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Abstract  

Visual hallucinations in Parkinson’s disease can be viewed from a systems-level perspective, 

whereby abnormal communication between brain networks responsible for perception 

predisposes a person to hallucinate. To this end, abnormal functional interactions between 

higher-order and primary sensory networks have been implicated in the pathophysiology of 

visual hallucinations in Parkinson’s disease, however the precise signatures remain to be 

determined. Dimensionality reduction techniques offer a novel means for simplifying the 

interpretation of multidimensional brain imaging data, identifying hierarchical patterns in the 

data that are driven by both within- and between- functional network changes. Here, we applied 

two complementary non-linear dimensionality reduction techniques – diffusion-map 

embedding and t-distributed Stochastic Neighbour Embedding (t-SNE) – to resting state fMRI 

data, in order to characterise the altered functional hierarchy associated with susceptibility to 

visual hallucinations. Our study involved 77 people with Parkinson’s disease (31 with 

hallucinations; 46 without hallucinations) and 19 age-matched healthy controls. In patients 

with visual hallucinations, we found compression of the unimodal-heteromodal gradient 

consistent with increased functional integration between sensory and higher order networks. 

This was mirrored in a traditional functional connectivity analysis, which showed increased 

connectivity between the visual and default-mode networks in the hallucinating group. 

Together, these results suggest a route by which higher-order regions may have excessive 

influence over earlier sensory processes, as proposed by theoretical models of hallucinations 

across disorders. By contrast, the t-SNE analysis identified distinct alterations in prefrontal 

regions that were not apparent in the functional connectivity analysis, suggesting complex 

reconfigurations in functional brain network architecture as a function of the disease process. 

Together, the results confirm abnormal brain organisation associated with the hallucinating 

phenotype in Parkinson’s disease, and highlight the utility of applying convergent 

dimensionality reduction techniques to investigate complex clinical symptoms. In addition, the 

patterns we describe in Parkinson’s disease converge with those seen in other conditions, 

suggesting that reduced hierarchical differentiation across sensory-perceptual systems may be 

a common transdiagnostic vulnerability in neuropsychiatric disorders with perceptual 

disturbances. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 11, 2023. ; https://doi.org/10.1101/2023.04.11.23288391doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.11.23288391
http://creativecommons.org/licenses/by/4.0/


 

3 

 

Introduction  

Veridical perception requires the ability to interact with and process a continuous stream of 

sensory information. These interactions rely on associations developed over time, whereby 

perceptual interpretations are informed by matching sensory inputs with statistics learned about 

features of the external environment.1,2 In this framework, hallucinations are proposed to occur 

due to an imbalance between higher-order (“top-down”) vs. sensory (“bottom-up”) processes.3–

6 More concretely, hallucinations have been proposed to arise due to disruptions across 

networks involved in higher-order perceptual processing (i.e., attentional networks, the default 

mode network) and primary sensory networks.4,7 In clinical populations with visual 

hallucinations, including Parkinson’s disease and Lewy body dementia, abnormal interactions 

within and between these networks have been consistently observed.6–9 In this way, a systems-

level perspective that focuses on dysfunctional patterns of communication between brain 

networks can provide insight into the neural signatures of visual hallucinations.  

 

Tracking neural activity during hallucinatory episodes is notoriously difficult, but trait-level 

signatures of the tendency to hallucinate can be explored using structural imaging or resting 

state fMRI.10–12 These approaches identify patterns of abnormal brain structure, activity or 

connectivity associated with the hallucinating phenotype, which are presumably implicated in 

hallucinatory events. For example, the network abnormalities observed during fMRI of 

hallucination-like events in Parkinson’s disease overlaps with trait-level network abnormalities 

observed in the resting state.8,13,14 However, one challenge is that resting state fMRI patterns 

are inherently high-dimensional – i.e., the data has an extensive and unwieldy number of 

features – which poses issues for interpretability and reproducibility. A tractable way to handle 

this complexity is to apply dimensionality reduction techniques, which are algorithms that 

extract latent components from high-dimensional data while preserving relationships of the 

original data15 and discarding more idiosyncratic features.15,16 This approach offers a means of 

summarising feature-rich data into components that can then be more meaningfully related to 

symptoms and behaviour.   

 

One popular method for reducing dimensionality is diffusion map embedding – a non-linear 

dimensionality reduction technique, which projects high-dimensional data into an n-

dimensional gradient space where n ≤ the number of data points.17,18 In the case of resting-state 

fMRI, the resulting “map” of brain activity represents the global connectivity structure as a 

distribution of cortical nodes: nodes that share stronger connections are grouped closer 
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together, whereas nodes that do not share connections are grouped further apart.19,20 Diffusion 

map embedding has been used to demonstrate a key organisational principle in healthy human 

brains that links “bottom-up”, sensory (unimodal) regions with “top-down”, higher-order 

(heteromodal) cortical areas along a primary gradient.21,22 

 

The unimodal-heteromodal gradient is widely replicated across studies and populations,21,22 

and is sensitive to age-related changes23 and clinical conditions, including autism24 and 

schizophrenia.25 Specifically, a reduced separation (i.e., a compression) along the gradient 

between sensory and higher-order regions is seen in neuropsychiatric patient groups relative to 

controls.24,25 In Parkinson’s disease, this unimodal-heteromodal gradient has been shown to be 

compressed in patients with visual dysfunction.26 It follows that increased functional 

integration between previously well-separated sensory and higher-order regions (i.e., primary 

sensory and default mode regions) may reflect abnormal interactions between such regions. 

These changes could potentially disturb perceptual processes, allowing for an increased 

influence from higher-order regions over lower-level sensory processes – increasing the 

vulnerability to hallucinate. Taken together, changes in the hierarchical organisation of the 

unimodal-heteromodal gradient may serve as a transdiagnostic feature across neuropsychiatric 

disorders. In turn, alterations in this unimodal-heteromodal gradient organisation may be an 

underlying feature that helps explain the network disruptions observed in Parkinson’s disease 

patients prone to visual hallucinations.  

 

A pitfall of dimensionality reduction techniques is that they require simplifying assumptions, 

which can obscure interpretation of the underlying functional neuroanatomy. One solution is 

to use multiple approaches, each with their own strengths and weaknesses, to converge on a 

plausible interpretation of the data. In contrast to diffusion map embedding, t-distributed 

Stochastic Neighbour Embedding (t-SNE)27,28 computes a similarity score between all data 

points in a high-dimensional space, and then maps these similarities into a lower (typically 2-

3) dimensional space. In this way, t-SNE allows for visual interrogation of network 

organisation,29,30 while conserving the relationships between data points29,31, albeit in a 

different way than diffusion-map embedding that is potentially more sensitive to non-linear 

reconfigurations in network architecture (i.e., t-SNE captures both local and global features, 

whereas diffusion map embedding only focuses on local features). Combining diffusion-map 

embedding and t-SNE thus has the potential to expose the higher-order organisation of resting-
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state networks, and offer unique insights into the changes in network topology brought on by 

neurodegenerative disease processes.  

 

Here, we combine diffusion map embedding and t-SNE to determine the low-dimensional 

signature of the tendency to hallucinate in individuals with Parkinson’s disease. To do so, we 

analysed resting-state fMRI data from Parkinson’s disease patients with visual hallucinations 

compared to those without, along with age-matched healthy controls. We hypothesised that 

patients with visual hallucinations would show compression in their unimodal-heteromodal 

gradient, and the extent of gradient compression would be associated with cognitive decline. 

We also predicted that compression in the gradient would be complemented by a decreased 

distance between subsets of the whole-brain network as detected through t-SNE analysis.   

 

Materials and methods  

Case selection 

A total of 96 individuals were recruited from the Parkinson’s disease Research Clinic at the 

Brain and Mind Centre, University of Sydney, Australia, including 19 healthy controls and 77 

people diagnosed with idiopathic Parkinson’s disease. All Parkinson’s disease patients satisfied 

the United Kingdom Parkinson’s Disease Society Brain Bank criteria and did not meet criteria 

for dementia.32 Parkinson’s disease symptoms were assessed with the Movement Disorder 

Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-

UPDRS).33 Patients with visual hallucinations were identified from a positive response to 

question two of the MDS-UPDRS (i.e., “Over the past week have you seen, heard, smelled, or 

felt things that were not really there? If yes, examiner asks the patient or caregiver to elaborate 

and probes for information”). Individuals scoring ≥1 on this item, with a subsequent description 

consistent with visual hallucinatory phenomena, were included in the hallucinating group. 

Thirty-one patients were identified as experiencing visual hallucinations and 46 did not 

experience visual hallucinations. All patients were tested on their regular dopamine 

medications and a dopaminergic dose equivalent (DDE) score was calculated (mg 

dopamine/per day).34 Psychiatric symptoms were screened using the Scales for Outcomes in 

Parkinson’s Disease - Psychiatric Complications (SCOPA-PC),35 and a subset of 47 patients 

(20 with hallucinations, 27 without) underwent the Psychosis and Hallucinations Questionnaire 

(PsycH-Q).36  
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Neuropsychological and behavioural assessments 

Global cognition was assessed via the Mini-Mental State Examination (MMSE)37 and Montreal 

Cognitive Assessment (MoCA).38 The Trail Making Test parts A and B (TMT-A, TMT-B) 

measured psychomotor speed and attentional set shifting capacity (TMT-B minus TMT-A).39 

Working memory maintenance and manipulation was assessed using the Digit Span Test,40 

consisting of two parts: digit spans forwards and backwards, which were summed to create a 

digit span total score (Digit Span Total; DST). Memory was assessed via the percentage of a 

short story correctly recalled after 30 minutes (Logical Memory retention: LM Retention).40  

 

Statistical analysis 

Demographic analyses were performed in R version 4.2.1.41 For missing scores in the cognitive 

dataset, data imputation was conducted using Multivariate Imputation via Chained Equations 

(MICE) from the ‘mice’ package.42 As the missing values all belonged to quantitative variables, 

predictive mean matching was used. For all analyses, the group comparisons focused on the 

Parkinson’s disease group as a whole versus controls (PD vs. controls) and within the 

Parkinson’s group, hallucinators versus non-hallucinators (PD+VH vs. PD–VH). Group 

comparisons were conducted through non-parametric permutation testing (5000 permutations).   

 

MRI acquisition 

All 96 individuals underwent magnetic resonance imaging (MRI) on a 3-Tesla MRI scanner 

(GE medical systems), generating T1-weighted structural images and resting-state blood-

oxygenation level dependent (BOLD) functional scans (rsfMRI). Sagittal 3D T1w were 

acquired using a 256 × 256 matrix, 200 slices, slice thickness of 1 mm, echo time/repetition 

time = 2.7/7.2 ms. Functional images were acquired with repetition time = 3 s, echo time = 36 

ms, flip angle = 90º, 32 axial slices covering the whole brain, field of view = 220 mm, slice 

thickness of 3 mm, raw voxel size = 3.9 mm × 3.9 mm × 4 mm, and 140 repetition times 

(scanning duration of 7 min). Individuals were instructed to lie awake with their eyes open.       

 

MRI preprocessing 

Scans were converted into the Brain Imaging Data Structure43 format using the dicm2nii44 and 

dicm2niix45 toolboxes. Preprocessing was completed using fMRIPrep 20.2.3,46 a standard 
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pipeline that incorporates toolboxes from the gold-standard preprocessing software in the field. 

fMRIPrep involves the basic preprocessing steps (coregistration, normalisation, unwarping, 

noise component extraction, segmentation, skullstripping etc.) and produces a report for quality 

checking at each step. See Supplementary Material for a full description of each step.   

 

Denoising 

The confounds timeseries data extracted from fMRIprep were passed through fmridenoise47 

specifying eight physiological signals to be regressed (mean physiological signals from white 

matter and cerebrospinal fluid, and their quadratic terms48), with high-pass and low-pass band 

filters set at 0.01 and 0.1 respectively.  

 

Gradient connectivity analysis 

Mean BOLD signal time-series data were extracted from the rsfMRI data for 400 cortical 

regions from the Schaefer atlas49 and z-scored, using MATLAB scripts adapted from the 

fieldtrip toolbox.50 A functional connectivity matrix was calculated for each individual using 

Pearson correlation values, producing a 400 × 400 matrix that represented cortical-cortical 

functional connectivity. These 400 cortical regions were assigned to 7 resting state networks,51 

allowing for comparisons between the cortical regions and large-scale cortical networks.49 

 

Gradient analysis was performed using the Brainspace toolbox and custom MATLAB scripts.17 

First, a population average connectivity matrix was calculated using the extracted timeseries 

data from all the individual 400 × 400 connectivity matrices. The average matrix was 

thresholded, with the top 10% of measurements per row retained and all remaining 

measurements zeroed. An affinity matrix was then computed using the normalised angle 

method – this reflected the similarity of connectivity profiles between each pair of regions. 

Then, diffusion map embedding was used to simplify the high-dimensional nature of the data 

into lower dimensions, allowing for components to be generated in descending order from 

highest to lowest variance explained. The density of sampling points was controlled through 

the parameter α = 0.5, following recommendations from previous studies, retaining global 

relations between the data points in the embedded space.17,19 
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Gradient components were calculated for each individual using the same parameters as the 

group-level average gradient. Individual gradients were then aligned to the group-level gradient 

using Procrustes alignment,19 allowing for more accurate comparisons across individuals. The 

first and second gradients which explained most variance in the data (14% and 12%, 

respectively) were extracted and compared against the presumed network hierarchy as a 

comparison against the principal gradient described by Margulies and colleagues.22,26,52 

 

Comparison of unimodal-heteromodal gradient with behavioural data 

To determine whether changes in the gradient score were associated with cognitive 

performance, for each individual we calculated the average gradient score for each network in 

the Yeo 7-network atlas.51 We focused on networks significantly different between the three 

groups in our cohort (i.e., visual, ventral attentional, and frontoparietal control) and correlated 

those network gradient scores with clinical scores that were significantly different between the 

patient groups (i.e., TMT-B, BDI, and HADS). 

 

t-Stochastic Neighbour Embedding (t-SNE) analysis 

The t-SNE algorithm in MATLAB53 was used to construct 3-dimensional embeddings of each 

individual functional connectivity matrix. Before running the data through the t-SNE 

algorithm, the data underwent a PCA initialisation step in which the top 3 components were 

selected.54 This resulted in a 400 × 3 matrix where each of the 400 cortical regions was 

described by x-y-z coordinates. The algorithm was run for 1,000 iterations using the Barnes-

Hut algorithm which performs an approximate optimisation. The distance metric was set to 

“Euclidean”; perplexity = 90; learning rate = 500; exaggeration = 50 for the first 99 

optimisations to facilitate cluster formation.31 For specific details regarding the choice of 

parameter values refer to the Supplementary Materials. A t-SNE map was generated for each 

individual using the parameters specified above. For each individual t-SNE map, the Euclidean 

distance was calculated between each pair of cortical regions generating a “distance map” that 

described how far each region was from every other region (400 × 400 matrix).   
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Comparing functional connectivity and t-SNE analysis 

To compare functional connectivity maps between the groups, we ran non-parametric 

permutation tests for each pairwise correlation value. This analysis was carried out twice: 

firstly, to compare edge differences between healthy individuals and Parkinson’s disease 

patients (control vs. PD), and secondly to compare edge differences between patients with and 

without visual hallucinations (PD+VH vs. PD-VH). From this, we created two binary matrices 

(control vs. PD; PD-VH vs. PD+VH), where values of 1 identified edges that were significantly 

different between the groups. To isolate edge differences uniquely associated with visual 

hallucinations, we subtracted the PD-VH vs. PD+VH binary matrix from the control vs. PD 

matrix. This resulted in a matrix with values of 1 representing edge differences only found 

between healthy controls and Parkinson’s disease, 0 representing edges different in both or 

none of the comparisons, and -1 for edges only different between patients with and without 

visual hallucinations. Edges with values of -1 were visualised on the cortical surface. These 

edge differences were unique to the comparison within the Parkinson’s disease cohort, 

consistent with differences specifically associated with visual hallucinations, rather than 

Parkinson’s disease in general. The same analysis was conducted on the t-SNE distance maps. 

Non-parametric tests were run for each correlation value (5,000 permutations),55 comparing 

control vs. PD, and PD-VH vs. PD+VH. The PD-VH matrix was subtracted from the PD+VH 

matrix isolating edge differences unique to the PD-VH vs. PD+VH comparison. 

 

As a by-product of the above analysis, we noticed that group differences in the t-SNE distance 

maps appeared distinct from the group differences observed in the functional connectivity 

matrices. To determine whether the t-SNE distance maps did in fact describe distinct patterns, 

we ran eigendecomposition of the binary matrices into their eigenvectors and eigenvalues. 

Eigenvectors describe core patterns that underlie the high-dimensional binary matrix. The first 

eigenvector explains the most variance of the data and describes a principal pattern of group 

differences. The first eigenvector of the distance binary matrix for each comparison (control 

vs. PD, PD-VH vs. PD+VH) was then correlated with the corresponding first eigenvector of 

the correlation binary matrix to determine whether there was a common underlying pattern 

found in both the distance and correlation matrices.        
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Comparing t-SNE results with the unimodal-heteromodal gradient 

To determine whether the binary matrices described different patterns to those observed in the 

unimodal-to-heteromodal gradients, we averaged both binary matrices of the PD-VH vs. 

PD+VH comparison across regions. This resulted in a vector for each binary matrix that 

described the proportion of edges that were different between groups. We then correlated the 

edge vectors with the change in average gradient score across regions between Parkinson’s 

disease patients with and without visual hallucinations.   

 

Data availability 

All code required to reproduce the statistical analyses and figures are publicly available 

(https://github.com/ShineLabUSYD/PD_Hallucinations).  

 

 

Figure 1 Summary of analyses conducted. A gradient map was constructed for each subject (n = 96) and group 

differences were analysed. A t-SNE map was also constructed for each subject (n = 96) and eigenvectors 

summarising the key differences between groups were defined.  

 

Results  

Demographic and clinical data 

Demographic and clinical data was compared between patients and healthy controls, and within 

patients to compare hallucinators vs. non-hallucinators (Table 1). Sex ratio differed between 

the controls and overall patient group (t = 5.717, p = 0.017), but was equivalent in the 
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hallucinating vs. non-hallucinating group (t = 0.589, p = 0.443). All the groups were matched 

for age and years of education, as well as for scores on the Montreal Cognitive Assessment, 

Logical Memory retention, and Trail-Making B-A score (p > 0.05). Performance in the 

Parkinson’s disease group was reduced relative to controls on some cognitive assessments, 

including the Mini-Mental State Examination (t = 2.962, p = 0.015), the Digit Span Task (t = 

2.271, p = 0.033), and Part A of the Trail-Making test (t = 2.731, p = 0.016). The within-

Parkinson’s groups were matched for daily dopamine dose (DDE), motor assessments 

(UPDRS-III, UPDRS-IV), Hoehn and Yahr scale, and the SCOPA-PC (p > 0.05). However, 

patients with visual hallucinations performed worse than non-hallucinating patients in Part B 

of the Trail-Making test (t = 2.305, p = 0.022), they reported a higher burden of daily motor 

problems (UDPRS-II; t = -3.836, p < 0.001), and they endorsed more severe mood symptoms 

on the Beck’s Depression Inventory (t = -2.302, p = 0.025) and the Hospital Anxiety and 

Depression Scale (t = -2.636, p = 0.011). There was a significant difference in total PsycH-Q 

scores, as patients with hallucinations had a higher burden of symptoms (t = 3.137, p = 0.004). 
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Table 1 Demographics. PD-VH = Parkinson’s disease without visual hallucinations. PD+VH = Parkinson’s 

disease with visual hallucinations. MMSE = Mini-Mental State Examination total score. MoCA = Montreal 

Cognitive Assessment total score. SCOPA-PC = Scales for Outcomes in Parkinson’s disease - Psychiatric 

Complications Total score. TMT A, TMT B are the z-scored trail-making test results. TMT B-A is the difference 

between TMT B and A and has been z-scored. BDI = Beck’s Depression Inventory total score. HADS = Hospital 

and Anxiety Depression Scale total score. UPDRS = Unified Parkinson’s Disease Rating Scale. Hoehn and Yahr 

 
Control 
(n = 19) 

PD – VH 
(n = 46) 

PD + VH 
(n = 31) 

Control 
vs 
PD 

PD – VH vs 
PD + VH 

 n Mean SD n Mean SD n Mean SD p-value p-value 

Gender 
(Male:Female) 

8:11   36:10   21:10   0.017 0.443 

Age  66.1 11.7  65.5 9.41  66.8 6.08 0.988 0.444 

Years of 
Education 

 14.1 2.76  14.6 2.95  13.7 3.38 0.755 0.234 

MMSE  29.4 0.902  28.7 1.71  28.4 2.06 0.015 0.483 

MoCA  27.6 2.27  27.1 2.95  26.5 2.95 0.238 0.326 

Digit Span  12.7 2.77  10.9 2.84  11.5 2.91 0.033 0.404 

LM Retention  12 2.52  11.6 2.88  11.5 3.25 0.539 0.930 

TMT A z-score  0.684 0.884  0.251 0.823  -0.289 1.35 0.016 0.053 

TMT B z-score  0.663 0.918  0.133 0.851  -0.591 1.61 0.005 0.022 

TMT B-A z-
score 

 1.05e-10 1.03  -0.111 0.84  -0.213 1.17 0.939 0.195 

BDI  0.842 1.01  8.13 7.23  12.4 8.31 0.0001 0.025 

HADS  3.74 3.54  6.13 4.77  10 7.17 0.002 0.011 

UPDRS            

Section II     8.26 6.41  15 8.25  0.0004 

Section III     25.7 14.5  30.7 14.5  0.143 

Section IV     0.804 1.87  1.65 2.99  0.172 

Hoehn and 
Yahr 

    1.93 0.574  2.15 0.503  0.096 

SCOPA-PC     1.89 2.20  2.97 2.69  0.072 

DDE     620 396  706 520  0.4511 

PsycH-Q 
(20 PD+VH, 27 
PD-VH) 

    5.85 5.87  13.95 10.11  0.004 
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total score. Sex comparisons were conducted using chi-square tests. All the continuous variables underwent 

pairwise comparisons with non-parametric permutation testing of the mean score. Significant p-values are in bold 

(p < 0.05). Section I of the UPDRS questionnaire as part of the questionnaire (Q2) was used to separate the patients 

into VH and nonVH groups. 

 

Functional connectivity nuisance variables 

As expected, the Parkinson’s disease group as a whole had more head movements during 

scanning compared to controls, as indicated by higher framewise displacement (t = -3.486, p < 

0.001), however there was no difference between patients with and without visual 

hallucinations (t = -1.414, p = 0.157). There was no significant correlation between 

participants’ head movement and average gradient score (r = 0.053, p = 0.607).  

 

Gradient connectivity analysis 

The first gradient explained 14% of the variance and was anchored by the visual cortex at the 

lower end and the primary motor cortex at the upper end (Figure 2A). This gradient differed 

from the well-established unimodal-heteromodal gradient identified by Margulies and 

colleagues22 and it was not significantly correlated with the presumed brain network 

hierarchical organisation (r = 0.07, p = 0.16; Figure 2B).22 However, the second gradient, which 

explained 12% variance, did demonstrate a unimodal-heteromodal axis (Figure 2C) and was 

significantly correlated with network hierarchy organisation (r = 0.75; p < 0.05; Figure 2D). 

Therefore, we used the second gradient for our subsequent analyses concerned with unimodal-

heteromodal organisation principles.  
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Figure 2 Comparison of gradients with network hierarchy organisation. (A) Population average of the first 

gradient that explains the most variance (14%). (B) First gradient score assigned to Yeo’s 7-network atlas and 

organised into proposed network hierarchy (1 = visual, somatomotor; 2 = dorsal attention, salience ventral 

attention; 3 = limbic, frontoparietal control; 4 = default mode network). (C) Population average of the second 

gradient that explains 12% variance. (D) Second gradient score assigned to Yeo’s 7-network atlas and organised 

into proposed network hierarchy.  

 

 

Assessing the average gradient score distributions for each group (Figure 3A), all distributions 

were slightly right-skewed (skewness > 0), and they were also light-tailed – i.e., distribution of 

points were closer to the mean (kurtosis < 0). Distribution shape in the patient groups differed 

from controls (D = 0.057, pfdr < 0.05), but was not significantly different between the 

hallucinating and non-hallucinating patient groups (D = 0.015, pfdr = 0.06). However, visual 

comparison of the distributions suggests that the range of scores for the patients with visual 

hallucinations was smaller compared to the patients without visual hallucinations and the 

control group (Figure 3A).  
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Group comparisons of gradient scores at the regional and network levels 

Permutation testing was conducted at both the regional (n = 400) and network (n = 7) levels, 

comparing differences between Parkinson’s disease patients against controls, and differences 

between the Parkinson’s disease groups. These results are shown in Figure 3B. Prominent 

differences between the patients and controls were observed in regions of the primary motor 

cortex (p < 0.05); differences were also found in regions from the extra-striate visual cortex 

and laterally in the temporal lobe (p < 0.05). Regions significantly different for patients with 

visual hallucinations consisted of regions near the temporoparietal junction (p < 0.05). For all 

these regions, the gradient score was higher in the disease groups.  

 

By assigning each of the 400 regions to the 7-network atlas,51 we observed group differences 

at the network level (Figure 3C). Comparing controls and Parkinson’s disease patients, the 

average gradient score significantly increased in patients for the visual and somatomotor 

networks (p < 0.05, mean difference = 0.007 and 0.008, respectively). In contrast, there were 

significant decreases in patients’ gradient scores for the ventral attentional and frontoparietal 

control networks (p < 0.05, mean difference = -0.005 and -0.009, respectively). In Parkinson’s 

disease patients with versus without visual hallucinations, significant gradient score differences 

were observed in the visual, ventral attention and frontoparietal control networks (p < 0.05). 

Patients with visual hallucinations had higher gradient scores in the visual network (mean 

difference = 0.003), and lower gradient scores in the ventral attention (mean difference = -

0.005) and frontoparietal control networks (mean difference = -0.003). Overall, these results 

demonstrated reduced functional separation between sensory and higher-order networks along 

the unimodal-heteromodal axis in patients with visual hallucinations. 
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Figure 3 Group comparisons of gradient scores. (A) Distribution of average gradients score for each group. 

(B) Regions significantly different between groups. Values greater than 0 (red) refer to regions unique to 

Parkinson’s disease patients. Values less than 0 (blue) were regions unique to Parkinson’s disease patients with 

visual hallucinations. (C) Gradient score distributions across networks for each group. 

 

Relationship between average network gradient score, TMT-B, BDI and PsycH-Q 

Average gradient scores of the visual, ventral attention, and frontoparietal control networks 

were compared against clinical scores that differed significantly between the groups. The 

ventral attention network average gradient score was significantly correlated to performance in 

the TMT-B and BDI (r = 0.210, p = 0.040; r = -0.228, p = 0.026, respectively), consistent with 

impaired performance on both measures being associated with gradient scores shifted towards 

the sensory regions. However, these results did not survive false discovery rate correction (pfdr 

> 0.05). No other comparisons between these clinical measures and network gradient scores 

were significant (p > 0.05).  

 

Group differences in functional connectivity 

Functional connectivity comparisons between the Parkinson’s disease and control groups 

showed increases within the somatomotor network and in edges connecting the somatomotor 

network with the visual, dorsal attention and default mode networks (p < 0.05). Specifically, 
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these were edges between the primary motor cortex to the extra-striate cortex, parietal lobe, 

and regions of the temporoparietal junction. There was also a significant increase in edges 

connecting regions of the somatomotor network with dorsal and lateral regions of the prefrontal 

cortex (p < 0.05). Comparing Parkinson’s disease patients with and without visual 

hallucinations revealed a distinct pattern of increased connectivity in edges between the visual 

and default mode networks (p < 0.05). These included regions in the temporal lobe, 

temporoparietal junction, extra-striate cortex. There was also a secondary pattern involving 

edges between the primary motor cortex, superior parietal lobe and the frontal lobe (p < 0.05).   

 

To focus on differences that might relate specifically to visual hallucinations, we looked at the 

edges that differed between patients with and without hallucinations but did not differ when 

comparing the patient group as a whole with controls. These edges were also unique to the 

correlation matrix and were not significantly different in the Euclidean matrix from the t-SNE 

results. Overall, edges between the visual and default mode networks, specifically regions of 

the extra-striate cortex, temporal, parietal, and frontal lobes were unique to Parkinson’s disease 

patients with visual hallucinations (Figure 5A). 

 

Group differences in t-SNE distance analysis  

Figure 4 shows the t-SNE embedding from each group. Between Parkinson’s disease and 

healthy controls, a significant increase in Euclidean distance was found in the t-SNE analysis 

for the limbic, ventral attention, and executive (frontoparietal control, default mode) networks 

(p < 0.05). Specifically, these regions were from the inferior parietal lobule, medial regions of 

the motor cortex, ventral and lateral prefrontal cortex, and the inferior and superior regions of 

the temporal lobe. These reconfigurations included somatomotor regions that have been 

assigned to the visual network of the Yeo 7-network atlas. There was also an increase in 

distance between the extra-striate cortex and the rest of the visual network (p < 0.05).  
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Figure 4 t-SNE plots of 400 Schaefer regions. (A) t-SNE plot of control group average functional connectivity. 

(B) t-SNE plot of PD-VH average functional connectivity. (C) t-SNE plot of PD+VH average functional 

connectivity. Plots A-C are coloured by Yeo 7-network atlas. (D-F) Density histograms of the Euclidean distance 

within vs. between networks for each t-SNE plot. 

 

Narrowing the focus to differences between patients with and without visual hallucinations, we 

found increased Euclidean distances from the visual network to the superior and inferior 

regions of the parietal cortex, lateral and ventral regions of the prefrontal cortex, and the 

posterior cingulate (p < 0.05). There was also a significant increase in distance between regions 

of the lateral motor cortex and temporal occipital cortex to regions of the frontoparietal control 

and default mode networks (p < 0.05). Significant increases in distance in the superior temporal 

lobe and the temporal pole of the right hemisphere were also evident (p < 0.05).  

 

From the t-SNE results, we isolated differences that were unique to patients with visual 

hallucinations. Patients with visual hallucinations had an increased Euclidean distance between 

regions from the dorsal and ventral prefrontal cortex, lateral motor cortex, inferior parietal 

cortex, temporal occipital cortex, and posterior cingulate. The unilateral increased distances 

found in the right temporal pole and superior temporal cortex were also attributed to patients 

with visual hallucinations only (Figure 5B). Overall, the t-SNE results showed that brain 

regions were situated further apart (less compressed) in patients with visual hallucinations. 
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Figure 5 Proportion of edges that defined patients with hallucinations from the other two groups. (A) 

Proportion of edges that were different in functional connectivity. (B) Proportion of edges that were different in 

Euclidean distance. (C) Proportion of edges that are different in Euclidean distance compared to functional 

connectivity. Regions coloured in red have more differences in Euclidean distance, and regions coloured in blue 

have more differences in functional connectivity. 

 

Relationship between functional connectivity and t-SNE distances 

Group differences observed by analysing the correlation matrix were not always replicated in 

the t-SNE Euclidean distance matrix. For instance, comparing the correlation and t-SNE 

differences for the control vs. Parkinson’s disease groups showed that increased functional 

connectivity in the primary motor cortex was mirrored by increased Euclidean distance in the 

t-SNE analysis. However, this contradicts our intuition of the relationship between functional 

connectivity and Euclidean distance: an increase in functional connectivity should equate to a 

decrease in Euclidean distance. Using this intuition as a guide, we could investigate the latent 

network signatures. In doing so, we noticed that the prominent between-group differences in 

standard functional connectivity between the visual and somatomotor networks were not 

upheld by the t-SNE analysis. Specifically, the increased Euclidean distance between the 

somatomotor network and higher order networks we observed on the t-SNE plots were not as 

prominent in the correlation matrix, suggesting that passing the functional data through the 

unique filter of the t-SNE was sufficient to expose specific differences in network-level 

organisation that were not detectable through standard functional connectivity analyses. 

 

Given the difference in interpretation associated with the functional connectivity and t-SNE 

matrices, we compared the two directly – i.e., comparing the core patterns of the binary 

matrices by finding the eigenvectors of the correlation and t-SNE Euclidean distance matrices 

through eigendecomposition. This can be interpreted as capturing latent components of the 

original low-dimensional embedding: the first eigenvector that explains the most variance of 
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the data describes a pattern that differentiates the Parkinson’s disease group from controls. In 

the first eigenvector for functional connectivity, the main differences between the controls vs. 

Parkinson’s disease were in regions of the occipital lobe, temporal and frontal pole, motor 

cortex and anterior cingulate (Figure 6A). For the first eigenvector for Euclidean distance, main 

differences were observed in the prefrontal cortex, inferior temporal cortex and temporal 

parietal junction laterally, both posterior and anterior cingulate cortex medially, primary motor 

cortex, extra-striate cortex, and regions of the superior temporal cortex (Figure 6C). We then 

established whether these patterns were equivalent by calculating the Pearson’s correlation 

between the two eigenvectors. The two eigenvectors were only weakly correlated (r = 0.093, p 

= 0.065), confirming that the correlation and Euclidean distance matrices highlight distinct 

differences between the control and Parkinson’s disease groups. 

 

Comparing patients with and without visual hallucinations, there were no edge differences that 

overlapped between the correlation and Euclidean distance matrices. Similar to the previous 

comparison, we can confirm that these matrices describe different patterns by calculating the 

Pearson’s correlation between the eigenvector for each matrix. For the correlation eigenvector, 

main differences were found in the temporal lobe, extending to the temporoparietal junction, 

the primary visual cortex, the medial extrastriate cortex and parts of the parietal cortex (Figure 

6B). For the Euclidean distance eigenvector, the main differences were in the prefrontal cortex, 

inferior parietal cortex, lateral motor cortex and regions of the extrastriate cortex (Figure 6D). 

The two eigenvectors were weakly correlated (r = 0.063, p = 0.209), confirming that the 

correlation and Euclidean distance matrices differentiated between patients with and without 

visual hallucinations in distinct ways. In summary, the functional connectivity correlation 

matrices revealed increased connectivity between primary visual and temporal regions, 

whereas the t-SNE matrices showed increased Euclidean distances between the prefrontal, 

motor and extrastriate cortex. 
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Figure 6 Functional connectivity (FC) and t-SNE analysis for Control vs Parkinson’s disease. Left column 

(A, C, E) refers to Control vs. PD comparisons. Right column (B, D, F) refers to PD-VH vs. PD+VH comparisons. 

The first row (A, B) were group differences in FC. Matrices were coloured by group differences (Control - PD; 

PD-VH - PD+VH respectively), with values less than 0 indicating higher FC between regions in PD and PD+VH 

respectively.  The first eigenvector of each matrix was visualised on the cortical surface. The second row (C, D) 

refers to group differences in Euclidean distance between t-SNE maps. Matrices were coloured by group 

differences (Control - PD; PD-VH - PD+VH respectively), with values less than 0 indicating greater Euclidean 

distance between regions in PD and PD+VH respectively. The first eigenvector of each matrix was visualised on 

the cortical surface. The third row (E, F) refers to differences between the FC and t-SNE results. Matrices were 

coloured by group differences, with 1 indicating a difference observed from FC analysis, -1 indicating a difference 

observed from t-SNE analysis, and 0 indicating a difference observed in either both or none of the analyses. The 

average difference between analyses across regions was visualised on the cortical surface such that values > 0 

indicate differences more common in FC analysis, and values < 0 indicate differences more common in t-SNE 

analysis. 

 

Relationship between t-SNE distances and the unimodal-heteromodal gradient 

Group differences found in the correlation and t-SNE analyses were compared against 

differences observed in the unimodal-heteromodal gradients. We did this in two steps: 1) by 

identifying the proportion of edges that were significantly different between groups for each 

region in the correlation and Euclidean distance matrices; and 2) we then compared whether 

the number of edges that were different between the groups correlated with the change in 

gradient scores between patients with and without visual hallucinations. Pearson’s correlation 

confirmed a weak negative correlation between the proportion of edges in the Euclidean matrix 

and the change in gradient score (r = -0.100, p = 0.05). For the proportion of edges in the 

correlation matrix, there was a strong negative correlation with the change in gradient scores 
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(r = -0.324, p < 0.001). Therefore, the correlation matrix differences aligned more with 

differences in gradient scores compared to the t-SNE results, further confirming that the t-SNE 

analysis revealed unique signatures from patients with visual hallucinations that are not found 

when directly interrogating the raw functional correlation matrix.  

 

Discussion  

Here we combined insights across functional connectivity, cortical gradients and t-SNE 

distance mapping, to demonstrate the altered network hierarchy in Parkinson’s disease visual 

hallucinations. In patients with hallucinations, gradients analysis revealed increased functional 

integration (i.e., compression) between sensory and higher order networks. This was mirrored 

by results from the correlation matrices, which showed increased connectivity between the 

visual and default-mode networks in the hallucinating group. However, when projecting into 

the t-SNE space, new reconfigurations that defined hallucinating patients were revealed. The 

hallucinating group was characterised by increased Euclidean distances in edges connecting 

regions of the visual network to the frontoparietal control and default mode networks, as well 

as edges within the default mode network. Furthermore, group differences observed in the t-

SNE space were only weakly correlated with differences in the unimodal-heteromodal 

functional gradient, compared to the strong correspondence between the correlation matrix and 

gradient results. Together, our results confirm altered network hierarchy in Parkinson’s disease 

hallucinations across multiple dimensionality reduction techniques. Furthermore, our novel 

application of t-SNE distance analysis may provide new insights into the neural signatures of 

visual hallucinations – exposing non-linear, network-level reconfigurations not typically 

identifiable in traditional functional connectivity and gradient analyses. 

 

Compression of the unimodal-heteromodal gradient may disrupt perceptual processing and 

contribute to hallucination vulnerability. Separation between functional regions in the gradient 

context has been linked to spatial separation along the cortex, with long-range connections 

between unimodal and heteromodal regions serving as one of the foundations for information 

processing.56,57 In Parkinson’s disease with visual hallucinations, there was increased 

functional integration between sensory and higher order networks, as gradient scores for 

regions from the visual, attentional, and frontoparietal control networks shifted closer together 

on the gradient. Decreased separation along the gradient implies increased similarity in 

connectivity profiles and increased integration between regions. Indeed, we observed higher 
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functional connectivity between the visual network and regions of the ventral attention, 

frontoparietal control, and default mode networks in patients with visual hallucinations. This 

is consistent with previous work showing increased coupling between sensory and higher-order 

networks in Parkinson’s disease and other neuropsychiatric disorders that involve perceptual 

disturbances.13,14,58,59 Increased connectivity between higher-order and sensory regions, and 

compression of the unimodal-heteromodal gradient, are routes that may permit excessive 

influence over earlier perceptual processes – consistent with the proposal that abnormal 

modulation from top-down regions over the visual system increases susceptibility to visual 

hallucinations.1,8,60–63  

 

Compression of the unimodal-heteromodal gradient is not unique to Parkinson’s disease and 

may be a transdiagnostic feature in disorders with perceptual disturbances. Previous studies in 

other neuropsychiatric disorders, including autism spectrum disorder and schizophrenia, also 

showed compression of the unimodal-heteromodal gradient.24,25 Both studies observed an 

association between changes in the gradient and measures of disease severity.24,25 Similarly, in 

Parkinson’s disease, the extent of visual impairment has been related to the amount of 

compression in the unimodal-heteromodal gradient.26 We observed an association between 

gradient scores and measures of attentional set-shifting and mood – consistent with poorer 

attention and increased mood symptoms associated with a lower (more compressed) gradient 

score. While these are not direct clinical measures of hallucination severity, attention and mood 

problems are prominent features of the hallucinating phenotype64,65 and may predict the 

development of visual hallucinations.66 Taken together, compression of the unimodal-

heteromodal gradient has been observed across neuropsychiatric disorders, varying with 

clinical measures of disease severity, and may be a predisposing trait for hallucinations in 

Parkinson’s disease.   

 

Between the groups, there was increased functional differentiation between sensory and higher-

order networks in the t-SNE space. The distance between regions in the t-SNE plot are based 

on the similarity of their functional connectivity profiles,29 with regions functionally similar to 

each other placed closer together in t-SNE space. From this intuition, regions that share 

increased functional connectivity should be mirrored by decreased Euclidean distance (and vice 

versa). However, we observed certain regions with relatively strong functional correlations in 

hallucinating patients were increasingly separated in t-SNE space. Regional pairs that 

demonstrate this pattern may have strong correlations but retain the ability for relatively 
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segregated processing, based on the highly non-linear patterns stored within the rest of the 

network. Importantly, most regional pairs we observed with this pattern were in the prefrontal 

cortex, which serves an important role in “top-down” perceptual processing,67,68 possibly via 

its initial rapid processing of ambiguous information via magnocellular pathways.69,70 

Abnormalities in the prefrontal cortex reduce cognitive flexibility and impair performance in 

tasks that involve distractions or ambiguous information.67 Increased distance between the 

prefrontal cortex and sensory regions suggests reduced interactions and functional coupling 

between these regions, possibly decreasing the reliance on the prefrontal cortex for information 

processing, and impairing the ability to process ambiguous information. These results 

demonstrate that the t-SNE analysis captures a unique facet of hallucination susceptibility, 

which is complementary to the functional gradients results and not typically identified in 

correlation matrix analyses.  

 

The current study focused on neuroimaging analyses of patients at rest, however previous 

studies measuring hallucination-like events in Parkinson’s disease have converged on similar 

brain regions, suggesting these regions are functionally relevant to the hallucination state.8 

Perception is influenced by past experiences, reconciling incoming sensory information with 

known statistics about the external world –  allowing us to predict and interpret incoming 

information, even in ambiguous situations.1,2 From resting state analyses, we observed 

reconfigurations in network organisation that could disrupt how our perceptual system 

processes internal and external information. Compression of the unimodal-heteromodal 

gradient suggests that in patients susceptible to visual hallucinations, there is potential for 

increased influence from top-down processes to override sensory information. The t-SNE 

analysis highlights increased differentiation between the prefrontal cortex and sensory regions, 

which may result in a decreased reliance on the prefrontal cortex for processing ambiguous 

information. Taken together, when patients vulnerable to hallucinations encounter 

environments with minimal sensory information, they may be unable to process the ambiguous 

information appropriately and increase their dependence on internal associations, resulting in 

misleading predictions of their surrounding environment and the formation of 

hallucinations.2,63   

 

Treatment of visual hallucinations and psychosis in Parkinson’s disease is challenging, and 

dimensionality reduction techniques may provide a novel objective for medicinal drugs.71 The 

standard dopaminergic medication has minimal benefits on hallucinations, and can in some 
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cases exacerbate them.72,73 However, treatment with classic antipsychotic medications can have 

adverse secondary effects, including worsened motor symptoms.74,75 A newer medication for 

Parkinson’s disease psychosis is the selective serotonin inverse agonist pimavanserin, which 

acts primarily at the 5-HT2A receptor.71,76 This drug, which effectively antagonises the 5-HT2A 

receptor, improves psychosis symptoms without the unintended motor side effects.74,76 Single-

dose studies in healthy people using pro-serotonergic drugs (acting primarily at 5-HT2A) reveal 

a compression of the principal gradient induced by drugs that agonise 5-HT2A.77 It could be 

speculated that pimavaserin may promote a recovery of separation within the principal 

gradient, consistent with a role for 5-HT2A activity in modulating the degree of feedback and 

information transfer in the brain.78 This opens the possibility of gradient analysis being a useful 

means for predicting and measuring the beneficial effects of drug treatments for visual 

hallucinations – consistent with the broader goal of establishing neuroimaging signatures that 

can advance personalised drug treatment in Parkinson’s disease.79 

 

This study revealed reconfigurations in network interactions for Parkinson’s disease patients 

susceptible to visual hallucinations. Compression of the unimodal-heteromodal gradient was 

associated with cognitive performance and may be a useful measurement for understanding the 

extent of abnormal interactions between top-down and bottom-up processing. Furthermore, this 

study demonstrated that projecting functional connectivity into the t-SNE space provides an 

alternate perspective to hallucinations in Parkinson’s disease that is overlooked in traditional 

functional connectivity analyses. With continued advancements in imaging methods and 

increased diversity in neuropsychiatric data, dimensionality reduction techniques are a lens 

through which the neural signatures of hallucinations, across modalities and disorders, might 

be reconciled.    
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