Diagnosis and Monitoring of Hepatitis
 B and C in Resource-Limited Settings. *Journal of Hepatology*, 69(4), 916-926. doi:10.1016/j.jhep.2018.05.017
- 546 Cholette, F., Fabia, R., Harris, A., Ellis, H., Cachero, K., Schroeder, L., . . . Kim, J. (2022). Comparative Performance
- 547 Data for Multiplex SARS-CoV-2 Serological Assays from a Large Panel of Dried Blood Spot Specimens.
- 548 *Heliyon, 8*(9), e10270. doi:10.1016/j.heliyon.2022.e10270

- 549 Choudhary, I., Chimanpure, V., Patil, A., Mukhopadhyaya, R., Paranjape, R., & Bhattacharya, J. (2013). Single Step
- 550 Detection of HIV-1 Proviral DNA and Housekeeping Beta-Actin Gene from Dried Blood Spots by a
- 551 Monoplex Polymerase Chain Reaction. Journal of Virological Methods, 187(1), 203-206.
- 552 doi:10.1016/j.jviromet.2012.08.012
- 553 De Crignis, E., Re, M. C., Cimatti, L., Zecchi, L., & Gibellini, D. (2010). HIV-1 and HCV Detection in Dried Blood
- 554 Spots by SYBR Green Multiplex Real-Time RT-PCR. Journal of Virological Methods, 165(1), 51-56.
- 555 doi:10.1016/j.jviromet.2009.12.017
- Dore, G. J., & Bajis, S. (2021). Hepatitis C Virus Elimination: Laying the Foundation for Achieving 2030 Targets.
 Nature Reviews Gastroenterology & Hepatology, 18(2), 91-92. doi:10.1038/s41575-020-00392-3
- 558 Erba, F., Brambilla, D., Ceffa, S., Ciccacci, F., Luhanga, R., Sidumo, Z., . . . Giuliano, M. (2015). Measurement of Viral
- Load by the Automated Abbott Real-Time HIV-1 Assay Using Dried Blood Spots Collected and Processed in
 Malawi and Mozambique. *South African Medical Journal*, 105(12), 1036-1038.
- 561 doi:10.7196/SAMJ.2015.v105i12.9673
- 562 Fajardo, E., Metcalf, C. A., Chaillet, P., Aleixo, L., Pannus, P., Panunzi, I., ... Mwenda, R. (2014). Prospective
- 563 Evaluation of Diagnostic Accuracy of Dried Blood Spots from Finger Prick Samples for Determination of
- 564 HIV-1 Load with the NucliSENS Easy-Q HIV-1 Version 2.0 Assay in Malawi. *Journal of Clinical Microbiology*,
- 565 52(5), 1343-1351. doi:10.1128/jcm.03519-13
- 566 Fiscus, S. A., Brambilla, D., Grosso, L., Schock, J., & Cronin, M. (1998). Quantitation of Human Immunodeficiency
- Virus Type 1 RNA in Plasma by Using Blood Dried on Filter Paper. *Journal of Clinical Microbiology*, 36(1), 258260. doi:10.1128/jcm.36.1.258-260.1998
- 569 Flores, G. L., Barbosa, J. R., Cruz, H. M., Miguel, J. C., Potsch, D. V., Pilotto, J. H., ... Villar, L. M. (2021). Dried Blood
- Spot Sampling as an Alternative for the Improvement of Hepatitis B and C Diagnosis in Key Populations.
 World Journal of Hepatology, 13(4), 504-514. doi:10.4254/wjh.v13.i4.504
- 572 Flores, G. L., Cruz, H. M., Marques, V. A., Villela-Nogueira, C. A., Potsch, D. V., May, S. B., ... Villar, L. M. (2017).
- 573 Performance of ANTI-HCV Testing in Dried Blood Spots and Saliva According to HIV Status. *Journal of*
- 574 *Medical Virology*, 89(8), 1435-1441. doi:10.1002/jmv.24777

47

- 575 Flores, G. L., Cruz, H. M., Miguel, J. C., Potsch, D. V., Pilotto, J. H., Lewis-Ximenez, L. L., ... Villar, L. M. (2018).
- Assessing Hepatitis B Immunity Using Dried Blood Spot Samples from HIV+ Individuals. *Journal of Medical Virology*, 90(12), 1863-1867. doi:10.1002/jmv.25275
- 578 Flores, G. L., Cruz, H. M., Potsch, D. V., May, S. B., Brandao-Mello, C. E., Pires, M. M. A., ... Villar, L. M. (2017).
- 579 Evaluation of HBsAg and Anti-HBc Assays in Saliva and Dried Blood Spot Samples According HIV Status.

580 Journal of Virological Methods, 247, 32-37. doi:10.1016/j.jviromet.2017.05.004

- 581 García-Cisneros, S., Sanchez-Aleman, M. A., Conde-Glez, C. J., Lara-Zaragoza, S. J., Herrera-Ortiz, A., Plett-Torres, T.,
- 582 & Olamendi-Portugal, M. (2019). Performance of ELISA and Western Blot to Detect Antibodies Against
- 583 HSV-2 Using Dried Blood Spots. *Journal of Infection and Public Health*, 12(2), 224-228.
- 584 doi:10.1016/j.jiph.2018.10.007
- Gobran, S. T., Ancuta, P., & Shoukry, N. H. (2021). A Tale of Two Viruses: Immunological Insights Into HCV/HIV
 Coinfection. *Frontiers in Immunology*, *12*, 726419. doi:10.3389/fimmu.2021.726419
- 587 Gruner, N., Stambouli, O., & Ross, R. S. (2015). Dried Blood Spots Preparing and Processing for Use in
- 588 Immunoassays and in Molecular Techniques. Journal of Visualized Experiments, 97, e52619. doi:10.3791/52619
- 589 Guichet, E., Serrano, L., Laurent, C., Eymard-Duvernay, S., Kuaban, C., Vidal, L., . . . Peeters, M. (2018). Comparison
- 590 of Different Nucleic Acid Preparation Methods to Improve Specific HIV-1 RNA Isolation for Viral Load

591 Testing on Dried Blood Spots. Journal of Virological Methods, 251, 75-79. doi:10.1016/j.jviromet.2017.10.014

- Halfon, P., Raimondo, A., Ouzan, D., Bourliere, M., Khiri, H., Cohen-Bacrie, S., ... Dukan, P. (2012). Dried Blood Spot
- for Hepatitis B Virus Serology and Molecular Testing. *Journal of Hepatology*, 56, S61-69. doi:10.1016/S01688278(12)60155-X
- 595 Hobbs, M. M., Mwanyumba, S. W., Luseno, W. K., Hartman, S., Halpern, C. T., Hallfors, D. D., & Cho, H. (2017).
- Evaluation of Herpes Simplex Virus Type 2 Serological Tests for Use With Dried Blood Spots in Kenya.
 Sexually Transmitted Diseases, 44(2), 101-103. doi:10.1097/olq.0000000000557
- 598 Huang, S., Erickson, B., Mak, W. B., Salituro, J., & Abravaya, K. (2011). A Novel RealTime HIV-1 Qualitative Assay
- 599 for the Detection of HIV-1 Nucleic Acids in Dried Blood Spots and Plasma. *Journal of Virological Methods,*

600 178(1-2), 216-224. doi:10.1016/j.jviromet.2011.09.015

- Jackson, K., Holgate, T., Tekoaua, R., Nicholson, S., Littlejohn, M., & Locarnini, S. (2022). Evaluation of Dried Blood
 Spots for Hepatitis B and D Serology and Nucleic Acid Testing. *Journal of Medical Virology*, 94(2), 642-648.
 doi:10.1002/jmv.25485
- Jardi, R., Rodriguez-Frias, F., Buti, M., Schaper, M., Valdes, A., Martinez, M., ... Guardia, J. (2004). Usefulness of
- 605 Dried Blood Samples for Quantification and Molecular Characterization of HBV-DNA. *Hepatology*, 40(1),
- 606 133-139. doi:10.1002/hep.20275
- Judd, A., Parry, J., Hickman, M., McDonald, T., Jordan, L., Lewis, K., . . . Nelson, M. (2003). Evaluation of a Modified
 Commercial Assay in Detecting Antibody to Hepatitis C Virus in Oral Fluids and Dried Blood Spots. *Journal of Virological Methods*, *71*(1), 49-55. doi:10.1002/jmv.10463
- 610 Kane, C. T., Ndiaye, H. D., Diallo, S., Ndiaye, I., Wade, A. S., Diaw, P. A., ... Mboup, S. (2008). Quantitation of HIV-1
- RNA in Dried Blood Spots by the Real-Time NucliSENS EasyQ HIV-1 Assay in Senegal. *Journal of Virological Methods*, 148(1-2), 291-295. doi:10.1016/j.jviromet.2007.11.011
- 613 Kerschberger, B., Ntshalintshali, N., Mpala, Q., Diaz Uribe, P. A., Maphalala, G., Kalombola, S., . . . Fajardo, E. (2019).
- 614 Field Suitability and Diagnostic Accuracy of the Biocentric Open Real-Time PCR Platform for Dried Blood
- 615 Spot-Based HIV Viral Load Quantification in Eswatini. Journal of Acquired Immune Deficiency Syndromes,
- 616 82(1), 96-104. doi:10.1097/qai.00000000002101
- 617 Landy, R., Atkinson, D., Ogilvie, K., St Denys, R., Lund, C., Worthington, C., . . . team, S. (2022). Assessing the
- 618 Acceptability of Dried Blood Spot Testing for HIV and STBBI Among Metis People in a Community Driven
- 619 Pilot Project in Alberta, Canada. BMC Health Services Research, 22(1), 1496. doi:10.1186/s12913-022-08763-z
- Lim, M. D. (2018). Dried Blood Spots for Global Health Diagnostics and Surveillance: Opportunities and Challenges.
 American Journal of Tropical Medicine and Hygiene, 99(2), 256-265. doi:10.4269/ajtmh.17-0889
- 622 Lira, R., Maldonado-Rodriguez, A., Rojas-Montes, O., Ruiz-Tachiquin, M., Torres-Ibarra, R., Cano-Dominguez, C., ...
- Alvarez-Munoz, M. T. (2009). Use of Dried Blood Samples for Monitoring Hepatitis B Virus Infection.
 Virology Journal, 6, 153. doi:10.1186/1743-422x-6-153
- Madhi, S. A., Kwatra, G., Myers, J. E., Jassat, W., Dhar, N., Mukendi, C. K., . . . Mutevedzi, P. C. (2022). Population
- 626 Immunity and Covid-19 Severity with Omicron Variant in South Africa. New England Journal of Medicine,
- 627 386(14), 1314-1326. doi:10.1056/NEJMoa2119658

49

628	Mahajan, S.,	Choudhary, M.	C., Kumar,	G., & Gupta, I	E. (2018).	Evaluation of Dried I	3lood Spot as an Alternative	5
-----	--------------	---------------	------------	----------------	------------	-----------------------	------------------------------	---

- 629 Sample Collection Method for Hepatitis C Virus RNA Quantitation and Genotyping Using a Commercial
- 630 System. Virusdisease, 29(2), 141-146. doi:10.1007/s13337-018-0441-9
- 631 Makadzange, A. T., Boyd, F. K., Chimukangara, B., Masimirembwa, C., Katzenstein, D., & Ndhlovu, C. E. (2017). A
- 632 Simple Phosphate-Buffered-Saline-Based Extraction Method Improves Specificity of HIV Viral Load
- 633 Monitoring Using Dried Blood Spots. *Journal of Clinical Microbiology*, 55(7), 2172-2179. doi:10.1128/jcm.00176-
- 634

- Malsagova, K., Kopylov, A., Stepanov, A., Butkova, T., Izotov, A., & Kaysheva, A. (2020). Dried Blood Spot in
 Laboratory: Directions and Prospects. *Diagnostics*, 10(4). doi:10.3390/diagnostics10040248
- 637 Marconi, A., Balestrieri, M., Comastri, G., Pulvirenti, F. R., Gennari, W., Tagliazucchi, S., ... Zazzi, M. (2009).
- Evaluation of the Abbott Real-Time HIV-1 Quantitative Assay with Dried Blood Spot Specimens. *Clinical Microbiology and Infection*, 15(1), 93-97. doi:10.1111/j.1469-0691.2008.02116.x
- 640 Marques, B. L., Brandao, C. U., Silva, E. F., Marques, V. A., Villela-Nogueira, C. A., Do, O. K., . . . Villar, L. M. (2012).
- 641 Dried Blood Spot Samples: Optimization of Commercial EIAs for Hepatitis C Antibody Detection and
- 642 Stability Under Different Storage Conditions. *Journal of Medical Virology*, 84(10), 1600-1607.
- 643 doi:10.1002/jmv.23379
- 644 Marques, B. L. C., do Espirito-Santo, M. P., Marques, V. A., Miguel, J. C., da Silva, E. F., Villela-Nogueira, C. A., ...
- 645 Villar, L. M. (2016). Evaluation of Dried Blood Spot Samples for Hepatitis C Virus Detection and
- 646 Quantification. Journal of Clinical Virology, 82, 139-144. doi:10.1016/j.jcv.2016.07.009
- 647 Mavedzenge, S. N., Davey, C., Chirenje, T., Mushati, P., Mtetwa, S., Dirawo, J., ... Cowan, F. M. (2015). Finger Prick
- 648 Dried Blood Spots for HIV Viral Load Measurement in Field Conditions in Zimbabwe. *PLoS ONE*, 10(5),
- 649 e0126878. doi:10.1371/journal.pone.0126878
- Mays, N., Pope, C., & Popay, J. (2005). Systematically Reviewing Qualitative and Quantitative Evidence to Inform
 Management and Policy-Making in the Health Field. *Journal of Health Services Research & Policy*,
- 652 *10*(Supplement 1), 6-20.
- McArdle, A. J., Turkova, A., & Cunnington, A. J. (2018). When do Co-Infections Matter? *Current Opinion in Infectious Diseases*, 31(3), 209-215. doi:10.1097/QCO.0000000000447

McCarron, B., Fox, R., Wilson, K., Cameron, S., McMenamin, J., McGregor, G., . . . Goldberg, D. (1999). Hepatitis C

656	Antibody Detection in Dried Blood Spots. Journal of Viral Hepatitis, 6(6), 453-456. doi:10.1046/j.1365-
657	2893.1999.00197.x
658	McGowan, J., Sampson, M., Salzwedel, D. M., Cogo, E., Foerster, V., & Lefebvre, C. (2016). PRESS Peer Review of
659	Electronic Search Strategies: 2015 Guideline Statement. Journal of Clinical Epidemiology, 75, 40-46.
660	doi:10.1016/j.jclinepi.2016.01.021
661	Miesse, P. K., Collier, B. B., & Grant, R. P. (2022). Monitoring of SARS-CoV-2 Antibodies Using Dried Blood Spot for
662	At-Home Collection. Scientific Reports, 12(1), 5812. doi:10.1038/s41598-022-09699-4
663	Mohamed, S., Raimondo, A., Penaranda, G., Camus, C., Ouzan, D., Ravet, S., Halfon, P. (2013). Dried Blood Spot
664	Sampling for Hepatitis B Virus Serology and Molecular Testing. PLoS ONE, 8(4), e61077.
665	doi:10.1371/journal.pone.0061077
666	Mwau, M., Danda, J., Mbugua, J., Handa, A., Fortunko, J., Worlock, A., & Nair, S. V. (2021). Prospective Evaluation of
667	Accuracy of HIV Viral Load Monitoring Using the Aptima HIV Quant Dx Assay with Fingerstick and
668	Venous Dried Blood Spots Prepared Under Field Conditions in Kenya. PLoS ONE, 16(4), e0249376.
669	doi:10.1371/journal.pone.0249376
670	Neogi, U., Gupta, S., Rodridges, R., Sahoo, P. N., Rao, S. D., Rewari, B. B., Shet, A. (2012). Dried Blood Spot HIV-1
671	RNA Quantification: A Useful Tool for Viral Load Monitoring Among HIV-Infected Individuals in India.
672	Indian Journal of Medical Research, 136(6), 956-962. Retrieved from
673	https://www.ncbi.nlm.nih.gov/pubmed/23391790
674	Nguyen, T. T., Lemee, V., Bollore, K., Vu, H. V., Lacombe, K., Thi, X. L. T., Tuaillon, E. (2018). Confirmation of
675	HCV Viremia Using HCV RNA and Core Antigen Testing on Dried Blood Spot in HIV Infected Peoples
676	Who Inject Drugs in Vietnam. BMC Infectious Diseases, 18(1), 622. doi:10.1186/s12879-018-3529-3
677	Noda, S., Eizuru, Y., Minamishima, Y., Ikenoue, T., & Mori, N. (1993). Detection of Human T-Cell Lymphotropic

- 678 Virus Type 1 Infection by the Polymerase Chain Reaction Using Dried Blood Specimens on Filter Papers.
- 679 Journal of Virological Methods, 43(1), 111-122. doi:10.1016/0166-0934(93)90094-8

- 680 Nugent, C. T., Dockter, J., Bernardin, F., Hecht, R., Smith, D., Delwart, E., . . . Giachetti, C. (2009). Detection of HIV-1
- in Alternative Specimen Types Using the APTIMA HIV-1 RNA Qualitative Assay. *Journal of Virological Methods*, 159(1), 10-14. doi:10.1016/j.jviromet.2009.02.015
- 683 Ondoa, P., Shamu, T., Bronze, M., Wellington, M., Boender, T. S., Manting, C., . . . Rinke de Wit, T. (2014).
- 684 Performance and Logistical Challenges of Alternative HIV-1 Virological Monitoring Options in a Clinical
- 685 Setting of Harare, Zimbabwe. *BioMed Research International*, 2014, 102598. doi:10.1155/2014/102598
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., . . . Moher, D. (2021). The
- 687 PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. *BMJ*, 372, n71.
- 688 doi:10.1136/bmj.n71
- Pannus, P., Fajardo, E., Metcalf, C., Coulborn, R. M., Duran, L. T., Bygrave, H., ... Preiser, W. (2013). Pooled HIV-1
- 690 Viral Load Testing Using Dried Blood Spots to Reduce the Cost of Monitoring Antiretroviral Treatment in a
- 691 Resource-Limited Setting. Journal of Acquired Immune Deficiency Syndromes, 64(2), 134-137.
- 692 doi:10.1097/QAI.0b013e3182a61e63
- Parr, J. B., Lodge, E. K., Holzmayer, V., Pepin, J., Frost, E. H., Fried, M. W., . . . Cloherty, G. (2018). An Efficient,
- Large-Scale Survey of Hepatitis C Viremia in the Democratic Republic of the Congo Using Dried Blood
 Spots. *Clinical Infectious Diseases*, 66(2), 254-260. doi:10.1093/cid/cix771
- Pirillo, M. F., Recordon-Pinson, P., Andreotti, M., Mancini, M. G., Amici, R., & Giuliano, M. (2011). Quantification of
- 697 HIV-RNA from Dried Blood Spots Using the Siemens VERSANT HIV-1 RNA (kPCR) assay. *Journal of*
- 698 Antimicrobial Chemotherapy, 66(12), 2823-2826. doi:10.1093/jac/dkr383
- 699 Pollack, T. M., Duong, H. T., Truong, P. T., Pham, T. T., Do, C. D., & Colby, D. (2018). Sensitivity and Specificity of
- Two Dried Blood Spot Methods for HIV-1 Viral Load Monitoring Among Patients in Hanoi, Vietnam. *PLoS* ONE, 13(1), e0191411. doi:10.1371/journal.pone.0191411
- 702 Prinsenberg, T., Rebers, S., Boyd, A., Zuure, F., Prins, M., van der Valk, M., & Schinkel, J. (2020). Dried Blood Spot
- 703 Self-Sampling at Home is a Feasible Technique for Hepatitis C RNA Detection. *PLoS ONE*, *15*(4), e0231385.
- 704 doi:10.1371/journal.pone.0231385

52

- 705 Roberts, C. P., & Klausner, J. D. (2016). Global Challenges in Human Immunodeficiency Virus and Syphilis Co-
- Infection Among Men Who Have Sex With Men. *Expert Review of Anti-Infective Therapy*, 14(11), 1037-1046.
 doi:10.1080/14787210.2016.1236683
- Roger, S., Lefeuvre, C., Grison, M., Ducancelle, A., Lunel-Fabiani, F., Pivert, A., & Le Guillou-Guillemette, H. (2020).
- 709Evaluation of the Aptima HBV Quant Dx Assay for Semi-Quantitative HBV Viral Load from Dried Blood

710 Spots. *Journal of Clinical Virology*, 129, 104524. doi:10.1016/j.jcv.2020.104524

- Rutstein, S. E., Kamwendo, D., Lugali, L., Thengolose, I., Tegha, G., Fiscus, S. A., . . . Mataya, R. (2014). Measures of
- 712 Viral Load Using Abbott RealTime HIV-1 Assay on Venous and Fingerstick Dried Blood Spots from
- 713 Provider-Collected Specimens in Malawian District Hospitals. Journal of Clinical Virology, 60(4), 392-398.
- 714 doi:10.1016/j.jcv.2014.05.005
- 715 Saludes, V., Antuori, A., Folch, C., Gonzalez, N., Ibanez, N., Majo, X., . . . HepCdetect, I. I. S. G. (2019). Utility of a
- One-Step Screening and Diagnosis Strategy for Viremic HCV Infection Among People Who Inject Drugs in
 Catalonia. *International Journal of Drug Policy*, 74, 236-245. doi:10.1016/j.drugpo.2019.10.012
- 718 Saludes, V., Antuori, A., Lazarus, J. V., Folch, C., Gonzalez-Gomez, S., Gonzalez, N., . . . Martro, E. (2020). Evaluation
- 719 of the Xpert HCV VL Fingerstick Point-of-Care Assay and Dried Blood Spot HCV-RNA Testing as
- Simplified Diagnostic Strategies Among People Who Inject Drugs in Catalonia, Spain. International Journal of
 Drug Policy, 80, 102734. doi:10.1016/j.drugpo.2020.102734
- 722 Saludes, V., Folch, C., Morales-Carmona, A., Ferrer, L., Fernandez-Lopez, L., Munoz, R., . . . Martro, E. (2018).
- 723 Community-Based Screening of Hepatitis C with a One-Step RNA Detection Algorithm from Dried-Blood

724 Spots: Analysis of Key Populations in Barcelona, Spain. *Journal of Viral Hepatitis*, 25(3), 236-244.

- 725 doi:10.1111/jvh.12809
- Santos, C., Reis, A., Dos Santos, C. V., Damas, C., Silva, M. H., Viana, M. V., ... Diaz, R. S. (2012). The Use of Real-
- Time PCR to Detect Hepatitis C Virus RNA in Dried Blood Spots from Brazilian Patients Infected
 Chronically. *Journal of Virological Methods*, 179(1), 17-20. doi:10.1016/j.jviromet.2011.06.012
- 729 Sawadogo, S., Shiningavamwe, A., Chang, J., Maher, A. D., Zhang, G., Yang, C., . . . Lowrance, D. W. (2014). Limited
- 730 Utility of Dried-Blood- and Plasma Spot-Based Screening for Antiretroviral Treatment Failure with Cobas

	53
731	Ampliprep/TaqMan HIV-1 version 2.0. Journal of Clinical Microbiology, 52(11), 3878-3883.
732	doi:10.1128/jcm.02063-14
733	Schmitz, M. E., Agolory, S., Junghae, M., Broyles, L. N., Kimeu, M., Ombayo, J., for, V. L. D. B. S. S. G. (2017). Field
734	Evaluation of Dried Blood Spots for HIV-1 Viral Load Monitoring in Adults and Children Receiving
735	Antiretroviral Treatment in Kenya: Implications for Scale-up in Resource-Limited Settings. Journal of
736	Acquired Immune Deficiency Syndromes, 74(4), 399-406. doi:10.1097/qai.000000000001275
737	Shayan, S. J., Nazari, R., & Kiwanuka, F. (2021). Prevalence of HIV and HCV Among Injecting Drug Users in Three
738	Selected WHO-EMRO Countries: A Meta-Analysis. Harm Reduction Journal, 18(1), 59. doi:10.1186/s12954-021-
739	00505-4
740	Shepherd, S. J., Baxter, R. E., & Gunson, R. N. (2019). Evaluation of the Abbott m2000 System for Dried Blood Spot
741	Detection of Hepatitis C virus RNA. Journal of Clinical Virology, 110, 7-10. doi:10.1016/j.jcv.2018.10.008
742	Sherman, G. G., Stevens, G., Jones, S. A., Horsfield, P., & Stevens, W. S. (2005). Dried Blood Spots Improve Access to
743	HIV Diagnosis and Care for Infants in Low-Resource Settings. Journal of Acquired Immune Deficiency
744	Syndromes, 38(5), 615-617.
745	Shimakawa, Y., Vernoux, L., Gabassi, A., Mercier-Delarue, S., Vincent, J. P., Simon, F., & Maylin, S. (2021). Analytical
746	Validation of Hepatitis B Core-Related Antigen (HBcrAg) Using Dried Blood Spots (DBS). Journal of Viral
747	<i>Hepatitis, 28</i> (5), 837-843. doi:10.1111/jvh.13489
748	Solmone, M., Girardi, E., Costa, F., Pucillo, L., Ippolito, G., & Capobianchi, M. R. (2002). Simple and Reliable Method
749	for Detection and Genotyping of Hepatitis C Virus RNA in Dried Blood Spots Stored at Room Temperature.
750	Journal of Clinical Microbiology, 40(9), 3512-3514. doi:10.1128/jcm.40.9.3512-3514.2002
751	Stene-Johansen, K., Yaqoob, N., Overbo, J., Aberra, H., Desalegn, H., Berhe, N., & Johannessen, A. (2016). Dry Blood
752	Spots a Reliable Method for Measurement of Hepatitis B Viral Load in Resource-Limited Settings. PLoS
753	ONE, 11(11), e0166201. doi:10.1371/journal.pone.0166201

- Taieb, F., Tram, T. H., Ho, H. T., Pham, V. A., Nguyen, L., Pham, B. H., . . . Madec, Y. (2016). Evaluation of Two
- Techniques for Viral Load Monitoring Using Dried Blood Spot in Routine Practice in Vietnam (French
- National Agency for AIDS and Hepatitis Research 12338). Open Forum Infectious Diseases, 3(3), ofw142.
- doi:10.1093/ofid/ofw142

758	Taieb, F., Tran Hong	g, T., Ho, H. T., Nguye	n Thanh, B., Pham Phuon	g, T., Viet Ta, D.,	. Madec, Y. (2018). First Field
	10102/11/11011	, ., .,,,,, .	in Themery Day I near Theory	g, i., i.ee i., 2., i.	(1010) 1100 1100

- 759 Evaluation of the Pptimized CE Marked Abbott Protocol for HIV RNA Testing on Dried Blood Spot in a
- 760 Routine Clinical Setting in Vietnam. *PLoS ONE*, *13*(2), e0191920. doi:10.1371/journal.pone.0191920
- 761 Takano, M., Iwahashi, K., Satoh, I., Araki, J., Kinami, T., Ikushima, Y., . . . Group, H. I. V. C. S. (2018). Assessment of
- 762 HIV Prevalence Among MSM in Tokyo Using Self-Collected Dried Blood Spots Delivered Through the
- 763 Postal Service. BMC Infectious Diseases, 18(1), 627. doi:10.1186/s12879-018-3491-0
- Tang, N., Pahalawatta, V., Frank, A., Bagley, Z., Viana, R., Lampinen, J., ... Wallis, C. L. (2017). HIV-1 Viral Load
 Measurement in Venous Blood and Fingerprick Blood Using Abbott RealTime HIV-1 DBS assay. *Journal of*
- 766 *Clinical Virology*, 92, 56-61. doi:10.1016/j.jcv.2017.05.002
- 767 Templer, S. P., Seiverth, B., Baum, P., Stevens, W., Seguin-Devaux, C., & Carmona, S. (2016). Improved Sensitivity of
- a Dual-Target HIV-1 Qualitative Test for Plasma and Dried Blood Spots. *Journal of Clinical Microbiology*,
 54(7), 1877-1882. doi:10.1128/jcm.00128-16
- Tola, M., Habib, R. O., Sylvia, A., Crowell, T. A., Rebecca, N. G., Charurat, M. E., ... Ndembi, N. (2021). Field
- 771 Evaluation of HIV-1 Viral Load Monitoring in Adults and Children Receiving Antiretroviral Treatment in
- Nigeria by Dried Blood Spot Testing with RealTime HIV-1 on m2000. *Journal of Clinical Virology*, 135, 104694.
 doi:10.1016/j.jcv.2020.104694
- 774 Tran, T. H., Nguyen, B. T., Nguyen, T. A., Pham, T. T. P., Nguyen, T. T. T., Mai, H. T. B., . . . Madec, Y. (2020). Dried
- 775
 Blood Spots Perform Well to Identify Patients with Active HCV Infection in Vietnam. Journal of Viral
- 776 *Hepatitis*, 27(5), 514-519. doi:10.1111/jvh.13263
- Tuaillon, E., Mondain, A. M., Meroueh, F., Ottomani, L., Picot, M. C., Nagot, N., . . . Ducos, J. (2010). Dried blood spot
 for hepatitis C virus serology and molecular testing. *Hepatology*, *51*(3), 752-758. doi:10.1002/hep.23407
- 779 UNAIDS. (2014). *Fast-Track: Ending the AIDS Epidemic by* 2030. Retrieved from Geneva, Switzerland:
- van Deursen, P., Oosterlaken, T., Andre, P., Verhoeven, A., Bertens, L., Trabaud, M. A., ... de Jong, J. (2010).
- 781 Measuring Human Immunodeficiency Virus Type 1 RNA Loads in Dried Blood Spot Specimens Using
- 782 NucliSENS EasyQ HIV-1 v2.0. Journal of Clinical Virology, 47(2), 120-125. doi:10.1016/j.jcv.2009.11.021

- 55
- 783 Vazquez-Moron, S., Ryan, P., Ardizone-Jimenez, B., Martin, D., Troya, J., Cuevas, G., . . . Resino, S. (2018). Evaluation
- 784 of Dried Blood Spot Samples for Screening of Hepatitis C and Human Immunodeficiency Virus in a Real-
- 785 World Setting. Scientific Reports, 8(1), 1858. doi:10.1038/s41598-018-20312-5
- 786 Vetter, B. N., Reipold, E. I., Ongarello, S., Fajardo, E., Tyshkovskiy, A., Ben, I., & Vasylyev, M. (2021). Prospective
- 787 Evaluation of Hepatitis C Virus Antibody Detection in Whole Blood Collected on Dried Blood Spots with
- 788 the INNOTEST HCV Ab IV Enzyme Immunoassay. Journal of Clinical Virology, 137, 104783.
- 789 doi:10.1016/j.jcv.2021.104783
- 790 Vidya, M., Saravanan, S., Rifkin, S., Solomon, S. S., Waldrop, G., Mayer, K. H., . . . Balakrishnan, P. (2012). Dried
- 791Blood Spots Versus Plasma for the Quantitation of HIV-1 RNA Using a Real-Time PCR, m2000rt Assay.

792 Journal of Virological Methods, 181(2), 177-181. doi:10.1016/j.jviromet.2012.02.006

- 793 Viljoen, J., Gampini, S., Danaviah, S., Valea, D., Pillay, S., Kania, D., . . . World Health Organization, A. K. B. S. G.
- (2010). Dried Blood Spot HIV-1 RNA Quantification Using Open Real-Time Systems in South Africa and
 Burkina Faso. *Journal of Acquired Immune Deficiency Syndromes*, 55(3), 290-298.
- 796 doi:10.1097/QAI.0b013e3181edaaf5
- Villar, L. M., de Oliveira, J. C., Cruz, H. M., Yoshida, C. F., Lampe, E., & Lewis-Ximenez, L. L. (2011). Assessment of
 Dried Blood Spot Samples as a Simple Method for Detection of Hepatitis B Virus Markers. *Journal of Medical Virology*, 83(9), 1522-1529. doi:10.1002/jmv.22138
- 800 Vinikoor, M. J., Zurcher, S., Musukuma, K., Kachuwaire, O., Rauch, A., Chi, B. H., . . . Wandeler, G. (2015). Hepatitis
- B Viral Load in Dried Blood Spots: A Validation Study in Zambia. *Journal of Clinical Virology*, 72, 20-24.
 doi:10.1016/j.jcv.2015.08.019
- 803 Vojnov, L., Carmona, S., Zeh, C., Markby, J., Boeras, D., Prescott, M. R., . . . Consortium, D. B. S. f. V. D. I. (2022). The
- 804 Performance of Using Dried Blood Spot Specimens for HIV-1 Viral Load Testing: A Systematic Review and
 805 Meta-Analysis. *PLoS Medicine*, 19(8), e1004076. doi:10.1371/journal.pmed.1004076
- 806 Weber, J., Sahoo, M. K., Taylor, N., Shi, R. Z., & Pinsky, B. A. (2019). Evaluation of the Aptima HCV Quant Dx Assay
- 807 Using Serum and Dried Blood Spots. *Journal of Clinical Microbiology*, *57*(4). doi:10.1128/jcm.00030-19

56

- 808 Whiting, P. F., Weswood, M. E., Rutjes, A. W., Reitsma, J. B., Bossuyt, P. N., & Kleijnen, J. (2006). Evaluation of
- 809 QUADAS, A Tool for the Quality Assessment of Diagnostic Accuracy Studies. *BMC Medical Research* 810 *Methodology*, 6(9). doi:10.1186/1471-2288-6-9
- 811 Wilson P., P. J. B., Holzmayer V., Carrell M., Tshefu A., Mwandagalirwa K., Muwonga J., Fwamba F., Kuhns M.,
- 812 Jhaveri R., Meshnick S.R., Cloherty G. (2018). Efficient Dried Blood Spot-Based Determination of Hepatitis B
- 813 Seroprevalence from a National Survey in the Democratic Republic of the Congo. Journal of Viral Hepatitis,
- 814 25(S2), 92-93. doi:10.1111/jvh.100_12923
- 815 Wong, M. P., Meas, M. A., Adams, C., Hernandez, S., Green, V., Montoya, M., . . . Harris, E. (2022). Development and
- 816 Implementation of Dried Blood Spot Based COVID-19 Serological Assays for Epidemiologic Studies.
- 817 *Microbiology Spectrum,* 10(3), e0247121.
- 818 Young, J., Ablona, A., Klassen, B. J., Higgins, R., Kim, J., Lavoie, S., . . . Lachowsky, N. J. (2022). Implementing
- 819 Community-Based Dried Blood Spot (DBS) Testing for HIV and Hepatitis C: A Qualitative Analysis of Key
 820 Facilitators and Ongoing Challenges. *BMC Public Health*, 22(1), 1085. doi:10.1186/s12889-022-13525-x
- Zeh, C., Ndiege, K., Inzaule, S., Achieng, R., Williamson, J., Chih-Wei Chang, J., . . . Nkengasong, J. (2017). Evaluation
- of the Performance of Abbott m2000 and Roche COBAS Ampliprep/COBAS Taqman Assays for HIV-1 Viral
- 823 Load Determination Using Dried Blood Spots and Dried Plasma Spots in Kenya. *PLoS ONE*, 12(6), e0179316.
- 824 doi:10.1371/journal.pone.0179316
- 825 Zhang, J., Zhang, L., Song, M., & Wang, W. (2010). Detection of HBV-DNA in Dried Bloodstains on Filter Paper by
- 826 Nested Polymerase Chain Reaction. *Laboratory Medicine*, 41(9), 535-539. doi:10.1309/lmgvuu8etvjnx91y