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ABSTRACT 
Background:  Data integration of multiple epidemiologic studies can provide enhanced 

exposure contrast and statistical power to examine associations between environmental 

exposure mixtures and health outcomes. Extant studies have combined population studies and 

identified an overall mixture-outcome association, without accounting for differences across 

studies. 

Objective: To extend the novel Bayesian Weighted Quantile Sum (BWQS) regression to a 

hierarchical framework to analyze mixtures across multiple cohorts of different sample sizes.  

Methods: We implemented a hierarchical BWQS (HBWQS) approach that (i) aggregates 

sample size of multiple cohorts to calculate an overall mixture index, thereby identifying the 

most harmful exposure(s) across cohorts; and (ii) provides cohort-specific associations between 

the overall mixture index and the outcome. We showed results from six simulated scenarios 

including four mixture components in five and ten populations, and two real case-examples on 

the association between prenatal metal mixture exposure—comprising arsenic, cadmium and 

lead—and both gestational age and gestational age acceleration metrics. 

Results: Results from simulated scenarios showed good empirical coverage and little bias for 

all parameters estimated with HBWQS. The Watanabe-Akaike information criterion (WAIC) for 

the HBWQS regression showed a better average performance across scenarios than the 

BWQS regression. HBWQS results incorporating cohorts within the national Environmental 
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influences on Child Health Outcomes (ECHO) program from three different sites (Boston, New 

York City (NYC), and Virginia) showed that the environmental mixture—composed of low levels 

of arsenic, cadmium, and lead—was negatively associated with gestational age in NYC.. 

Conclusions: This novel statistical approach facilitates the combination of multiple cohorts and 

accounts for individual cohort differences in mixture analyses. Findings from this approach can 

be used to develop regulations, policies, and interventions regarding multiple co-occurring 

environmental exposures and it will maximize use of extant publicly available data. 
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1. Introduction 
Environmental exposures are emerging as key factors to understanding the origin and 

prevention of human diseases.1 Although environmental exposures rarely occur in isolation, 

prevailing statistical approaches have traditionally analyzed them individually.2,3 To 

accommodate the complexity of multiple co-occurring exposures and to assess their joint 

association with diseases, multiple mixture approaches2,3 have been developed. Existing 

mixture approaches incorporate correlation structure among exposures, thereby limiting both a 

collinearity effect and standard-error inflation.4,5 However, those methods fail to replicate 

mixture-outcome associations across cohorts,6 which limits their applicability to regulatory 

decisions.  

 

To solve this issue, the majority of the studies have combined population studies and identified 

an overall mixture-outcome association, without taking into account the potential heterogeneity 

across key characteristics of the studies being combined.6,7  A few novel statistical approaches 

have also proposed to identify clusters and factors commonly shared across datasets. For 

example, multi-study factor analyses identify factors common to all studies leveraging on joint 

models while the multiple dataset integration approach identifies groups of features that tend to 

be grouped together in multiple datasets, using a Dirichlet-multinomial allocation mixture and 

exploiting statistical dependencies between the datasets.8-10 However, those approaches 

identify clusters of features, but do not show the importance of individual features, thus yielding 

challenges in interpreting results. 

 

Among the mixture approaches, our team developed the Bayesian Weighted Quantile Sum 

(BWQS) regression,11 which is a supervised quantile-based approach to assess the association 

of an outcome with multiple environmental exposures.11-14 All exposures are combined additively 

into a weighted index, with weights capturing the contribution of each exposure to the mixture.12-

14 The BWQS regression provides simplicity of inference, easy interpretability, mixture-response 

association, and results that are insensitive to exposures’ outliers.11-14 In addition, the BWQS 

regression does not require a priori selection of the directionality of the mixture-outcome 

association, thus allowing flexibility of the coefficient estimates. Here we extend the framework 

of the BWQS regression to a hierarchical setting to accommodate mixture analyses across 

multiple cohorts of different sample sizes. 
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This work is organized in a stepwise fashion as follows: in Section 2, we reviewed the BWQS 

regression and introduce the hierarchical BWQS (HBWQS) regression model; in Section 3, we 

provide results from six simulated scenarios, also providing an accuracy measure. Section 4 

deals with two real-case examples on the relationship between prenatal chemical exposures 

and both gestational age and gestational age acceleration metrics. Finally, Sections 5 and 6 

offer a discussion and some concluding remarks, respectively. 

 

2. Methods: regression model and distributions 
 
2.1 The Bayesian Weighted Quantile Sum (BWQS) regression 
We first review the BWQS regression as a framework for assessing the effect of a complex 

exposure mixture on a continuous normally distributed outcome, yi.11,15 For each subject 

i=1,…,n⁠, the BWQS regression relates the outcome to M components of the mixture 

zi=(z1i,...,zMi) through a weighted index ∑ wmqmiM
m=1 , which represents the linear combination of 

the quantiles qi=(q1i,...,qMi) of zi, , i.e. the empirical cumulative distribution function of zi,, and 

with wm identifying the weights mapped to the m-th mixture component (zm). The model can be 

adjusted for C relevant covariates xi=(x1i,...,xCi) and its general form is: 

𝑦𝑦i = β0 + β1� wmqmi
M

m=1
+ 𝐱𝐱i𝑇𝑇𝛄𝛄 + ei, 

where β0 is the intercept, β1 is the regression coefficient representing the overall linear effect 

between the weighted index and the outcome, 𝜸𝜸 = (𝜸𝜸1,..., 𝜸𝜸C) represents the effects of the 

potential confounders on the outcome, and ei  is the error term distributed as a N(0,σy
2), with σy

2⁠ 
being an InvGamma(0.01, 0.01). 11,15  Considering a Bayesian estimation procedure, we impose 

a weakly informative priors for all the regression parameters β = (β0, β1) and 𝜸𝜸 by eliciting two 

independent multivariate Normal distribution with null mean vector and diagonal covariance 

matrix with large values (e.g. 100) on the diagonal. As the vector of weights w = (w1,…, wM) 

follows a Dirichlet prior distribution parameterized by a vector of 1. 11,15 

 

2.2 The hierarchical Bayesian Weighted Quantile Sum (HBWQS) regression for multiple cohorts 
We now assume J (j=1,…J) cohorts harmonized and combined in a single dataset with the 

goals of 1) identifying the overall mixture index that summarizes the most harmful mixture 

compounds across cohorts and 2) assessing the cohort-specific association between the overall 

mixture index and the outcome of interest. We define the hierarchical BWQS regression as: 
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𝑦𝑦ij = β0j + β1j� wmqmij
M

m=1
+ 𝐱𝐱ij𝑇𝑇𝛄𝛄 + eij

y , 

where βj = (β0j, β1j) are random terms of the j-th cohort, respectively intercept and coefficient 

mapped to the mixture, following independent Normal distributions centered in µβ= (µβ0, µβ1) and 

with variance σβ= (σβ0, σβ1), with hyperpriors µβ ~ N(0, 100*I), σβ0 ~ IG(0.01, 0.01), σβ1 ~ IG(0.01, 

0.01), and I indicating the 2x2 diagonal matrix. In this model, the quantiles qi are calculated 

using exposure levels across cohorts in order to create a common scale for the exposure 

mixture. 

To compare the BWQS and the HBWQS regression models we can use the Watanabe-Akaike 

information criterion (WAIC), which is comparable to the Akaike Information Criteria for 

frequentist approaches. The WAIC compares models fitting the same data, and it is computed 

using the log-likelihood evaluated at the posterior simulations of the parameter values.16,17  The 

WAIC closely approximates a Bayesian cross-validation due to its foundation on the series 

expansion of leave one out cross validation.16,17  

 

3. Simulation studies 
In this Section, we reported the results of a simulation study involving six parametric scenarios. 

Namely, we simulated six scenarios including 500 synthetic datasets each. To show the stability 

and goodness of our models, we reported the mean estimates, the bias, the mean square error 

(MSE) and the empirical coverage of all parameters (βj, w, 𝜸𝜸, and σy
2) for all scenarios. 

 

In the first five scenarios, we simulated each synthetic dataset comprising five cohorts, while in 

the sixth scenario we considered 10 cohorts. In all cohorts, we assumed to have a continuous 

outcome, four mixture components, which were ranked using quartiles, and three covariates. 

We included two continuous and one binary covariates, whose respectively coefficients 

were 𝛄𝛄 = (−0.4, 0.2, 0.5). The cohort sample sizes were assumed to be different in order to 

mimic the reality. In the first five scenarios, the five cohorts had the following sample sizes: 250, 
200, 150, 100, and 100, while the sixth scenario included 10 cohorts of 96, 87, 96, 60, 70, 107, 
56, 53, 106, and 72 observations. We assumed σy

2 =1 throughout scenarios, unless it is 

differently specified.   

 

Scenario 1. We assumed that the mixture components contributed differently to the overall 

mixture w=[0.1,0.4,0.3,0.1] and that the random intercept and slope βj = (β0j, β1j) in the j-th 
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cohort (j=1,..,5) were β1 = (0.65, -1.7); β2 = (-0.38, -0.94); β3 = (0.15, -0.11); β4 = (-0.98, -1.45); 

β5 = (1.13, -1.88).  

Scenario 2. We assumed to have a predominant weight in the overall mixture (i.e. with higher 

weight wm compared to the other components) and we set the mixture component weights to 

w=[0.7,0.1,0.1,0.1]. The remaining parameters were unchanged from Scenario 1. 
Scenario 3. We evaluated the effect of having a very small weight for a specific mixture 

component: w=[0.30, 0.45, 0.24, 0.01] and random terms were unchanged from Scenario 1. 

Scenario 4. Compared to Scenario 1, we assumed that in the first cohort there was no 

association between the mixture and the outcome, so we had different random terms for first 

cohort β1 = (0.65, 0), while we left unchanged the remaining random terms and weights. 

Scenario 5. We assumed a larger model variance σy
2 =3.12 compared to all other scenarios, 

while we left unchanged all parameters from Scenario 1. 

Scenario 6. We assumed 10 cohorts with random terms of β1 = (0.65, -1.7); β2 = (-0.38, -0.94); 

β3 = (0.15, -0.11); β4 = (-0.98, -1.45); β5 = (1.13, -1.88), β6 = (-0.55, -0.87); β7 = (0.98, -0.04); β8 

= (0.55, -0.81); β9 = (-0.18, -1.95); β10 = (0.13, -0.58). We changed the variance of the model to 

be σy
2 =0.8. We left the weights unchanged from Scenario 1. 

 

We implemented our models and all analyses leveraging Stan, which is a C++ library for 

Bayesian inference using the No-U-Turn sampler (a variant of Hamiltonian Monte Carlo), and 

RStan, an R interface to Stan. We illustrated the HBWQS code at 

https://github.com/ElenaColicino/bwqs/. 

 

Each model included a single Markov chain of 10,000 iterations with a warm-up of 5,000 and 

thinning of 10. Table S1 summarizes the truth, estimate, bias, mean square error (MSEs) and 

empirical coverage of the parameters across all scenarios, while Figures S1-S2 showed the 

true value, the estimate, and the empirical coverage of all parameters. 

 

Across scenarios, all parameters showed very little bias ranging from -0.83 to 0.57 for random 

terms, which were in the [-1.95, 1.13] domain, and from -0.01 to 0.03 for weights, which 

individually were in the [0,1] domain. The larger biases for random terms were in Scenario 5 due 

to the large model variability (σy
2 =3.12). In general, posterior means provided reliable estimates 

also in terms of mean squared errors (MSEs) (Table S1). The MSEs were small with the 

exceptions of random intercepts in Scenario 5, due to the large model variability. All estimated 

values for weights showed an empirical coverage over 90%, while the majority (34/35 random 
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intercepts and 32/35 random slopes) of random terms showed an empirical coverage above 

90% across scenarios (Table S1). We also provided a summary of BWQS results in Table S2, 

showing good estimates for weights, while larger model variances compared to the actual 

values for five out of six simulated scenarios. To compare the results from HBWQS and BWQS 

on simulated data, we used the WAIC metrics, which indicate better performance with the 

smaller values. In our simulations, the WAIC metrics for the HBWQS regression showed a 

better average performance across scenarios than the BWQS regression (Figure 1). 

 

Both HBWQS and BWQS models had reasonable computing time. The computing time for the 

HBWQS model required an average time of 7 minutes (426 seconds) for all the scenarios, 

except Scenario 5, which required 40 minutes (2,413 seconds), while the BWQS computing 

time required an average of 5 minutes (308 seconds) (Table S3). This is consistent with 

expectations since an increased model complexity and model variability imply more computing 

time to have an appropriate model convergence. 

 

Figure 1. Watanabe-Akaike information criterion (WAIC) for the Bayesian Weighted Quantile 
Sum regression (BWQS) and the hierarchical BWQS (HBWQS) regression across six simulated 
scenarios. 
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4. Real data applications: gestational age and gestational age acceleration in relation 
to metal mixture 

 
4.1 Cohorts’ descriptions and ethics 

The PRogramming of Intergenerational Stress Mechanisms (PRISM) study:  The mother-infant 

pairs included in these analyses are participants in the PRISM prospective pregnancy cohort 

study designed to examine the effects of prenatal and early life psychosocial, physical, and 

chemical environmental exposures on child developmental outcomes. Beginning in 2011, 

pregnant women were recruited from prenatal clinics in Boston and New York City. Women 

were eligible if they were English or Spanish speaking, 18 years or older, and pregnant with a 

singleton. Exclusion criteria included maternal intake of ≥7 alcoholic drinks per week prior to 

pregnancy, any alcohol intake after pregnancy recognition, and HIV+ status. The study recruited 

n=1,109 women at 25 ± 7 weeks of gestation receiving prenatal care from the Beth Israel 

Deaconess Medical Center and East Boston Neighborhood Health Center in Boston, MA (from 

March 2011–December 2013) and Mount Sinai Hospital in New York City, NY (from April 2013–

February 2020) who delivered a live newborn with no significant congenital anomalies noted at 

birth that could impact participation in follow-up procedures.18,19 Metals and creatinine were 

measured in a subset who also had urine samples collected during pregnancy (N=641, 252 in 

Boston (BOS) and 389 in New York City (NYC)). Within two weeks of enrollment, mothers 

completed standardized surveys via in-person interviews to ascertain relevant covariates and 

exposures. Study protocols were approved by the Institutional Review Boards (IRBs) of the 

Brigham and Women’s Hospital and the Icahn School of Medicine at Mount Sinai.  Mothers 

provided written consent in their primary language. In these analyses we split the PRISM study 

using the enrollment location, due to the differences in participants’ characteristics (Table 1).  
The First 1000 Days and Beyond (F1000 or FTDL) study is a longitudinal pregnancy cohort of 

mother-child pairs living in Virginia.20,21 Women were ≥18 years of age and willing to participate 

in 12 longitudinal surveys during the first 12 months postpartum. All women were enrolled in 

2012 at 26 ± 5 weeks’ gestation at the Inova Health System in Falls Church, VA for the genetics 

study.  Starting in 2016, participants from the ongoing F1000 study were invited to participate in 

the national ECHO program, with 1,400 mothers consenting for themselves and their children to 

participate between 2016 and 2021.22,23 A total of 708 mother-child pairs with complete data on 

birth information also consented for biospecimen collection including urine for metal assays. The 

human studies committee at the George Mason University ceded review to the Mount Sinai IRB 

for ECHO follow-up and mothers provided written informed consent.  
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4.2 Primary birth outcomes   

Gestational age and gestational age acceleration metrics are good indicators of the fetal 

environment and predictors of neonatal short- and long-term child health24-26  

Gestational age: In PRISM, gestational age was calculated based on maternal report of last 

menstrual period (LMP) and updated, if discrepant by more than three weeks, based on 

obstetric estimates from ultrasound data in the medical record review at delivery.27 In F1000, 

ultrasounds were not performed routinely as standard of care; thus, gestational age was based 

on LMP and a standardized physical examination at birth to determine gestational age.28,29  

Gestational age acceleration metrics: In PRISM, we estimated three placental epigenetic 

gestational age estimators: a “robust placental clock” (RPC), a “control placental clock” (CPC) 

and a “refined RPC” (refRPC). 30 The RPC metric was developed to be unaffected by pregnancy 

conditions, such as preeclampsia, gestational diabetes, and trisomy; the CPC metric was 

designed for measuring gestational age in normal pregnancies, and the refRPC was trained for 

uncomplicated term (gestational age > 36 weeks) pregnancies.30 We then used the epigenetic 

gestational age estimators to compute gestation age acceleration metrics that were formally 

defined as studentized residuals resulting from regressing the gestational age estimators on 

observed gestational age. By definition, these residual-based measures of gestational age 

acceleration were not correlated with true gestational age (r=0).30 The three placental epigenetic 

gestational age metrics leveraged PRISM placenta DNA methylation data collected immediately 

following birth as previously described.31,32 Briefly, sufficient DNA was available from 234 

placenta samples and DNA methylation was measured using the 450K array (Illumina, San 

Diego, CA). To minimize batch effects, samples were randomized into chips and plates.33,34 

Raw methylation data were processed using the R package ewastools.35,36  We removed 

samples that were outliers and were potentially contaminated, and we corrected for dye bias 

using RELIC.37 Observations with detection p-values < 0.05 were also removed.35,36 In F1000, 

placenta DNA methylation data were not available, so analyses on gestational age acceleration 

metrics included only sites from the PRISM study. 

 

4.3 Prenatal chemical exposures: Arsenic, Cadmium and Lead concentrations 

In both cohorts, maternal urine collected during gestation was stored at -80°C, and shipped to 

Mount Sinai for laboratory analysis as previously described. 19 Urine samples (200 µl) were 

diluted with solution in a polypropylene trace-metal-free Falcon tube.19 Samples were analyzed 

using matrix-matched calibration standards using an 8800 triple-quad inductively coupled 

plasma tandem mass spectrometer (Agilent Technologies) with appropriate gases to eliminate 
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ion interference. Internal standards were used to correct for differences in sample introduction, 

ionization, and reaction rates.19 To monitor the accuracy, recovery rates, and reproducibility of 

the procedure, quality control and quality assurance procedures included analyses of initial 

calibration verification standards and continuous calibration verification standards.19 The limits 

of detection for analytes by this procedure were between 0.02 and 10 ng/ml.19 When we had 

two urinary metal measurements during gestation, we considered the average exposure 

between the 2nd and the 3rd trimesters to reflect the entire pregnancy exposures. 

 

4.4 Covariates 

Both PRISM and F1000 studies included maternal age, race/ethnicity, parity, maternal 

education and child sex.20,26 Urinary creatinine levels, available for both cohorts, were measured 

using a well-established colorimetric method (limit of detection [LOD]: 0.3125 mg/dL)38 and were 

used to correct metal levels for urinary dilution variation. Creatinine levels were averaged when 

we considered the simple average exposure between the 2nd and the 3rd trimesters. Individuals 

with missing covariate information or smoking during pregnancy, for consistency across studies 

and due to the strong smoke effect on birth outcomes, were removed from the analyses, as 

described in the flowchart (Figure S3).  

 

4.5 Models 

We log2-transformed all metals to reduce the skewness of their distributions and we 

harmonized the covariates to accommodate any major difference. We then employed the 

HBWQS regression to evaluate the association of each outcome with the urinary metal mixture 

including all cohorts. We also applied the BWQS regression in each cohort separately and 

combining all cohorts in a single analysis. All HBWQS models included a single chain of 20,000 

iterations, whose 10,000 were part of the burn-in and we used 10 as thinning parameter, while 

all BWQS models had a single chain of 10,000 with 5,000 warm-up and 3 thin. We reported the 

quality of the convergence of the chain of each parameter using 1) trace and 2) autocorrelation 

plots, 3) Rhat coefficients, and 4) the number of effective sample size (ESS), which reflects the 

autocorrelation within the chain.39,40 For the gestational age analyses, we first analyzed all 

n=1,349 samples (BOS n=252, NYC n=389, F1000 n=708, Table 1, Figure S3) and we then 

restricted our sample size to children born at term (gestational age ≥ 37 weeks) to mitigate any 

potential skewness of the outcome distribution, thus leaving n=1,276 (BOS n=238, NYC n=346, 

F1000 n=692) for the analyses. For the analyses on gestational age acceleration metrics, we 

considered only PRISM data, thus leaving n=170 (BOS n=106, NYC n=60, Table 1, Figure S3). 
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We finally compared HBWQS and BWQS regression on the same data using the WAIC metrics 

and provided computing time for all analyses. 

 

4.5 Results 

The three studies showed differences across participants’ characteristics. Women living in NYC 

showed shorter gestational age (38.5 weeks) compared to the other studies (Gestational age: 

BOS: 39.2, F1000: 39.3, pvalue<0.001, Table 1) and delivered at younger age (28.1 years) 

compared to other locations (BOS: 32.0, F1000: 32.5, pvalue<0.001). We identified differences 

of race/ethnicity distribution across studies (pvalue<0.001), with higher proportion of Black 

(57%) and non-Black Hispanic (38%) in PRISM NYC, compared to PRISM BOS (Black: 21%, 

Non-Black Hispanic: 33%) and F1000 (Black: 4%, Non-Black Hispanic: 14%).  No difference of 

gestational age acceleration was identified between PRISM BOS and PRISM NYC (Table 1). 

Despite the difference in mean metal concentrations across cohorts (pvalue<0.001; As PRISM 

BOS: 3.45 PRISM NYC: 3.42 F1000: 2.57; Cd: PRISM BOS:-2.83 PRISM NYC:-2.20 F1000:-

3.04; Pb: PRISM BOS:-1.43 PRISM NYC:-0.65 F1000:-1.65, Table 1), the metals had common 

domains (Figure 2A) and similar correlation pattern (Figure 2B). To create a common scale, 

the metal domains across studies were used to compute the exposure quantiles. The correlation 

between metals was moderate in each cohort, ranging between 0.13-0.28 in PRISM BOS, 

between 0.18-0.24 in PRISM NYC and between 0.15-0.31 in F1000. All models showed a good 

convergence of the chains: 1) all trace plots show good evolution of the parameter vector over 

the Markov chain iterations (Figures S4-S5), 2) the autocorrelation across post-warmup 

iterations of the posterior distributions dropped quickly to zero with increasing lags, indicating no 

autocorrelation across iterations (Figures S6-S7), 3) Rhat statistics were approximately 1 for all 

parameters, indicating that the chain has converged to the equilibrium distribution (Tables S4-
S5) and 4) the ratio between the effective sample size (ESS) and the total sample size of chain 

iterations of the posterior distributions was above 0.75 for all parameters, indicating good ability 

of the chain to estimate the true mean value of the parameters (Figures S8-S9, Tables S4-S5). 

We reported the computing time for the HBWQS and BWQS models on the same data (Table 
S6). As we showed in the simulated scenarios, more complex models, i.e. HBWQS regressions, 

had a higher computing time with than simple ones, i.e BWQS regressions.
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Table 1. Main characteristics of study participants of the PRISM Boston (BOS), PRISM New York City (NYC) and F1000 studies. 
Variable PRISM BOS, n = 252 PRISM NYC, n = 389 F1000, n = 708 p-valuec  

 Mean (SD) 
or N (%) 

Mean (SD)  
or N (%) 

Mean (SD) 
or N (%)  

Gestational age (weeks) 39.17 (1.44) 38.53 (2.45) 39.31 (1.12) <0.001 
Gestational age acceleration 
metrics (weeks)     

RPC 0.00 (0.88) a -0.03 (1.00) b  0.93 
CPC  0.00 (0.90) a 0.02 (1.00) b  0.68 

refRPC -0.07 (0.93) a 0.07 (0.99) b   0.34 
Log2-transformed exposure 
levels (log2(µg/L))     

Arsenic (As)  3.45 (1.48) 3.42 (1.46) 2.57 (1.58) <0.001 
Cadmium (Cd) -2.83 (1.16) -2.20 (1.27) -3.04 (1.38) <0.001 

Lead (Pb) -1.43 (1.24) -0.65 (1.10) -1.65 (0.89) <0.001 
Maternal age at birth (years) 31.95 (5.20) 28.17 (6.04) 32.48 (4.83) <0.001 
Urine creatinine (ug/mL) 892.14 (527.46) 1,266.85 (762.90) 809.45 (566.49) <0.001 
Maternal education binary    <0.001 

Above high school 61 (24%) 182 (47%) 106 (15%)  
High school or less 191 (76%) 207 (53%) 602 (85%)  

Maternal race/ethnicity    <0.001 
Black/Hispanic black 52 (21%) 220 (57%) 27 (3.8%)  
Non-black Hispanic 84 (33%) 148 (38%) 97 (14%)  

Non-Hispanic non-black 96 (38%) 13 (3.3%) 397 (56%)  
Others 20 (7.9%) 8 (2.1%) 187 (26%)  

Parity    <0.001 
More than one 102 (40%) 130 (33%) 141 (20%)  

None 54 (21%) 127 (33%) 225 (32%)  
One 96 (38%) 132 (34%) 342 (48%)  

Child sex    0.99 
Female 125 (50%) 191 (49%) 351 (50%)  

Male 127 (50%) 198 (51%) 357 (50%)  
a n=106  
b n=60  
c p-value indicating the variable differences across populations. t-test for continuous variables and Chi-Square test for categorical 
variables. 
RPC= robust placental clock; CPC: control placental clock; refRPC: refined RPC 
SD: standard deviation 
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Figure 2 A. Boxplots of the log-2 transformed urinary metal levels (Arsenic (As), Cadmium (Cd), 
Lead, (Pb), in the three studies (PRISM Boston (BOS), PRISM New York City (NYC), F1000). B 
Pearson correlation plots of the log-2 transformed urinary metal levels within each study. 

 

 

Gestational age: The HBWQS regression showed a negative association between the metal 

mixture and gestational age in the PRISM NYC (Est. -0.22; 95%CrI:-0.40; -0.02; 80%CrI: -0.34; 

-0.10, Table S4, Figure 3), with Cd (64%) contributing the most to the overall mixture effect (As: 

21%; Pb:15, Figure 3). While using the BWQS regression, no evidence of association was 

identified between gestational age and metal mixture at any site separately (PRISM BOS: Est. 

0.02; 95%CrI:-0.23; 0.28; 80%CrI: -0.15; 0.19; PRISM NYC: Est. -0.11; 95%CrI:-0.53; 0.32; 

80%CrI: -0.40; 0.17; F1000: Est. -0.05; 95%CrI:-0.18; 0.08; 80%CrI: -0.13; 0.03 Table S4, 
Figure 3) or in combination (Est. -0.09; 95%CrI:-0.24; 0.06; 80%CrI: -0.19; 0.01 Table S4, 
Figure 3). The HBWQS showed a better performance (WAIC: 5180) than the BWQS regression 
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on the combined sites (WAIC: 5200) (95%CrI of the WAIC difference: 1.00; 39.80). Once we 

included only women that delivered at term (≥37 weeks) (n=1,276), the majority of results were 

consistent with previous analyses showing no association between the metal mixture and 

gestational age in individual sites or in combination. Although HBWQS findings showed no 

longer a significant association between gestational age and the metal mixture in PRISM NYC, 

the relationship was consistent in the directionality (Table S4, Figure S10).  

 

Gestational age acceleration: There was no evidence of the association between the metal 

mixture and the gestational age acceleration metrics in the overall PRISM study combining both 

sites with BWQS regressions (RPC metric: Est. -0.05; 80%CrI: -0.18; 0.08; CPC metric: Est. -

0.3 80%CrI: -0.16,0.10; refRPC metric: Est. -0.10; 80%CrI: -0.22; 0.03 Table S5, Figure 4) or 

using the HBWQS approach (RPC metric: PRISM BOS: Est. -0.02; 80%CrI: -0.15; 0.12; PRISM 

NYC: Est. -0.08; 80%CrI: -0.24; 0.06; CPC metric: PRISM BOS: Est. 0.00; 80%CrI: -0.14; 0.14; 

PRISM NYC: Est. -0.05; 80%CrI: -0.20; 0.10;  refRPC metric: PRISM BOS: Est. -0.10; 80%CrI: -

0.24; 0.04; PRISM NYC: Est. -0.13; 80%CrI: -0.29; 0.03 Table S5, Figure 4). However, all 

estimates showed consistent negative directionality and similar magnitude of the mixture effects 

on the outcomes. Across gestational age acceleration metrics, HBWQS WAIC values were 

similar to those of the BWQS model combining the two sites (RPC metric: HBWQS: 461 BWQS: 

460; 95%CrI WAIC difference: -3.8; 1.7; CPC: HBWQS: 461 BWQS: 461; 95%CrI WAIC 

difference: -3.3; 3.0 refRPC: HBWQS: 462 BWQS: 460; 95%CrI WAIC difference: -3.1; 0.1) and 

under these circumstances the simplest BWQS analysis is preferable than the HBWQS 

regression with random terms for site. We identified a weak evidence of a negative association 

between the metal mixture and both RPC (Est. -0.34; 95%CrI:-0.78; 0.10; 80%CrI: -0.63; -0.05), 

and refRPC (Est. -0.31; 95%CrI:-0.74; 0.12; 80%CrI: -0.59; -0.03) in the PRISM NYC study, 

probably due to the higher homogeneity of this population. In both associations, Pb (RPC: 46%, 

refRPC: 41%) and Cd (RPC: 34%. refRPC: 37%) showed the highest contribution to the mixture 

(Table S5, Figure 4A-B). 
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Figure 3. A-C Estimated association between the prenatal urinary metal mixture exposure (Arsenic (As), Cadmium (Cd), and Lead 
(Pb)) and gestational age (weeks) in the PRISM New York City (NYC), PRISM Boston (BOS) and F1000 by using the Bayesian 
weighted quantile (BWQS) regression at the individual sites (cohort BWQS) and in the overall sample aggregating all sites (Overall 
BWQS) and by using the hierarchical BWQS (HBWQS) regression. D Contribution of metals to the mixture.
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Figure 4 A.1-A.2, B1-B.2, C.1-C2 Estimated association between the prenatal urinary metal 
mixture exposure (Arsenic (As), Cadmium (Cd), and Lead (Pb)) and gestational age 
acceleration metrics (RPC, CPC, refRPC) in the PRISM New York City (NYC), and PRISM 
Boston (BOS) by using the Bayesian weighted quantile (BWQS) regression at the individual 
sites (cohort BWQS) and in the overall PRISM sample aggregating all sites (Overall BWQS) and 
by using the hierarchical BWQS (HBWQS) regression. A.3, B.3, C.3 Contribution of metals to 
the mixture. RPC= robust placental clock; CPC: control placental clock; refRPC: refined RPC 
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5. Discussion 

We developed and applied the HBWQS regression, which estimates (i) an overall mixture index 

for the exposures and (ii) cohort-specific regression coefficients that characterize the 

association between an outcome and this overall mixture index. The overall mixture is a 

weighted index that linearly combines the exposures that can be previously ranked in quantiles. 

The mixture weights are assumed to follow a Dirichlet distribution, thus implying that each 

weight is constrained to be positive and the sum of all weight is constrained to be 1, so that they 

can be sorted by relative importance. Exposures that affect the outcome to a greater degree 

have higher weights, whereas exposures with little or no impact on the outcome have near-zero 

weights. The HBWQS method uses random slopes to infer the association between the 

outcome and the overall weighted mixture index in each cohort. Our simulations showed that 

the parameters estimated with HBWQS regression showed very little bias and had a good 

empirical coverage across scenarios. The MSEs were small and close to zero for the majority of 

parameters. We also compared the HBWQS and BWQS regressions using the WAIC and 

simulation findings showed that the HBWQS performed better than BWQS regressions on the 

same datasets.  

 

This approach offers several advantages. First the overall mixture index is based on the quantile 

for each metal exposure, thereby reducing the impact of extreme values in right-skewed 

distributions. This step also creates a common scale across cohorts for each exposure, 

because the quantiles are created using the exposure data from all cohorts15. Second, the 

weights wj are constrained to be positive and sum to 1 so that all exposures in the mixture are 

assessed simultaneously and incorporated into a single index.15 These weights give the relative 

importance of the exposures, identifying which exposure within the mixture is the most relevant 

into the mixture.15 Third, the hierarchical form of this approach and specifically the random effect 

terms enable us to have a cohort-specific association between the outcome and the overall 

mixture index and a cohort-specific intercept, respectively. In addition, this hierarchical method 

incorporates the differences in exposures correlation structure of each cohort with random 

effects and facilitates sharing information across cohorts as all hierarchical Bayesian 

approaches do. 41  The advantages of information sharing of hierarchical modeling include the 

shrinkage of extreme coefficient estimates towards an overall average and the fewer 

observations a cluster, i.e. cohort, has the more information is borrowed from other clusters and 

the greater the pull towards the average estimate is.42,43 Finally, HBWQS regression capitalizes 
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upon the idea that independent studies are randomly sampled from a population of studies, and 

individual subjects are randomly sampled within each study.41 The combination of multiple 

individual studies, which are thought to be sub-studies from a population of studies, 

substantially increases the statistical power for testing research hypothesis and integrates 

between-study heterogeneity. Indeed, when multiple independent studies are combined, there is 

often an increase in statistical power when testing the same hypotheses based upon the 

aggregated versus independent studies.44 Also the between-study heterogeneity may serve to 

have more generalizable conclusions on the composition of the overall mixture index and may 

offer novel insights of mixture-outcome associations in each individual study. This approach 

may help mitigate the need for creating novel studies designed to resolve conflicting findings 

across studies posited to result from between-study design differences.  

 

We applied the HBWQS regression to three ethnically diverse populations sharing the same 

outcomes, exposures (As, Cd, and Pb) and harmonized covariates. We found a detrimental 

negative association between the metal mixture and gestational age in the PRISM NYC sample 

using the HBWQS regression. The mixture was mostly composed by Cd (64%).  

Although there was no evidence of the mixture associations with gestational age acceleration 

metrics using HBWQS and BWQS on aggregated sites, all results suggested a negative 

direction of the associations. We also uncovered a weak evidence of a negative association 

between the metal mixture and gestational age acceleration (both RPC and refRPC) in the 

PRISM NYC sample using BWQS analysis with Cd and Pb having higher contribution to the 

mixture. This set of results suggested a slower biological gestational age with higher exposure 

in the metal mixture.  

 

Our results are consistent with prior literature showing prenatal individual and mixture exposure 

to arsenic (As), lead (Pb), and cadmium (Cd) associated with shorter gestation 45-48, and preterm 

birth 47,49-51 in populations exposed to chemicals at different levels of exposure. However, results 

considering environmental mixtures are still conflicting on showing the most detrimental 

exposures into the mixture and the significance of the overall the mixture-outcome 

associations.48,52-55 Overall, our application highlighted the importance of evaluating metal 

mixture in relation to children health, including birth outcomes. Indeed, compared to adults, 

children have differences in metal exposure patterns and have greater vulnerability to metal 

exposures due to crawling, hand-mouth behaviors, and diet.56 In addition, environmental metal 

exposures may be higher than adults due to higher surface-to-volume ratios, higher 
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consumption rates of food and water, higher respiration rates, and different toxicokinetics.56 

Although high levels of many individual metal exposures, such as lead, produce observable 

toxicity early in life, including on gestational age, lower doses of multiple metals may be 

detrimental.57 During critical developmental periods, including gestation, low levels of numerous 

metal exposures might induce only subtle alterations in endocrine signaling or gene expression 

but could lead to permanent changes that program health outcomes throughout the life 

course.57  

 

Our real case studies supported the idea that analyses at individual heterogeneous studies may 

be limited by sample size to capture small effect sizes, which can be different across studies 

and cannot be identified in aggregated analyses. This novel approach, however, cannot be 

blindly used for combining data from any independent studies, and some considerations should 

be assessed before applying the HWQBS regression. Although study harmonization is the first 

step for developing commensurate measures and a good HBWQS application, it may be not 

sufficient. Indeed, even identical variables which do not require harmonization may function 

differently across studies, due to differences in regional interpretations, historical periods, and 

laboratory conditions and technologies. 58 For example, the same construct may not have 

equivalent meaning across studies of children at different ages.44 Also, even when the same 

study-characteristics are assessed with the same instrument in different laboratories, some 

technical artifacts may lead to some discrepancies across studies. 44 

In addition, differences in study design characteristics may limit the applicability of this 

approach. For example, cross-study discrepancies in exposure ranges or socio-demographic 

characteristics can largely increase the sources of between-study variability and thus limiting the 

applicability of this approach. 44 Also, information missing by design (e.g. race/ethnicity) in a 

single cohort may be challenging to address using this approach, which requires to constrain 

the analysis to common items. Although a missing at random assumption could seem quite 

plausible in many cases, the exclusion of the missing variable should be evaluated with 

sensitivity analyses and alternatives approaches, such as residual analysis. Also, different 

study-designs, such as case-control vs observational studies, may be not appropriately treated 

in a combined analysis with random effects and fixed-effects approach, i.e. BWQS regressions, 

should considered instead. 44 Finally there must be a sufficient number of independent samples 

and studies to allow for the reliable estimation of the random variability. Although further 

research can help to detect the sufficient number of samples and studies to allow for proper 

estimation of mixture-outcome association with random effects, prior general multilevel 
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framework suggested between 20 to 30 as a minimum number of samples, while three as the 

minimum number of studies.44,59 The influences of all these potential sources of between-study 

heterogeneity should be considered and mitigated when possible before applying HBWQS 

regression in order to optimally capture the estimates of the mixture-outcome associations and 

mixture component contribution.  

 

Overall, the HBWQS approach directly supports the increased calls for data sharing, the 

maximization of available resources and the creation a new research endeavors, where 

researchers can contribute with secondary data analyses, and multiple innovative 

methodologies thus offering novel insights of the data. The analysis of extant data is an 

extremely cost efficient mechanism for conducting research and this efficiency is further realized 

by considering not just one but multiple existing datasets with same exposures and outcomes.60  

 
6. Conclusions  

The HBWQS regression is the first mixture approach that can be applied to multiple cohorts and 

that can illustrate the discrepancies in the mixture-outcome associations across cohorts and 

characterize the individual contribution of each component to the overall mixture index. 
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SUPPLEMENTAL MATERIAL 
Figure S1. Real value (red dot), estimate (black dot), 95% and 80% Credible Interval (CrI) (thin and bold error bars), empirical 
coverage (color), and estimate distribution (distribution on the top, histogram on the bottom) of the random terms of the six simulated 
scenarios using the hierarchical Bayesian weighted quantile sum regression (HBWQS). 
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Figure S2. Real value (red dot), estimate (black dot), 95% and 80% Credible Interval (CrI) (thin and bold error bars), empirical 
coverage, and estimate distribution (distribution on the top, histogram on the bottom) of the weights of the six simulated scenarios 
using the hierarchical Bayesian weighted quantile sum regression (HBWQS). 
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Figure S3. Flowchart for A) The PRogramming of Intergenerational Stress Mechanisms (PRISM) study and B) The First 1000 Days 
and Beyond (F1000) study. Grey boxes indicate the study subsets for the main analysis on both gestational age and gestational age 
acceleration metrics.   

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 17, 2023. ; https://doi.org/10.1101/2023.04.14.23288581doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.14.23288581


28 
 

Figure S4. Trace plots of the post-warmup (10,000-20,000) iterations (X-axis) of the posterior distribution (Y-axis) of all main parameters (random 
intercepts: b0, random intercept: b1, weights: w)) of the hierarchical Bayesian weighted quantile (HBWQS) regression linking prenatal urinary metal 
mixture exposure (Arsenic (As), Cadmium (Cd), and Lead (Pb)) and gestational age (weeks) in the PRISM New York City (NYC), PRISM Boston 
(BOS) and The First 1000 Days and Beyond (F1000) studies. 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 17, 2023. ; https://doi.org/10.1101/2023.04.14.23288581doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.14.23288581


29 
 

Figure S5. Trace plots of the post-warmup (10,000-20,000) iterations (X-axis) of the posterior distribution (Y-axis) of all main parameters (random 
intercepts: b0, random intercept: b1, weights: w)) of the hierarchical Bayesian weighted quantile (HBWQS) regression linking prenatal urinary metal 
mixture exposure (Arsenic (As), Cadmium (Cd), and Lead (Pb)) and gestational age acceleration metrics (panel A. RPC= robust placental clock; 
panel B. CPC: control placental clock; panel C. refRPC: refined RPC) in the PRISM New York City (NYC), and PRISM Boston (BOS).
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Figure S6. Autocorrelation plots of the Markov chain of the posterior distributions (Y-axis)—separately up to 25 lags (X-axis). We showed the posterior 
distributions of all main parameters (random intercepts: b0, random intercept: b1, weights: w)) of the hierarchical Bayesian weighted quantile 
(HBWQS) regression linking prenatal urinary metal mixture exposure (Arsenic (As), Cadmium (Cd), and Lead (Pb)) and gestational age (weeks) in 
the PRISM New York City (NYC), PRISM Boston (BOS) and The First 1000 Days and Beyond (F1000) studies. 
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Figure S7. Autocorrelation plots of the Markov chain of the posterior distributions (Y-axis)—separately up to 25 lags (X-axis). We showed the posterior 
distributions of all main parameters (random intercepts: b0, random intercept: b1, weights: w)) of the hierarchical Bayesian weighted quantile 
(HBWQS) regression linking prenatal urinary metal mixture exposure (Arsenic (As), Cadmium (Cd), and Lead (Pb)) and and gestational age 
acceleration metrics (panel A. RPC= robust placental clock; panel B. CPC: control placental clock; panel C. refRPC: refined RPC) in the PRISM 
New York City (NYC), and PRISM Boston (BOS). 
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Figure S8. Ratio between the effective sample size (ESS) and total sample size of chain draws of the posterior distribution for main parameters(random 
intercepts: b0, random intercept: b1, weights: w)) of the hierarchical Bayesian weighted quantile (HBWQS) regression linking prenatal urinary metal 
mixture exposure (Arsenic (As), Cadmium (Cd), and Lead (Pb)) and gestational age (weeks) in the PRISM New York City (NYC), PRISM Boston 
(BOS) and The First 1000 Days and Beyond (F1000) studies. 
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Figure S9. Ratio between the effective sample size (ESS) and total sample size of chain draws of the posterior distribution for main parameters(random 
intercepts: b0, random intercept: b1, weights: w)) of the hierarchical Bayesian weighted quantile (HBWQS) regression linking prenatal urinary metal 
mixture exposure (Arsenic (As), Cadmium (Cd), and Lead (Pb)) and and gestational age acceleration metrics (panel A. RPC= robust placental 
clock; panel B. CPC: control placental clock; panel C. refRPC: refined RPC) in the PRISM New York City (NYC), and PRISM Boston (BOS) 
studies. 
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Figure S10. Sensitivity analysis including only women that delivered at term (≥37 weeks) (n=1,276). A-C Estimated association between the 
prenatal urinary metal mixture exposure (Arsenic (As), Cadmium (Cd), and Lead (Pb)) and gestational age (weeks) in the PRISM New York City 
(NYC), PRISM Boston (BOS) and F1000 by using the Bayesian weighted quantile (BWQS) regression at the individual sites (cohort BWQS) and in 
the overall sample aggregating all sites (Overall BWQS) and by using the hierarchical BWQS (HBWQS) regression. D Contribution of metals to the 
mixture. 
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Table S1 Real value, mean estimate, bias, Mean Square Error (MSE) and empirical coverage of 
the main parameters (random intercepts: beta0, random intercept: beta1, weights: W, model 
variance: sigma) of the six simulated scenarios using the hierarchical Bayesian weighted 
quantile sum regression (HBWQS). 

Parameters Real 
value 

Mean 
estimate Bias MSE Empirical 

Coverage 
Simulation 1 

beta0_1 0.65 0.45 -0.20 0.55 0.93 
beta0_2 -0.38 -0.32 0.06 0.32 0.92 
beta0_3 0.15 0.24 0.09 0.23 0.95 
beta0_4 -0.98 -0.87 0.11 0.56 0.92 
beta0_5 1.13 0.83 -0.30 0.69 0.90 
beta1_1 -1.70 -1.60 0.10 0.11 0.92 
beta1_2 -0.94 -0.97 -0.03 0.05 0.91 
beta1_3 -0.11 -0.16 -0.05 0.03 0.94 
beta1_4 -1.45 -1.50 -0.05 0.11 0.92 
beta1_5 -1.88 -1.74 0.14 0.14 0.88 
W1 0.10 0.11 0.01 0.01 0.96 
W2 0.40 0.40 0.00 0.00 0.94 
W3 0.30 0.30 0.00 0.00 0.94 
W4 0.20 0.20 0.00 0.00 0.95 
Covariate1 -0.40 -0.40 0.00 0.00 0.94 
Covariate2 0.50 0.50 0.00 0.01 0.96 
Covariate3 0.20 0.20 0.00 0.00 0.96 
sigma 1.00 1.00 0.00 0.58 0.94 

Simulation 2 
beta0_1 0.65 0.60 -0.05 0.15 0.95 
beta0_2 -0.38 -0.32 0.06 0.14 0.95 
beta0_3 0.15 0.22 0.07 0.16 0.95 
beta0_4 -0.98 -0.87 0.11 0.17 0.97 
beta0_5 1.13 1.03 -0.10 0.18 0.95 
beta1_1 -1.70 -1.67 0.03 0.01 0.97 
beta1_2 -0.94 -0.96 -0.02 0.01 0.98 
beta1_3 -0.11 -0.14 -0.03 0.02 0.95 
beta1_4 -1.45 -1.49 -0.04 0.02 0.96 
beta1_5 -1.88 -1.83 0.05 0.02 0.95 
W1 0.70 0.71 0.01 0.00 0.97 
W2 0.10 0.10 0.00 0.00 0.96 
W3 0.10 0.10 0.00 0.00 0.95 
W4 0.10 0.10 0.00 0.00 0.98 
Covariate1 -0.40 -0.40 0.00 0.00 0.95 
Covariate2 0.50 0.50 0.00 0.01 0.96 
Covariate3 0.20 0.20 0.00 0.00 0.96 
sigma 1.00 1.00 0.00 0.63 0.96 

Simulation 3 
beta0_1 0.65 0.58 -0.08 0.54 0.94 
beta0_2 -0.38 -0.28 0.10 0.34 0.93 
beta0_3 0.15 0.26 0.11 0.21 0.96 
beta0_4 -0.98 -0.80 0.18 0.57 0.91 
beta0_5 1.13 0.98 -0.15 0.66 0.93 
beta1_1 -1.70 -1.66 0.04 0.11 0.93 
beta1_2 -0.94 -0.98 -0.04 0.06 0.92 
beta1_3 -0.11 -0.16 -0.05 0.03 0.95 
beta1_4 -1.45 -1.52 -0.07 0.11 0.91 
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beta1_5 -1.88 -1.80 0.08 0.14 0.92 
W1 0.30 0.29 -0.01 0.00 0.90 
W2 0.45 0.44 -0.01 0.00 0.93 
W3 0.24 0.23 -0.01 0.00 0.92 
W4 0.01 0.04 0.03 0.01 0.94 
Covariate1 -0.40 -0.40 0.00 0.00 0.96 
Covariate2 0.50 0.50 0.00 0.01 0.96 
Covariate3 0.20 0.20 0.00 0.00 0.95 
sigma 1.00 1.00 0.00 0.59 0.92 

Simulation 4 
beta0_1 0.65 0.63 -0.02 0.15 0.95 
beta0_2 -0.38 -0.34 0.04 0.22 0.95 
beta0_3 0.15 0.23 0.08 0.19 0.96 
beta0_4 -0.98 -0.86 0.12 0.34 0.95 
beta0_5 1.13 0.90 -0.23 0.32 0.93 
beta1_1 0.00 0.01 0.01 0.01 0.94 
beta1_2 -0.94 -0.96 -0.02 0.03 0.95 
beta1_3 -0.11 -0.15 -0.04 0.03 0.94 
beta1_4 -1.45 -1.50 -0.05 0.06 0.94 
beta1_5 -1.88 -1.77 0.11 0.06 0.91 
W1 0.10 0.11 0.01 0.00 0.96 
W2 0.40 0.40 0.00 0.00 0.96 
W3 0.30 0.30 -0.01 0.00 0.95 
W4 0.20 0.20 -0.01 0.00 0.95 
Covariate1 -0.40 -0.40 0.00 0.00 0.94 
Covariate2 0.50 0.50 0.00 0.01 0.94 
Covariate3 0.20 0.20 0.00 0.00 0.95 
sigma 1.00 1.00 0.00 0.58 0.95 

Simulation 5 
beta0_1 0.65 0.16 -0.49 1.65 0.93 
beta0_2 -0.38 -0.01 0.38 1.59 0.94 
beta0_3 0.15 0.62 0.47 1.91 0.94 
beta0_4 -0.98 -0.41 0.57 1.88 0.93 
beta0_5 1.13 0.30 -0.83 2.22 0.90 
beta1_1 -1.70 -1.48 0.22 0.15 0.92 
beta1_2 -0.94 -1.12 -0.18 0.13 0.94 
beta1_3 -0.11 -0.40 -0.29 0.23 0.92 
beta1_4 -1.45 -1.67 -0.22 0.18 0.94 
beta1_5 -1.88 -1.48 0.40 0.27 0.81 
W1 0.10 0.13 0.03 0.01 0.98 
W2 0.40 0.39 -0.01 0.01 0.97 
W3 0.30 0.29 -0.01 0.01 0.97 
W4 0.20 0.20 0.00 0.01 0.97 
Covariate1 -0.40 -0.40 0.00 0.00 0.95 
Covariate2 0.50 0.50 -0.01 0.05 0.93 
Covariate3 0.20 0.20 0.00 0.00 0.93 
sigma 3.12 3.13 0.01 8.25 0.95 

Simulation 6 
beta0_1 0.65 0.49 -0.16 0.18 0.93 
beta0_2 -0.38 -0.27 0.12 0.15 0.95 
beta0_3 0.15 0.22 0.07 0.14 0.95 
beta0_4 -0.98 -0.74 0.24 0.27 0.93 
beta0_5 1.13 0.81 -0.32 0.29 0.89 
beta0_6 -0.55 -0.41 0.14 0.17 0.94 
beta0_7 0.98 0.87 -0.11 0.19 0.96 
beta0_8 0.55 0.44 -0.11 0.18 0.95 
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beta0_9 -0.18 -0.18 0.00 0.15 0.96 
beta0_10 0.13 0.18 0.05 0.13 0.96 
beta1_1 -1.70 -1.62 0.08 0.03 0.91 
beta1_2 -0.94 -0.99 -0.05 0.02 0.95 
beta1_3 -0.11 -0.14 -0.03 0.02 0.97 
beta1_4 -1.45 -1.56 -0.11 0.05 0.91 
beta1_5 -1.88 -1.72 0.16 0.05 0.86 
beta1_6 -0.87 -0.94 -0.07 0.02 0.94 
beta1_7 -0.04 0.01 0.05 0.03 0.96 
beta1_8 -0.81 -0.76 0.05 0.03 0.96 
beta1_9 -1.95 -1.95 0.00 0.02 0.95 
beta1_10 -0.58 -0.60 -0.02 0.02 0.98 
W1 0.10 0.10 0.00 0.00 0.95 
W2 0.40 0.40 0.00 0.00 0.95 
W3 0.30 0.30 0.00 0.00 0.95 
W4 0.20 0.20 0.00 0.00 0.94 
Covariate1 -0.40 -0.40 0.00 0.00 0.94 
Covariate2 0.50 0.50 0.00 0.00 0.95 
Covariate3 0.20 0.20 0.00 0.00 0.94 
sigma 0.80 0.80 0.00 0.32 0.93 
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Table S2 Mean estimate and standard deviation (SD) of the main parameters (intercept: beta0, slope: beta1, weights: W, model 
variance: sigma) of the six simulated scenarios using the Bayesian weighted quantile sum regression (BWQS). 

Parameters 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 

Mean 
Estimate SD Mean 

Estimate SD Mean 
Estimate SD Mean 

Estimate SD Mean 
Estimate SD Mean 

Estimate SD 

beta 0 0.15 0.78 -0.16 1.52 0.31 0.76 0.23 0.77 0.15 1.17 0.04 0.67 
beta 1 -1.29 0.31 -1.14 0.73 -1.36 0.31 -0.78 0.20 -1.30 0.28 -1.05 0.21 
w1 0.12 0.10 0.62 0.22 0.28 0.06 0.14 0.08 0.14 0.07 0.12 0.08 
w2 0.39 0.07 0.13 0.14 0.43 0.08 0.39 0.09 0.38 0.09 0.39 0.07 
w3 0.29 0.06 0.13 0.12 0.23 0.06 0.28 0.08 0.28 0.08 0.29 0.06 
w4 0.20 0.06 0.12 0.12 0.06 0.08 0.19 0.07 0.20 0.08 0.19 0.06 
Covariate1 -0.40 0.01 -0.40 0.01 -0.40 0.01 -0.40 0.01 -0.40 0.02 -0.40 0.01 
Covariate2 0.50 0.10 0.51 0.11 0.51 0.10 0.50 0.15 0.49 0.23 0.50 0.11 
Covariate3 0.20 0.03 0.20 0.03 0.20 0.02 0.20 0.03 0.20 0.06 0.20 0.03 
sigma 1.47 0.04 1.52 0.07 1.48 0.05 2.02 0.04 3.30 0.08 1.72 0.04 
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Table S3. Mean computing time in seconds (and Standard Deviation (SD)) for the iterations of the generated posterior parameter 
values of the Bayesian weighted quantile (BWQS) and the hierarchical BWQS (HBWQS) regressions across all simulated Scenarios. 
Computing Time in 
seconds 

BWQS   HBWQS 
Mean SD  Mean SD 

Scenario 1 308 77  435 371 
Scenario 2 313 80  356 72 
Scenario 3 314 80  420 256 
Scenario 4 302 70  442 247 
Scenario 5 299 68  2413 2287 
Scenario 6 313 75   477 258 
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Table S4. Mean estimate, 95% and 80% Credible Intervals (CrI), number of effective sample size (ESS) and Rhat of the association (b1 
coefficient) between the prenatal urinary metal mixture exposure (Arsenic (As), Cadmium (Cd), and Lead (Pb)) and gestational age in the PRISM 
New York City (NYC), PRISM Boston (BOS) and F1000 studies by using the Bayesian weighted quantile (BWQS) regression at individual sites 
and in the overall PRISM study aggregating all sites and by using the hierarchical BWQS (HBWQS) regression using all sites.  
Mean estimates, 95%CrI and 80%CrI, ESS, and Rhat of the intercept (b0 coefficient) and the contribution (weight (W)) of each metal to the 
mixture. 

  Main analysis (n=1,349)   Including only women that delivered at term (n=1,276) 
Variable Mean 

estimate 95%CrI 80%CrI ESS Rhat  Mean 
estimate 95%CrI 80%CrI ESS Rhat 

HBWQS regression - Chain: 20000 - Burnin:10000 - Thinning: 10 
W - Arsenic 0.21 (0.01; 0.64) (0.03; 0.45) 804.98 1.00  0.34 (0.02; 0.84) (0.06; 0.66) 949.02 1.00 
W - Cadmium 0.64 (0.12; 0.95) (0.31; 0.89) 875.90 1.00  0.32 (0.01; 0.81) (0.05; 0.65) 999.99 1.00 
W - Lead 0.15 (0; 0.59) (0.02; 0.35) 975.74 1.00  0.34 (0.01; 0.83) (0.05; 0.68) 1029.47 1.00 
b0 - NYC 40.42 (39; 41.79) (39.56; 41.3) 988.37 1.00  40.29 (39.53; 41.1) (39.78; 40.81) 1002.66 1.00 
b0 - BOS 40.46 (38.98; 41.9) (39.58; 41.35) 1007.15 1.00  40.31 (39.54; 41.12) (39.79; 40.84) 1015.25 1.00 
b0 - F1000 40.45 (39; 41.81) (39.57; 41.32) 991.65 1.00  40.29 (39.53; 41.11) (39.78; 40.82) 994.24 1.00 
b1 - NYC -0.22 (-0.4; -0.02) (-0.34; -0.1) 768.49 1.01  -0.02 (-0.13; 0.08) (-0.09; 0.04) 958.99 1.00 
b1 - BOS -0.01 (-0.21; 0.16) (-0.13; 0.1) 838.59 1.00  0.03 (-0.08; 0.14) (-0.04; 0.1) 905.78 1.00 
b1 - F1000 0.01 (-0.16; 0.16) (-0.09; 0.1) 941.53 1.00  0.01 (-0.08; 0.11) (-0.05; 0.08) 970.94 1.00 

BWQS in the overall population, combining all studies - Chain: 10000 - Burnin:5000 - Thinning: 3 
W - Arsenic 0.26 (0; 0.72) (0.03; 0.56) 1585.21 1.00  0.32 (0.01; 0.83) (0.05; 0.65) 1484.94 1.00 
W - Cadmium 0.47 (0.03; 0.9) (0.12; 0.81) 1643.43 1.00  0.35 (0.01; 0.85) (0.06; 0.7) 1488.90 1.00 
W - Lead 0.27 (0.01; 0.76) (0.04; 0.56) 1605.99 1.00  0.33 (0.01; 0.84) (0.04; 0.68) 1590.84 1.00 
b0 40.50 (39.14; 41.82) (39.62; 41.38) 1498.34 1.00  40.26 (39.49; 41.04) (39.75; 40.76) 1409.55 1.00 
b1 -0.09 (-0.24; 0.06) (-0.19; 0.01) 1462.35 1.00  0.00 (-0.09; 0.09) (-0.06; 0.05) 1571.83 1.00 

BWQS in the PRISM NYC study- Chain: 10000 - Burnin:5000 - Thinning: 3 
W - Arsenic 0.27 (0.01; 0.75) (0.04; 0.58) 1559.34 1.00  0.34 (0.02; 0.83) (0.06; 0.67) 1686.29 1.00 
W - Cadmium 0.44 (0.02; 0.91) (0.07; 0.81) 1431.38 1.00  0.33 (0.01; 0.83) (0.05; 0.66) 1615.16 1.00 
W - Lead 0.29 (0.01; 0.83) (0.04; 0.63) 1545.03 1.00  0.33 (0.01; 0.84) (0.05; 0.67) 1490.51 1.00 
b0 42.53 (38.69; 46.29) (39.92; 45.07) 1169.48 1.00  41.21 (39.31; 43.25) (39.95; 42.5) 1430.98 1.00 
b1 -0.11 (-0.53; 0.32) (-0.4; 0.17) 1264.61 1.00  -0.02 (-0.22; 0.19) (-0.15; 0.12) 1468.16 1.00 

BWQS in the PRISM BOS study - Chain: 10000 - Burnin:5000 - Thinning: 3 
W - Arsenic 0.32 (0.01; 0.82) (0.05; 0.66) 1591.48 1.00  0.29 (0.01; 0.79) (0.04; 0.61) 1774.90 1.00 
W - Cadmium 0.34 (0.01; 0.83) (0.05; 0.68) 1601.25 1.00  0.34 (0.02; 0.83) (0.06; 0.67) 1721.96 1.00 
W - Lead 0.34 (0.02; 0.82) (0.06; 0.67) 1486.44 1.00  0.37 (0.01; 0.88) (0.07; 0.72) 1629.02 1.00 
b0 40.91 (38.17; 43.63) (39.14; 42.74) 1566.84 1.00  39.86 (37.73; 42.05) (38.43; 41.31) 1389.18 1.00 
b1 0.02 (-0.23; 0.28) (-0.15; 0.19) 1592.24 1.00  0.08 (-0.11; 0.27) (-0.05; 0.21) 1527.69 1.00 

BWQS in the F1000 study - Chain: 10000 - Burnin:5000 - Thinning: 3 
W - Arsenic 0.32 (0.01; 0.82) (0.05; 0.65) 1683.58 1.00  0.31 (0.01; 0.82) (0.05; 0.64) 1789.44 1.00 
W - Cadmium 0.36 (0.01; 0.83) (0.07; 0.69) 1613.55 1.00  0.35 (0.02; 0.84) (0.07; 0.69) 1721.42 1.00 
W - Lead 0.31 (0.01; 0.83) (0.05; 0.65) 1686.19 1.00  0.34 (0.02; 0.84) (0.06; 0.68) 1928.83 1.00 
b0 39.80 (38.64; 40.91) (39.09; 40.54) 1656.90 1.00  40.03 (39.03; 41.03) (39.38; 40.67) 1452.24 1.00 
b1 -0.05 (-0.18; 0.08) (-0.13; 0.03) 1508.71 1.00   -0.02 (-0.13; 0.1) (-0.09; 0.06) 1547.28 1.00 
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Table S5. Mean estimates, 95% and 80% Credible Intervals (CrI), number of effective sample size (ESS) 
and Rhat of the association (b1 coefficient) between the prenatal urinary metal mixture exposure (Arsenic 
(As), Cadmium (Cd), and Lead (Pb)) and gestational age acceleration metrics (RPC, CPC, refRPC) 
(weeks) in the PRISM New York City (NYC), and PRISM Boston (BOS) by using the Bayesian weighted 
quantile (BWQS) regression at individual sites and in the overall PRISM study aggregating all sites and 
by using the hierarchical BWQS (HBWQS) regression using both sites.  
Mean estimates, 95%CrI and 80%CrI, ESS, and Rhat of the intercept (b0 coefficient) and the contribution 
(weight (W)) of each metal to the mixture. 
RPC= robust placental clock; CPC: control placental clock; refRPC: refined RPC 

Variable Mean 
Estimate 95%CrI 80%CrI ESS Rhat 

HBWQS regression - Chain: 20000 - Burnin:10000 - Thinning: 10 
Outcome: RPC 
W – Arsenic  0.27 (0.01; 0.74) (0.03; 0.59) 982.20 1.00 
W – Cadmium  0.37 (0.01; 0.85) (0.07; 0.71) 990.54 1.00 
W – Lead 0.36 (0.01; 0.85) (0.06; 0.72) 1151.79 1.00 
b0 – NYC  0.34 (-1.83; 2.59) (-1.22; 1.8) 880.07 1.00 
b0 – BOS 0.33 (-1.89; 2.64) (-1.23; 1.82) 868.35 1.00 
b1 – NYC -0.08 (-0.34; 0.15) (-0.24; 0.06) 935.22 1.00 
b1 – BOS -0.02 (-0.23; 0.20) (-0.15; 0.12) 996.29 1.00 
Outcome: CPC 
W – Arsenic  0.30 (0.01; 0.79) (0.04; 0.64) 1004.39 1.00 
W – Cadmium  0.37 (0.02; 0.88) (0.06; 0.72) 956.10 1.00 
W – Lead 0.33 (0.01; 0.81) (0.06; 0.68) 774.66 1.00 
b0 – NYC 0.24 (-2.04; 2.47) (-1.19; 1.63) 848.35 1.00 
b0 – BOS 0.30 (-1.97; 2.53) (-1.21; 1.65) 858.30 1.00 
b1 – NYC -0.05 (-0.28; 0.18) (-0.20; 0.10) 977.98 1.00 
b1 – BOS 0.00 (-0.23; 0.22) (-0.14; 0.14) 820.52 1.00 
Outcome: refRPC  
W – Arsenic 0.28 (0.01; 0.76) (0.05; 0.57) 876.59 1.00 
W - Cadmium 0.36 (0.02; 0.82) (0.06; 0.67) 1026.38 1.00 
W – Lead 0.36 (0.02; 0.83) (0.07; 0.69) 1094.13 1.00 
b0 – NYC 0.47 (-1.85; 2.70) (-1.02; 1.99) 889.37 1.00 
b0 – BOS 0.35 (-1.96; 2.66) (-1.15; 1.89) 886.97 1.00 
b1 – NYC -0.13 (-0.41; 0.11) (-0.29; 0.03) 926.41 1.00 
b1 – BOS -0.10 (-0.33; 0.11) (-0.24; 0.04) 973.65 1.00 

BWQS regression in the overall PRISM study - Chain: 10000 - Burnin:5000 - 
Thinning: 3 

Outcome: RPC  
W – Arsenic 0.31 (0.01; 0.78) (0.06; 0.62) 1802.39 1.00 
W - Cadmium 0.34 (0.01; 0.82) (0.07; 0.68) 1449.89 1.00 
W – Lead 0.35 (0.01; 0.84) (0.06; 0.70) 1643.04 1.00 
b0 0.28 (-2.20; 2.57) (-1.25; 1.77) 1424.74 1.00 
b1 -0.05 (-0.24; 0.15) (-0.18; 0.08) 1538.91 1.00 
Outcome: CPC  
W - Arsenic 0.31 (0.01; 0.8) (0.05; 0.63) 1668.99 1.00 
W - Cadmium 0.35 (0.02; 0.84) (0.06; 0.68) 1610.04 1.00 
W - Lead 0.34 (0.02; 0.82) (0.07; 0.67) 1504.21 1.00 
b0 0.26 (-2.08; 2.49) (-1.26; 1.74) 1397.75 1.00 
b1 -0.03 (-0.22; 0.17) (-0.16; 0.10) 1552.58 1.00 
Outcome: refRPC 
W - Arsenic 0.29 (0.01; 0.79) (0.05; 0.61) 1665.94 1.00 
W - Cadmium 0.35 (0.02; 0.83) (0.06; 0.68) 1705.86 1.00 
W - Lead 0.36 (0.02; 0.83) (0.07; 0.69) 1605.76 1.00 
b0 0.42 (-1.85; 2.68) (-1.07; 1.89) 1544.81 1.00 
b1 -0.10 (-0.30; 0.10) (-0.22; 0.03) 1214.20 1.00 
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BWQS regression in the NYC PRISM study - Chain: 10000 - Burnin:5000 - 
Thinning: 3 

Outcome: RPC 
W - Arsenic 0.20 (0.01; 0.67) (0.03; 0.46) 1409.00 1.00 
W - Cadmium 0.34 (0.02; 0.83) (0.06; 0.66) 1713.45 1.00 
W - Lead 0.46 (0.05; 0.88) (0.13; 0.78) 1636.73 1.00 
b0 -0.64 (-6.13; 4.83) (-4.18; 2.88) 1274.38 1.00 
b1 -0.34 (-0.78; 0.10) (-0.63; -0.05) 1336.29 1.00 
Outcome: CPC 
W - Arsenic 0.24 (0.01; 0.75) (0.03; 0.54) 1459.40 1.00 
W - Cadmium 0.40 (0.02; 0.87) (0.08; 0.74) 1422.96 1.00 
W - Lead 0.36 (0.02; 0.87) (0.07; 0.70) 1655.15 1.00 
b0 -1.50 (-7.33; 3.88) (-5.24; 2.09) 1225.34 1.00 
b1 -0.22 (-0.68; 0.22) (-0.52; 0.09) 1159.24 1.00 
Outcome: refRPC 
W - Arsenic 0.22 (0.01; 0.69) (0.03; 0.48) 1403.88 1.00 
W - Cadmium 0.37 (0.02; 0.84) (0.08; 0.70) 1696.50 1.00 
W - Lead 0.41 (0.03; 0.85) (0.10; 0.74) 1650.81 1.00 
b0 -0.41 (-5.76; 4.89) (-3.97; 3.15) 1316.34 1.00 
b1 -0.31 (-0.74; 0.12) (-0.59; -0.03) 1290.68 1.00 

BWQS regression in the BOS PRISM study - Chain: 10000 - Burnin:5000 - 
Thinning: 3 

Outcome: RPC  
W - Arsenic 0.32 (0.01; 0.83) (0.05; 0.66) 1068.25 1.00 
W - Cadmium 0.34 (0.01; 0.85) (0.05; 0.68) 1705.34 1.00 
W - Lead 0.34 (0.02; 0.84) (0.06; 0.69) 1314.47 1.00 
b0 0.34 (-2.39; 3.21) (-1.43; 2.11) 1571.31 1.00 
b1 0.03 (-0.18; 0.24) (-0.11; 0.17) 1326.98 1.00 
Outcome: CPC 
W - Arsenic 0.32 (0.01; 0.81) (0.05; 0.66) 1523.53 1.00 
W - Cadmium 0.35 (0.02; 0.85) (0.06; 0.7) 1581.21 1.00 
W - Lead 0.33 (0.01; 0.82) (0.05; 0.66) 1567.04 1.00 
b0 0.64 (-2.08; 3.37) (-1.17; 2.48) 1651.12 1.00 
b1 0.04 (-0.17; 0.26) (-0.10; 0.18) 1398.02 1.00 
Outcome: refRPC 
W - Arsenic 0.34 (0.02; 0.82) (0.06; 0.67) 1737.92 1.00 
W - Cadmium 0.34 (0.01; 0.82) (0.06; 0.68) 1792.42 1.00 
W - Lead 0.32 (0.01; 0.81) (0.05; 0.65) 1733.82 1.00 
b0 0.30 (-2.59; 3.09) (-1.54; 2.08) 1577.01 1.00 
b1 -0.05 (-0.26; 0.17) (-0.19; 0.09) 1591.08 1.00 
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Table S6. Computing time (in seconds) for 1,000 generated posterior parameter values from the 
Bayesian weighted quantile (BWQS) and the hierarchical BWQS (HBWQS) regressions during 
the warm-up and the post warm-up periods in the real case scenarios. 

Outcome BWQS   HBWQS 
Warm-up Post Warm-up    Warm-up Post Warm-up  

Gestational age 71 47  2811 783 
RPC 32 38  676 574 
CPC 36 45  603 491 
refRPC 35 55   657 469 

RPC= robust placental clock; CPC: control placental clock; refRPC: refined RPC 
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