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Abstract12

Mendelian Randomisation (MR) is a statistical method that estimates causal effects be-13

tween risk factors and common complex diseases using genetic instruments. Heritable con-14

founders, pleiotropy and heterogeneous causal effects violate MR assumptions and can lead15

to biases. To tackle these, we propose an approach employing a PheWAS-based clustering16

of the MR instruments (PWC-MR). We apply this method to revisit the surprisingly large17

apparent causal effect of body mass index (BMI) on educational attainment (EDU): α̂ =18

-0.19 [-0.22, -0.16].19

As a first step of PWC-MR, we clustered 324 BMI-associated genetic instruments based20

on their association profile across 407 traits in the UK Biobank, which yielded six distinct21

groups. The subsequent cluster-specific MR revealed heterogeneous causal effect estimates22

on EDU. A cluster strongly enriched for traits related to socio-economic position yielded23

the largest BMI-on-EDU causal effect estimate (α̂ = -0.49 [-0.56, -0.42]) whereas a cluster24

enriched for primary impact on body-mass had the smallest estimate (α̂ = -0.09 [-0.13, -25

0.05]). Several follow-up analyses confirmed these findings: (i) within-sibling MR results (α̂26

= -0.05 [-0.09, -0.01]); (ii) MR for childhood BMI on EDU (α̂ = -0.03 [-0.06, -0.002]); (iii)27

step-wise multivariable MR (MVMR) (α̂ = -0.06 [-0.09, -0.04]) where time spent watching28

television and past tobacco smoking (two proxies for potential confounders) were jointly29

modelled.30

Through a detailed examination of the BMI-EDU causal relationship we demonstrated the31

utility of our PWC-MR approach in revealing distinct pleiotropic pathways and confounder32

mechanisms.33
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1 Introduction34

Genome-wide association studies[1] (GWASs) have identified many genetic variants associated35

with multiple complex phenotypes, aiding us in annotating single nucleotide polymorphisms36

(SNPs) and their functions, as well as identifying putative causal genes. As sample sizes of37

GWASs increase, more SNP associations are revealed which improve various downstream analy-38

ses such as polygenic score prediction, pathway- and tissue-enrichment, and causal inference[2, 3].39

Mendelian Randomisation[4, 5] (MR), an approach generally applied through the use of genetic40

variants/SNPs as instrumental variables (IVs) to infer the causal relationship between an expo-41

sure or a risk factor X and an outcome Y of interest, has become increasingly used thanks to42

well-powered GWASs from which hundreds of genetic associations with heritable exposures can43

be used as IVs.44

MR has three major assumptions concerning the the genetic variant G used as an instrument:45

(1) Relevance – G is strongly associated with the exposure. (2) Exchangeability – there is no46

confounder of the G-outcome relationship. (3) Exclusion restriction – G affects the outcome47

only through the exposure. Each instrument provides a causal effect estimate, which can then48

be combined with others using an inverse variance-weighting[6] (IVW) method to obtain an es-49

timate of the total causal effect of the exposure on the outcome. This estimate is more reliable50

than observational associations due to it being more protected against unmeasured confounding51

and reverse causality, provided that the core conditions are met.52

Thanks to well-powered GWASs we have also discovered that most genetic instruments are53

highly pleiotropic[7], i.e. associated to more than a single trait. This has also been shown in54

phenome-wide association studies (PheWASs), where associations between a SNP and a large55

number of phenotypes are tested. The situation when a genetic variant influences multiple56

traits, but there is a primarily associated trait and all other trait associations are fully me-57

diated by the primary trait, is referred to as vertical pleiotropy. On the other hand, genetic58

variants that affect some traits through pathways other than the primary trait (the exposure) –59

a phenomena known as horizontal pleiotropy – are in direct violation of the exclusion restriction60

assumption and could lead to biased causal effect estimates. However, if the InSIDE assump-61

tion [8](Instrument Strength is Independent of the Direct Effect on the outcome) holds and the62

direct SNP effects are on average null, then IVW will yield consistent causal effect estimates.63

There have been MR extensions to IVW such as MR-Egger to produce less biased causal ef-64

fect estimates if the InSIDE assumption holds and direct effects are not null on average. Note65

that violation of the InSIDE assumption leads to correlated pleiotropy, which can severely bias66

causal effect estimates. Such phenomenon may emerge as a result of a heritable confounder of67

the exposure-outcome relationship and has been modelled in the past[9, 10].68

Well-powered GWASmay also provide confounded genetic associations through dynastic effects[3, 11],69

assortative mating[12, 13], and population stratification[14]. These phenomena can introduce cor-70

relation between an instrument and confounding factors, such as parental/partner traits or ge-71

netic ancestry leading to a violation of the exchangeability assumption and biased causal effect72

estimates. This type of confounding can be resolved when using family-based study designs[15, 16]73

such as sibling-pair studies. Since genetic differences between sibling pairs are due to indepen-74

dent and random meiotic events, these effects are unaffected by population stratification and75

other potential confounders influencing the phenotype. This and other family-based designs76

have been used to obtain unbiased heritability estimates, validate GWAS results and test for77

unbiased causal effect estimates using MR[17, 18].78

Another factor that can lead to complications in MR studies is the presence of heterogeneous79

causal effects emerging due to distinct biological mechanisms: various subtypes of the exposure80

(e.g. subcutaneous vs visceral adiposity) or different biological pathways through which the81
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exposure impacts the outcome (e.g. interaction between the exposure and other factors). To82

date, confounding of genetic associations, horizontal pleiotropy and heterogeneous causal effect83

have been largely treated as distinct mechanisms in MR modelling. However, what they have84

in common is that they can lead to variable causal effects estimated depending on the group of85

IVs used in the MR.86

To address this, we introduce in this paper our approach of PheWAS-driven clustering of instru-87

mental variables (PWC-MR) and test the resulting clusters for distinct pathways or mechanisms88

that could underlie the overall causal effect of the exposure. Throughout the paper, we demon-89

strate the approach through the example of estimating the causal effect of body mass index90

(BMI) on educational attainment (EDU). This relationship has been analysed extensively in91

the past and family studies have shown that an apparent strong effect of higher BMI on lower92

educational attainment is shrunk to near zero when using family studies[17]. One explanation is93

that offspring BMI is influenced by parental alleles associated with parental (rearing) behaviour,94

which in turn modify the environment of the offspring. Such parental traits act as a confounder95

of the offspring genotype-EDU relationship, hence violate the exchangeability assumption of96

MR. Moreover, they confound the BMI-EDU association in the tested sample, violating the97

exclusion-restriction assumption and inducing correlated pleiotropy (see Figure 1a). Thus, it98

is plausible that some of the detected IV clusters arise through parental genetic confounding99

which may manifest statistically as horizontal pleiotropy. To test this, we ran a systematic con-100

founder search and probed the causal effect of the exposure conditional on candidate confounder101

traits.102
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2 Methods103

2.1 Instrumental variable selection and PheWAS104

As our primary analysis, we aimed to investigate the potential pleiotropy-patterns emerging105

from the grouping of IVs that are strongly associated with an exposure of interest, as outlined106

in Figure 1b. With BMI selected as the exposure trait, we obtained IVs from the Neale group’s107

UK Biobank GWAS analysis[19] (data sources can be found in Supplementary Table 1) by filtering108

for genome-wide significant SNPs (i.e. association p-value less than 5×10−8) followed by linkage109

disequilibrium (LD)-based clumping using the TwoSampleMR R package[20] with the following110

parameters: clump kb = 10, 000, clump r2 = 0.001, pop = “EUR” to obtain independent111

IVs.112

This left us with 348 BMI-associated IVs, for which we ran PheWASs with 1, 480 traits from113

the Neale group UK Biobank GWAS analysis[19]. We extracted for each trait and for each SNP114

the association effect and the corresponding standard error, creating a data matrix of 348 SNPs115

by 1, 480 traits. For the 1, 480 traits, we also extracted details such as variable type, origin and116

complete sample size, among others.117

2.1.1 Quality control118

We removed traits from the PheWAS data matrix that had missing association effects as well as119

duplicates (keeping the most recent version). Furthermore, we filtered out traits for which the120

effective sample size was less than 50, 000 due to their low power of association, leaving us with121

424 traits.122

Using genetic correlation data from the Neale group[19], we further removed traits that had a123

high genetic correlation with BMI, i.e. the exposure, (rg > 0.75), to avoid obvious repetitions of124

traits closely related to it. The resulting association effect data matrix of 348 SNPs and 407 traits125

was then standardised (SNP effects are on a SD/SD scale) and used for further analysis. Note126

that for simplicity, effect sizes for binary traits were treated as those of continuous traits.127

In order to test for invalid IVs, we performed a trait-wide variant of Steiger-filtering[21]. Specif-128

ically, for each SNP, we tested if any of the traits had a significantly stronger (in terms of129

explained variance) association compared to that of the exposure. The significance threshold130

for this one-sided t-test was corrected for using the total number of traits remaining (p-value131

< 0.05/407). This revealed 24 SNPs more strongly associated to traits other than BMI (such as132

‘Whole body water mass’, ‘Basal metabolic rate’ and ‘Sitting height’) that were then removed133

from further analysis.134

2.2 K-means clustering and trait identification135

With the aim of discovering distinct meaningful groups of SNPs among the 324 IVs, we proceeded136

with the clustering of the SNPxTrait association effect matrix using the K-means algorithm[22].137

Taking the absolute standardised effects matrix, we normalised the data frame with respect to138

the SNPs such that the variance of the SNP effects across all the traits equalled 1. We used the139

absolute effects to cluster, in order to ensure that negatively correlated traits were considered140

similar by the Euclidean distance based similarity measure of the k-means clustering. We then141

compared the performance of the clustering with different number of clusters ranging from two142

to 50, by measuring the Akaike Information Criterion (AIC). After finding the number of clusters143

with the lowest AIC score (six clusters), we proceeded with the assignment of each SNP to one144

of the six clusters.145

In order to identify traits that were particularly associated to SNPs in each of the six clusters,146
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we computed an enrichment ratio (ER) in this way:147

For each trait t, we calculated the per-SNP average squared effect in a given cluster j, denoted148

as σ2
j,t. Given that SNP i belongs to cluster j, σ2

j,t was calculated as follows:149

σ2
j,t =

1

|cj |
∑
i∈cj

β2
i,t

where cj represents the set of SNPs in cluster j and |cj | its cardinality. We then normalised these150

per-SNP average squared effects for each cluster (k total clusters) across all traits to obtain the151

enrichment ratio (ER), Rj,t:152

Rj,t =
σ2
j,t

1
K

∑K
k=1 σ

2
k,t

where K is the total number of clusters. For each cluster (j), traits were then prioritised by the153

(highest) value of ER (Rj,t).154

Figure 1: Directed Acyclic Graph (DAG) describing a plausible model and the flow diagram representing
how the PWC-MR approach aims to disentangle causal effect between trait pairs from confounding or
pleiotropy. Panel a illustrates a DAG involving early and later-in-life (late) versions of different traits. In our example:
X and Y could be BMI and EDU, respectively, U represents a heritable confounder, whereas Z represents a parental
trait involved in exerting dynastic effects. The superscripts p and o stand for parental and offspring respectively, and the
dashed arrows from X to Y represent the different biological mechanisms through which a causal effect can emerge. Panel
b represents the main steps of the PWC-MR method: (i) Instrument selection and PheWAS; (ii) IV clustering; and (iii)
Enrichment analysis and cluster specific MR.
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2.2.1 Causal effect estimate per cluster155

We measured the cluster-specific IVW causal effect estimate on the outcome (EDU) using the156

standardised SNP effects in each cluster, and then compared these estimates to the causal157

effect estimate using all SNPs. We used the TwoSampleMR R package[20] for this analysis, and158

although we use two-sample MR techniques despite having a close to complete sample overlap,159

this does not lead to substantial biases[23]. Measures of IV heterogeneity are calculated using the160

Cochran’s Q-statistic[24] for the IVW method for each cluster. Furthermore, average cluster-161

heterogeneity (per-IV variance) is also calculated for each cluster from the above-mentioned162

parameter.163

As sensitivity analyses, PWC-MR was repeated twice, once with a different exposure trait164

(replacing BMI with childhood BMI), and another with a different outcome trait (replacing165

EDU with systolic blood pressure).166

2.3 Systematic confounder search167

In order to decide which of the emerging clusters represent genetic confounding or true biological168

heterogeneity, we systematically searched for BMI-EDU confounders. To do this, we investigated169

the bi-directional causal effects that each trait had on both the exposure and the chosen outcome.170

Firstly, an extra filtering step was done where traits that were highly genetically correlated with171

the outcome (rg > 0.75) were removed from the total 407 traits of the previous analysis.172

Then we ran a bidirectional MR for the remaining uncorrelated traits using the TwoSampleMR173

R package[20], and obtained four sets of causal effect measurements per trait (bidirectional, two174

different outcome traits - BMI and EDU). To select bidirectional causal effect estimates from175

those calculated by the different methods in the TwoSampleMR package[20] (Weighted median,176

Inverse variance weighted, Simple mode, and Weighted mode), we ordered the p-values of the177

causal effect estimates for the different methods and selected the estimate of the second most178

significant method to ensure that at least one other method supports the causal claim.179

The next step was to identify the direction of causality. To do so, we performed a one-sided t-test180

on the estimated causal effect between the trait and the exposure, BMI. If the t-test association181

p-value was < 0.05, then the trait had a (nominally) significantly larger effect on the exposure,182

and if the p-value was ≥ 0.95, then the exposure had a (nominally) significantly larger effect183

on the trait. For all the p-values in between, it was challenging to assign a direction in which184

the causal effect was stronger, and thus these traits were not further categorised. The p-value185

thresholds we apply are not intended to suggest that there is a transition point at which the186

meaning of associations change. Rather we use these as a heuristic that is required to control187

type I error rate at an arbitrary (5%) threshold.188

The same was done to explore the relationship between the traits and the outcome trait (EDU).189

This allowed us to classify the traits into candidate confounders, mediators, colliders and other190

categories (as seen in the middle panel of Supplementary Figure S1). For example, a confounder191

was defined as a trait with a significantly larger effect on both exposure and outcome than the192

reverse. We then focused only on the confounders which can distort MR estimates and filtered193

them further to make sure that they have at least a nominally significant MR estimate (p-value194

< 0.05) on both BMI and EDU. We were lenient in our categorisation of candidate traits as195

adding potentially irrelevant traits would not bias the multivariable causal effect of BMI in the196

next step. Mediators and colliders were not considered further since their inclusion into an197

MVMR does not alter the exposure’s causal effect. The same holds for traits with a direct effect198

on either the exposure or the outcome only.199

Furthermore, to test how compatible the two lines of analysis were, we examined the cluster-200

specific enrichment ratio values for the set of candidate confounder traits we obtained.201
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2.3.1 Multivariable MR202

Focusing on the candidate confounder traits resulting from the systematic search that could bias203

the causal effect estimate between the exposure-outcome pair, we first ran a stepwise multivari-204

able MR (MVMR) (adapted from the bGWAS R package[25]) with them as exposures to test205

their effect on our chosen outcome, EDU.206

To do this, we created a Z-score matrix combining genome-wide significant (p-value less than207

5× 10−8) and independent (LD-clumped clump kb = 5, 000, clump r2 = 0.01) SNPs and their208

Z-scores for the candidate confounder traits, given that each SNP had an effect that is genome-209

wide significant for at least one of the candidate traits. We then removed any trait that had less210

than three instruments, leaving us with a Z-score matrix of 274 SNPs and 5 traits . Using this211

Z-score matrix as input for step-wise MVMR, we obtained a final list of traits with multivariable212

causal effects with a p-value < 0.05/5 on our chosen outcome. To ensure the strength of the213

instruments used for running MVMR, we calculated the conditional F-statistic for our main214

exposure (BMI) given each of the surviving traits and their different combinations. We then215

ran standard MVMR using the combination of traits with a conditional F-statistic of BMI > 8,216

and BMI as exposures to estimate the conditional causal estimates on EDU.217

We were more lenient with the conditional F-statistic threshold (typically 10)[26] to ensure that218

epidemiologically relevant traits are included in the MVMR.219

2.4 Relation to other approaches220

2.4.1 Comparison against MR-Clust221

We compared the k-means clustering of BMI IVs against another IV clustering method called222

MR-Clust[27], which requires as input the unstandardised SNP effects on both the exposure and223

the outcome, as well as the standard error of the SNP on each. To do so, we performed a Fisher’s224

exact test to examine the frequency distribution of SNPs in each of the k-means clusters against225

the MR-Clust clusters.226

2.4.2 Colocalisation analysis227

To further interpret the findings of the IV clustering, we sought to test if specific patterns of228

colocalisation in different tissue types appear for the different IV clusters.229

To do this, we reran the steps detailed in Leyden et al.[28] for the 324 BMI IVs used in this230

work. For each IV, we tested for genetic colocalisation between the BMI GWAS data and the231

gene expression (eQTL) data of both subcutaneous adipose and brain tissue (data sources can232

be found in Supplementary Table 1). For each SNP tested, we took a margin of 200kb up- and233

downstream, and used the coloc R package[29] to test the SNP’s colocalisation with each gene234

found in that region, once using brain eQTL data, and another colocalisation using adipose235

eQTL data. We declared colocalisation if the posterior probability of the model sharing a single236

causal variant was larger than 80%. For each of the aforementioned clusters, we investigated237

if the IVs were more strongly enriched for or depleted in one tissue or the other using Fisher’s238

exact test.239
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3 Results240

3.1 Overview of the method241

We applied the PWC-MR approach to investigate potential horizontal pleiotropic effects (emerg-242

ing due to heritable confounders, dynastic effects, genetic subtypes of obesity and other pleiotropic243

mechanisms, see Figure 1a) of BMI on educational attainment. The analysis focused on grouping244

the IVs of the exposure by running a PheWAS-based clustering to reveal distinct mechanisms245

or pathways underlying their overall effect on the exposure (Figure 1b). This was done by ob-246

taining the standardised PheWAS association of the BMI IVs across a filtered set of 408 traits,247

and running a k-means clustering on the resulting matrix. This resulted in six clusters of IVs248

for BMI, which were then annotated by traits based on the association of the cluster-member249

SNPs with each trait. Specifically, for each cluster-trait pair we computed the average explained250

variance of the trait by the SNPs of the given cluster. This yielded for each cluster-trait pair an251

enrichment ratio (ratio of the average explained variances) and we chose the top ten traits with252

the highest enrichment ratio for each cluster. Furthermore, the causal effect of each cluster’s253

IVs on education was calculated and compared against each other and that of the causal effect254

obtained using all BMI IVs.255

To complement our findings from the clustering-based analysis, we explored (i) the BMI-EDU256

causal relationship using sib-regression SNP effect sizes[18], (ii) the childhood BMI-EDU causal257

relationship, (iii) replacing the outcome trait with systolic blood pressure (SBP), and finally258

(iv) the potential role of each of the filtered set of traits as a confounder of the BMI-EDU259

relationship.260

We implemented the latter one by systematically running bidirectional MR between each of261

the traits and either BMI or EDU as outcome, then classifying the traits depending on their262

bidirectional associations with both BMI and EDU. The resulting set of candidate confounder263

traits was further analysed for its potential to bias the causal effect of BMI on EDU. To assess264

this, we ran stepwise MVMR and finally calculated the causal effect of BMI on EDU conditional265

on the surviving set of candidate confounder traits of the BMI-EDU relationship.266

To further understand the emerging clusters, we sought to uncover tissue-specific mechanisms.267

To do this, we performed a colocalisation analysis of the BMI and gene expression association268

signals at each locus around (±400kb) the 324 BMI IVs. For the gene expression association269

we used eQTL data from both adipose and brain tissue. This yielded a proportion of brain-vs-270

adipose colocalised IVs for each cluster.271

3.2 PheWAS-based K-means clustering and trait identification272

After identifying 324 genome-wide significant SNPs as IVs for BMI, and selecting 407 filtered273

traits to run PheWAS on, we obtained a standardised effect matrix of the 324 IVs on the 407274

traits. Normalising the matrix by IVs and running K-means clustering on it revealed that six275

clusters yielded the lowest AIC score (Supplementary Figure S2) when compared to varying276

the number of clusters from two to 50. The number of SNPs in each of the six clusters were:277

32, 98, 35, 41, 69, 49 respectively (Supplementary Table 2).278

Next, we computed an enrichment ratio (ER) to identify with which traits the SNPs in each279

cluster were strongly associated. The overall ER value between clusters was roughly centred280

around 1, however clusters #2, #3, #4, and #6 had some large ER values (see Supplementary281

Figure S3). Visualising the top 10 enriched traits in each cluster and their ER values in Figure282

2 and Supplementary Table 3, we see that cluster #2 is strongly enriched for lean mass traits283

such as ‘Trunk fat-free mass’ and ‘Whole body fat-free mass’.284
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Similarly, cluster #3 seemed to mostly be enriched for blood- and body stature-related traits285

such as ‘Platelet count’ and ‘Standing height’, while cluster #4 was enriched for traits related286

to socio-economic position (SEP) such as ‘Job involves heavy manual or physical work’, ‘Time287

spent outdoors in summer’, and ‘Fluid intelligence score’. Lastly cluster #6 was enriched for288

food supplements/nutrients such as ‘Folate’ and ‘Potassium’.289

Other pulmonary diagnosis
Diseases of the respiratory system

COPD differential diagnosis
ILD differential diagnosis

Medication for pain relief/constipation/heartburn
Ischaemic heart disease, wide definition

Unable to work because of sickness/disability
Cereal type: Other

Strenuous sports
Coronary atherosclerosis

Trunk fat−free mass
Trunk predicted mass

Comparative body size at age 10
Whole body fat−free mass

Whole body water mass
Arm fat−free mass (right)
Leg fat−free mass (right)

Leg predicted mass (right)
Arm predicted mass (right)

Basal metabolic rate
Standing height
FEV1, predicted

Sitting height
Mean platelet volume

Platelet count
Monocyte percentage

Platelet distribution width
Haemoglobin concentration

Comparative height size at age 10
Haematocrit percentage

Job involves heavy manual/physical work
Job involves mainly walking or standing

Time spend outdoors in summer
College or University degree

Fluid intelligence score
Qualifications: None

Average total household income before tax
Ground coffee

Age completed full time education
A levels/AS levels

Family relationship satisfaction
Frequency of light DIY in last 4 weeks

Close to major road
Reducing amount of alcohol drunk

Traffic intensity on the nearest road
Poultry intake

Vitamin D
Total traffic load on major roads

Vitamin B
Beef intake

Folate
Vitamin B6

Englyst dietary fibre
Potassium

Energy
Total sugars

Carbohydrate
Iron

Magnesium
Vitamin C

C1 C2 C3 C4 C5 C6
Cluster

1

2

3
ER

Figure 2: Heatmap of the enrichment ratio of the top 10 traits in each cluster. K-means clustering of BMI
revealed six clusters with the following trait enrichment ratios.

3.2.1 Causal effect estimate per cluster290

To test whether the clusters had different causal effects on a selected outcome than the overall291

causal effect (using all IVs), we computed the IVW causal effect estimate of each cluster on292

education using cluster-specific IVs. As seen in Figure 3a and Supplementary Table 4, the293

causal effect estimates between the different clusters are significantly heterogeneous (Q-test294

value = 130.61, p-value < 10−300). Clusters #2 and #5 had the smallest causal effect estimates295

of −0.09 (p-value = 1.23× 10−5) and −0.12 (p-value = 5.22× 10−6) respectively, where cluster296

#2 was enriched for lean-mass traits. These estimates are consistent with those obtained from297

within-family studies, which are relatively immune to confounding. By contrast, clusters #1 and298

#4 had the largest negative causal effect estimates of -0.44 (p-value = 7.78× 10−20) and -0.49299
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(p-value = 1.63 × 10−44) respectively, where cluster #4 was strongly enriched for SEP-related300

traits.301

All the clusters were less heterogeneous than the group of all the IVs combined (see ‘Avg het’302

in Supplementary Table 4).303
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Figure 3: Forest plot of IVW causal effect estimate on outcome using either all exposure IVs or cluster-
specific IVs. Panel a shows causal effect estimates of adult BMI on EDU, panel b proxy of childhood BMI (cBMI) on
EDU, and panel c adult BMI on SBP. Horizontal error bars represent the 95% confidence interval. The blue vertical line
represents the causal effect estimated using all BMI IVs. Box sizes of clusters represent the proportion of the number of
IVs in each cluster to the total.

3.3 Post hoc analyses304

To test the robustness of the PWC-MR results, we performed four additional analyses. First,305

we analysed the same exposure and outcome, but using sib-regression-based SNP effect sizes306

instead of SNP effects from GWAS of unrelated samples. Second, we replaced the exposure with307

childhood BMI and estimated its causal effect on EDU. Third, we replaced the outcome, EDU,308

with SBP. Finally, we executed a systematic search for confounders to include in a multivariable309

MR analysis.310

3.3.1 Sib-regression MR311

In Howe et al.(2022)[18], within-sibship (within-family) meta-analysed GWAS estimates were312

generated from 178,086 siblings across 19 cohorts. Using these effect estimates, MR was per-313

formed with BMI as exposure on multiple traits, including educational attainment. They used314

418 independent and genome-wide significant genetic variants for BMI, and estimated its effect315

on EDU using IVW to be -0.05 (95% CI: −0.09,−0.01).316

They also used jackknife to estimate the standard error of the difference between the sib-317

regression MR estimate and that of the GWAS of unrelated samples MR estimate, -0.19 (95%318

CI: −0.22,−0.16). Using the difference Z-score to generate a p-value for heterogeneity between319

the two estimates revealed a p-value < 0.001.320
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3.3.2 Causal effect of childhood BMI on Educational attainment321

We used the UK Biobank trait ‘Comparative body size at age 10’ as a proxy for childhood322

BMI – a measure that has been validated against measured BMI in childhood[30, 31] – for the323

exposure trait. Childhood BMI is expected to be less confounded by (parental) SEP compared324

to adult BMI and hence we expect to see a less biased causal effect on EDU. For this trait,325

we had 171 genome-wide significant SNPs that we used as IVs for the analysis. Of these, 16326

SNPs were more strongly associated to traits other than childhood BMI and were thus excluded327

from further analysis. The standardised effect matrix of the remaining 155 SNPs across 461328

traits was clustered into four clusters (yielding optimal AIC), each containing 37, 42, 32, 44 IVs329

respectively (Supplementary Figure S4, Supplementary Table 6).330

Analysing the trait enrichment for each cluster revealed only two clusters with high ER values:331

clusters #2 and #4 (Supplementary Figure S5, Supplementary Table 7). Cluster #2 had only332

two traits with ERs greater than 2, which were ‘Number of fluid intelligence questions attempted333

within time limit’ and ‘Fluid intelligence score’, whereas cluster #4 was highly enriched for body-334

measurement/fat-mass traits such as ‘Waist circumference’ and ‘Whole body fat mass’ (see335

Supplementary Figure S6). However, calculating the IVW causal effect estimate for each cluster336

and comparing it to the estimate calculated using all IVs revealed homogeneous causal effect337

estimates with a Q-statistic of 3.84 (p-value of 0.43) as seen in Figure 3b and Supplementary338

Table 8. Cluster #2 had a causal effect estimate of −0.09 (95% CI:-0.1638, -0.0148), and cluster339

#4 had a causal effect estimate of −0.04 (95% CI:-0.0823, -0.0024). Noteworthy is the finding340

that the IVs of cluster #2 were more heterogeneous than all the IVs combined. Thus, we341

obtained a massively attenuated causal effect of BMI on EDU, when childhood BMI is used342

as an exposure. Reassuringly, no SEP-enriched cluster emerged and the cluster specific causal343

effects were homogeneous.344

3.3.3 Causal effect of BMI on SBP345

To find further evidence that our approach does not always reveal distinct causal effects when346

the causal effect is non-null, we replaced EDU with SBP as outcome. Namely, we tested a347

well-established non-null causal relationship that is hypothesised to not be biased by pleiotropy348

or confounding: BMI’s effect on SBP. Using the same six clusters previously obtained for BMI,349

we calculated the estimated causal effect of each of the clusters compared to using all the IVs350

combined on SBP. This revealed a homogeneous set of causal effect estimates (Q-test value of351

4.49, p-value = 0.61), with the IVW estimate using all IVs being 0.15 (p-value = 1.09× 10−28)352

as seen in Figure 3c and Supplementary Table 5.353

3.3.4 Systematic confounder search and MVMR analysis354

Given our suspicion that the large BMI-EDU causal effect is driven by heritable confounders,355

we performed a systematic search to reveal traits that may be potential confounders. As de-356

scribed in the Methods section, the strength of the bidirectional effect of the traits on either357

the exposure or the outcome determined their categorisation. This led to the identification of358

19 traits that were found to be candidate confounder traits (Supplementary Table 9). Matching359

the 19 confounder traits from this analysis to their respective ER across the six clusters from360

the previous analysis revealed higher ERs in cluster #1 and cluster #4 (see Supplementary361

Figure S7), which was associated with SEP-related traits. Noteworthy is that the traits labelled362

as candidate confounders were predominantly environmental exposures, such as ‘Exposure to363

tobacco smoke outside home’ and ‘Transport type for commuting to job workplace: Cycle’.364

Furthermore, these candidate confounder traits are attributed as candidate or potential con-365

founders since they are most likely only genetic correlates of the true confounding traits of the366
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BMI-EDU relationship and not act as true confounders themselves.367

To investigate the possible biasing effect that potential confounder traits can have on the causal368

relationship of BMI on EDU, we ran a stepwise MVMR on these 19 candidate confounder369

traits (Supplementary Table 9). During the creation of the Z-score matrix of SNPs and traits,370

only five traits had at least three genome-wide significant and independent SNPs whose effects371

could be used in the analysis. These five traits were: ‘Time spent watching television (TV)’,372

‘Usual walking pace’, ‘Past tobacco smoking’, ‘Frequency of tiredness / lethargy in last 2 weeks’,373

and ‘Average weekly beer plus cider intake’. Of these, only the first three had a significant374

causal effect estimate on EDU (p-value < 0.05/5) as estimated by stepwise MVMR, and were375

subsequently used as exposures alongside BMI in a standard MVMR analysis.376

To ensure the strength of the IVs used in the MVMR analysis, we calculated the conditional377

F-statistic and the MVMR causal effect estimate of BMI given various combinations of the 3378

remaining candidate confounder traits. We saw the expected trend of a decreasing conditional379

F-statistic with the addition of traits and their IVs to the analysis (see Supplementary Figure380

S8). We note that the causal effect estimate of BMI on EDU decreases when any combination of381

the candidate confounder traits is used with BMI as exposure in comparison to the univariable382

MR causal effect estimate of BMI on EDU (−0.19, p-value = 7.11 × 10−41). We settled on383

the combination of candidate confounder traits yielding a conditional F-statistic for BMI > 8,384

for which the corresponding causal effect estimates are reported in Table 1 below. This choice385

was a compromise between two sources of biases: weak instrument bias vs upward bias due to386

omitting relevant confounders.387

Trait Description α estimate SE P-value Conditional
F-statistic

1070 Time spent watching television -0.4077 0.0374 3.46E-23 10.80
1249 Past tobacco smoking 0.1394 0.0384 3.39E-04 15.74
21001 Body mass index (BMI) -0.0633 0.0136 4.98E-06 56.89*

Table 1: MVMR analysis results of BMI and two candidate confounder traits on education. α: causal
effect estimate. The conditional F-statistic column refers to BMI’s calculated conditional F-statistic on each trait. The
value in that column for BMI however, indicated by *, refers to BMI’s F-statistic calculated when running a univariable
MR with only BMI as exposure.

3.4 Relationship with other approaches388

3.4.1 Comparison against MR-Clust389

Other known IV clustering methods include MR-Clust[27], which attempts to cluster variants390

with similar causal effect estimates together following the hypothesis that exposures can affect391

an outcome by distinct causal mechanisms to varying extents. MR-Clust also accounts for the392

possibility of spurious clusters by assigning IVs with uncertain causal effect estimates to ‘null’393

or ‘junk’ clusters.394

We compared the k-means clustering of BMI IVs against that of MR-Clust with EDU as the395

outcome. The results revealed two main clusters as well as a ‘null’ cluster. Cluster #1 had 35396

SNPs, 13 of which had an inclusion probability greater than 80%. Cluster #2 had 171 SNPs,397

36 of which had an inclusion probability greater than 80%, and the remaining 142 SNPs were398

categorised into the ‘null’ cluster as seen in Supplementary Figure S9. The mean causal effect399

estimate of SNPs in cluster #1 was −0.496, whereas it was −0.246 for cluster #2. Searching400

for trait associations for the SNPs in each of the clusters revealed that body measurement traits401

like ‘Arm fat mass’ or ‘Body fat percentage’ are associated to SNPs in both clusters, while402
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SEP-related traits such as ‘Fluid intelligence score’ or ‘Time spent watching television’ were403

associated to more SNPs in cluster #1 than in cluster #2.404

Comparing the SNP clustering between the k-means method against that of MR-Clust in Table405

2 below, we see that cluster #1 in MR-Clust, which seems to be more strongly enriched for406

SEP traits than cluster #2, has SNPs that were similarly clustered in clusters #1 and #4 using407

k-means, matching their large negative causal effect of BMI on EDU. However, the same distinct408

comparison cannot be made for SNPs in cluster #2 of MR-Clust.409

Of the 12 Fisher’s exact tests performed to examine the contingency of SNPs in the two separate410

sets of clusters, four tests revealed a significant association: SNPs in cluster #1 of MR-Clust411

were significantly associated with SNPs in clusters #1, #2 (lean-mass traits), #4 (SEP-related412

traits) and #5 of the K-means clustering.413

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6

Cluster1 13 1 0 13 0 5
Cluster2 15 38 21 26 32 29

Null 4 59 14 2 37 15

Table 2: Cross table of BMI IVs clustered using K-means and MR-Clust.

3.4.2 Colocalisation analysis414

With the aim of finding supporting evidence for the k-means clustering and enrichment analy-415

sis, we ran a genetic colocalisation analysis on BMI IVs and two types of tissue: subcutaneous416

adipose and brain, the results of which can be found in Supplementary Tables 10 and 11 respec-417

tively.418

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6

Adipose 9 9 14 3 6 5
Brain 3 3 4 1 2 4
Both 1 2 1 1 4 4

Neither 29 77 36 23 53 47

Table 3: Cross table indicating the number of genes whose expression colocalises in adipose/brain tissue
with BMI. The colocalisation exercise was performed at loci-defined BMI IVs falling into particular clusters. Colocalisation
was defined as the posterior probability of both GWAS and eQTL being associated is ≥ 0.8 in either brain or adipose tissue
or both.

419

Running a set of Fisher’s tests to compute the overlap between the membership of the SNPs in420

the six clusters and their tissue of colocalization did not reveal any association between clusters421

and tissues.422
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4 Discussion423

We have developed a method that performs informative clustering of IVs by utilising their424

association with a large number of traits. Our use of PheWAS data to guide the clustering of425

IVs has revealed distinct mechanisms by which exposure effects could act on outcomes. For our426

exposure, BMI, six distinct clusters were obtained through optimal K-means clustering. These427

clusters had well-defined trait enrichments, with clusters matching SEP-related, substrate, and428

body measurement traits. Estimating individual causal effects of each cluster on EDU as an429

outcome revealed heterogeneous causal effect estimates which allowed us to further strengthen430

our suspicion that the MR estimate for the causal effect of BMI on EDU is upward biased when431

using population-based SNP effect size estimates due to confounding.432

We note from MR analysis run using within-sibling GWAS data[18] that the causal effect estimate433

between BMI and EDU is −0.05 (95% CI: −0.09,−0.01), which is smaller than the causal effect434

estimate seen using population based GWAS data (−0.19, 95% CI: −0.22,−0.16). Investigating435

the various mechanisms or pathways through which BMI could have a causal effect estimate436

on EDU through trait-enrichment analysis has revealed notable causal effect estimates from437

two clusters: one with a strongly negative MR estimate whose trait enrichment reflects shared438

mechanisms with socio-economic factors, and another cluster with close to zero causal effect439

estimate enriched for lean-mass traits. MR has typically presented bias due to heterogeneous440

causal effects emerging via distinct pathways and bias due to confounding of the instrument-441

outcome association as being separate mechanisms. Here, we have illustrated that a pheWAS-442

based clustering approach can classify instruments into clusters, some of which correspond to443

different pathways, while others include IVs that are primarily confounder-associated. Our444

results have two major implications: 1) The lean-mass-related IV cluster indicated a close to445

zero causal effect of BMI on EDU. 2) We revealed that the SEP-related IVs suggest a sizeable446

negative effect of BMI on EDU.447

In order to substantiate our findings, we performed several follow-up analyses. First, sib-448

regression based MR of BMI on EDU recapitulated the close-to-zero causal effect obtained449

for the body-mass specific cluster of IVs. This indicates that many IVs for adult BMI (from450

population-based GWAS) represent indirect (parental/dynastic) effects, which are associated451

rather with a rearing-related parental trait and not primarily with offspring BMI. Second, re-452

placing adult BMI with childhood BMI (much less associated with SEP) as exposure in the453

PWC-MR analysis confirmed a negligible causal effect estimate (−0.03, p-value = 0.04), and454

the four emerging clusters showed homogeneous causal effect estimates indicating the lack of455

confounding or biasing effects. This comparison was supported by the growing evidence showing456

that genetic variants have varying effects on BMI or body size at different stages of life[32, 33],457

and that the UK Biobank proxy trait ‘Comparative body size at age 10’ captures childhood BMI458

well[30]. One of the four clusters was strongly enriched for body-measurement/fat-mass traits459

whereas the second most strongly enriched cluster had only two mildly enriched SEP-related460

traits. This finding means that as opposed to adult BMI, childhood BMI genetics are unrelated461

to childhood (i.e. parental) SEP. It is also interesting to note that although fat-mass traits are462

strongly enriched for using childhood BMI IVs alongside lean-mass traits, these same traits are463

less enriched for using adult BMI IVs. Thus, IVs associated with body-mass related traits seem464

to be underlying the true nominally significant and minuscule causal effect between BMI and465

EDU. Furthermore, out of the 41 adult BMI IVs that make up cluster #4 (SEP-related traits),466

only three were found to be in LD with childhood BMI IVs in cluster #2 (enriched for two467

SEP-related traits).468

In Howe et al. (2022), assortative mating, dynastic effects and population stratification were all469

considered candidate mechanisms for biased population-based GWAS effect estimates. Given470
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our observations, a possible explanation is a dynastic effect of parental SEP traits acting as a471

confounder on both adult EDU and adult BMI (as seen in Figure 1a). This effect is direct on472

adult EDU but could affect adult BMI indirectly through either of two ways or both to a certain473

extent: (i) Parental SEP has a direct effect on the offspring’s SEP as an adult, which in turn has474

an effect on offspring adult BMI[34], or (ii) parental SEP – as an indicator of childhood social475

circumstances – may have an effect through this on the offspring’s (adult) BMI.476

To explore the relevance of the obtained six clusters of IVs, we replaced EDU with SBP as the477

outcome of interest since within-sibling GWAS MR results showed no difference when compared478

to population GWAS MR results, indicating that there seems to be no bias in the causal effect479

estimate due to pleiotropy or confounding. Our analysis revealed that for the six clusters at-480

tributed to BMI, their causal effect estimate on SBP was homogeneous with the estimate using481

all SNPs (0.16, p-value = 1.09 × 10−28). As there is no significant heterogeneous effects and482

all the cluster causal effects agree, we can conclude that there is no other confounding effects483

biasing the causal effect estimate. It is reassuring to note that our PWC-MR approach does484

not always seek to identify distinct causal effects, confirming that confounding mechanisms are485

specific to certain exposure-outcome pairs.486

Finally, our systematic confounder search coupled with stepwise MVMR has pinpointed TV487

watching and smoking as two candidate confounder traits (maybe acting as a correlate of parental488

SEP) that may bias standard MR analysis of the BMI-EDU relationship: upon accounting for489

these two traits, BMI exhibits strongly attenuated causal effect on EDU.490

Comparing our method to other IV clustering methods such as MR-Clust does not reveal strong491

concordance in the findings. MR-Clust takes as input the exposure and outcome effects as492

well as their standard errors and attempts to cluster the exposure IVs based on the possible493

similarity between each IV’s causal effect. When using BMI and EDU as exposure and outcome494

respectively, MR-Clust revealed two main clusters alongside a null cluster. Both of the clusters495

were enriched for a variety of traits including body-measurement traits, both lean- and fat-mass,496

as well as SEP-related traits. The causal effect estimates of both clusters were strongly negative,497

similar to using all IVs in an MR analysis for this trait pair.498

The most apparent difference between the clustering of our method and that of MR-Clust is499

our use of external information for the exposure and our clustering of IVs independently of the500

outcome or the individual MR causal effects of the IVs. By clustering based on the PheWAS data501

of the exposure IVs and various other traits, we can reveal possible pathways and mechanisms502

through which the exposure manifests, independently of any outcome.503

Another comparable clustering method by Grant et al.[35] uses genetic variant associations with504

a set of traits to identify groups of IVs with similar biological mechanisms. Their method,505

NAvMix, uses a directional clustering algorithm and includes a noise-cluster to increase robust-506

ness to outliers. NAvMIX is demonstrated on BMI IVs and their associations to nine lifestyle507

or cardio-metabolic traits that have been previously shown to be related to BMI. Their results508

revealed 5 distinct clusters where they were able to identify a metabolically healthy obesity509

cluster that also had a small MR causal effect on coronary heart disease (CHD). However, we510

were unable to run their method using our data due to convergence issues arising when the511

number of traits used for PheWAS association increases. This comparison also highlights that512

the traits we include in the pheWAS analysis (and the subsequent clustering) have an impor-513

tant role in which biological mechanisms we can detect. For example, our analysis did not pick514

up the metabolically healthy obesity cluster, potentially because waist-to-hip ratio and other515

subcutaneous-vs-visceral fat proxy-traits were not included among the 408 selected phenotypes516

due to our filtering on genetic correlation with BMI (rg < 0.75). Without such filtering, PWC-517

MR reveals 5 clusters with significantly heterogeneous causal effects on EDU. These five clusters518
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are very similar to the original six, with the original cluster #1 getting diffused into the other519

clusters. Reassuringly, the cluster that is strongly enriched for SEP-related traits has a large520

negative causal effect estimate of -0.53 (95% CI: −0.59,−0.48), whereas the cluster that is most521

enriched for body-measurement/fat-mass traits still had an attenuated causal effect of -0.10522

(95% CI: −0.14,−0.06).523

Furthermore, we attempted to consolidate our findings of the k-means clustering and enrichment524

analysis by running a genetic colocalisation analysis on the 324 clustered BMI IVs and both525

subcutaneous adipose and brain tissue. Unfortunately, we do no find an association between526

the cluster memberships of the IVs and their signal colocalization in brain or adipose tissue,527

possibly due to the limited evidence of colocalization in either tissue for most loci.528

Our method has its own set of limitations: first, we are limited by the availability of traits with529

PheWAS data to support our informative clustering of IVs. This may lead to a failure in identi-530

fying key pathways and thus missing clusters representing important subgroup (mediator/sub-531

phenotype/confounder). Second, although it is not the most ideal handling of data, our binary532

traits are treated as continuous ones in our analysis. In large samples, linear and logistic re-533

gression effect estimates correlate very strongly and hence, it is likely that this choice did not534

impact the clustering[36]. Third, although we have attempted to minimise the arbitrary choice535

of parameters in our analysis, the genetic correlation threshold that determines which traits are536

too similar to the exposure and outcome trait is arbitrarily set at 0.75 for BMI and EDU and537

could be modified, but the emerging clusters may change as a consequence. Similarly, some538

p-value thresholds and type I error rate control was set at 5%, which may be viewed as ar-539

bitrary. Fourth, the identified potential confounder traits used in the MVMR analysis act as540

simple proxies for true confounders. For example, exposure to current tobacco smoking or TV541

watching can be highly (genetically) correlated to the same or a similar exposure during early542

life (or even proxy a parental trait), hence it is rather the earlier version of the exposure which543

is likely to be the true confounder. Our proxy confounders were simply nuisance variables, their544

only role was to see the remaining causal effect of BMI on EDU upon conditioning on them.545

Lastly, we acknowledge that there are several other tests[37] that could be used in place of a t-test546

when excluding SNPs more strongly associated to other traits than our exposure or different MR547

methods used in our systematic confounder search, however both of these were simple exclusion548

or pre-selection steps that have very little impact on the outcome of the results.549
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Supplementary Information677

Supplementary Figures678

Figure S1: Flow diagram representing a complimentary approach to PWC-MR where a systematic
candidate confounder trait search is performed. These canbdidate confounder traits are defined as having an effect
on both the exposure and the outcome. In the third step, a stepwise multivariable MR of the candidate confounder traits is
performed to select those with a strong effect on the outcome. They are then added with the original exposure to a standard
MVMR and the multivariable causal effect on the outcome is estimated .Acronyms: EXP - exposure, OUT - outcome, T -
trait, p: t-test p-value; MR P: MR p-value

1

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 12, 2023. ; https://doi.org/10.1101/2023.04.06.23288264doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.06.23288264
http://creativecommons.org/licenses/by-nc/4.0/


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

10 20 30 40 50

10
00

00
14

00
00

18
00

00

nCluster

B
IC

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●

10 20 30 40 50

95
00

0
10

50
00

nCluster

A
IC

Figure S2: Dot plot representing the corresponding Akaike Information Criterion scores across varying
K-means centres for BMI. K-means centres vary from 2 to 50 clusters. The red vertical line represents the number of
centres/cluster with the lowest score.
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Figure S3: Boxplot showing the enrichment ratio of all traits in each cluster. BMI IVs have been clustered
into 6 clusters using K-means. The enrichment ratio of each trait calculated using the cluster-specific IVs is shown in the
barplot. In the boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle bar corresponds
to the median, whereas the upper whisker is the largest data point smaller than 1.5∗ inter-quartile range above the third
quartile. The lower whisker is defined analogously.
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Figure S4: Dot plot representing the corresponding Akaike Information Criterion scores across varying
K-means centres for child BMI. K-means centres vary from 2 to 50 clusters. The red vertical line represents the number
of centres/cluster with the lowest score.
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Figure S5: Boxplot showing the enrichment ratio of all traits in each cluster. Child BMI IVs have been
clustered into 4 clusters using K-means. The enrichment ratio of each trait calculated using the cluster-specific IVs is shown
in the barplot. In the boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle bar
corresponds to the median, whereas the upper whisker is the largest data point smaller than 1.5∗ inter-quartile range above
the third quartile. The lower whisker is defined analogously.
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Figure S6: Heatmap of the enrichment ratio of the top 10 traits in each cluster. Body size at age 10 is used
as a proxy exposure trait for child BMI. K-means clustering revealed 4 clusters with the following trait enrichment ratios.
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Figure S7: Boxplot showing the ER for confounder traits across the clusters. Confounder traits were
categorised in a systematic search. In the boxplots, the lower and upper hinges correspond to the first and third quartiles,
the middle bar corresponds to the median, whereas the upper whisker is the largest data point smaller than 1.5∗ inter-
quartile range above the third quartile. The lower whisker is defined analogously.
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Figure S8: Dot plot showing the causal effect estimate of BMI on EDU conditional on various combina-
tions of three candidate confounder traits. The error bars represent the 95% CI. The blue horizontal line represents
the observational correlation between BMI and EDU, whereas the red horizontal line represents the univariate causal effect
estimate of BMI on EDU. Trait 1070: ‘Time spent watching television (TV)’, trait 924: ‘Usual walking pace’, trait 1249:
‘Past tobacco smoking’.
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Figure S9: Dot plot showing the genetic association of IVs with the exposure: BMI, and the outcome:
EDU. The exposure IVs have been clustered using MR-Clust based on their similarity in causal effect
estimates. MR-Clust has revealed 2 main clusters for BMI’s causal effect on EDU as well as a ‘null’ cluster. The IVs
plotted have a cluster inclusion probability greater than or equal to 80%. The slopes represent the causal effect estimate of
each cluster.
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