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Abstract22

Real-time surveillance is a crucial element in the response to infectious disease outbreaks. However,23

the interpretation of incidence data is often hampered by delays occurring at various stages of data24

gathering and reporting. As a result, recent values are biased downward, which obscures current trends.25

Statistical nowcasting techniques can be employed to correct these biases, allowing for accurate charac-26

terization of recent developments and thus enhancing situational awareness. In this paper, we present27

a preregistered real-time assessment of eight nowcasting approaches, applied by independent research28

teams to German 7-day hospitalization incidences. This indicator played an important role in the man-29

agement of the pandemic in Germany and was linked to levels of non-pharmaceutical interventions via30

certain thresholds. Due to its definition, in which hospitalization counts are aggregated by the date of31

case report rather than admission, German hospitalization incidences are particularly affected by delays32

and can take several weeks or months to fully stabilize. For this study, all methods were applied from33

22 November 2021 to 29 April 2022, with probabilistic nowcasts produced each day for the current and34

28 preceding days. Nowcasts at the national, state, and age-group levels were collected in the form of35

quantiles in a public repository and displayed in a dashboard. Moreover, a mean and a median ensemble36

nowcast were generated. We find that overall, the compared methods were able to remove a large part37

of the biases introduced by delays. Most participating teams underestimated the importance of very38

long delays, though, resulting in nowcasts with a slight downward bias. The accompanying uncertainty39

intervals were also too narrow for almost all methods. Averaged over all nowcast horizons, the best40

performance was achieved by a model using case incidences as a covariate and taking into account longer41

delays than the other approaches. For the most recent days, which are often considered the most relevant42

in practice, a mean ensemble of the submitted nowcasts performed best. We conclude by providing some43

lessons learned on the definition of nowcasting targets and practical challenges.44

1

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.17.23288668doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.04.17.23288668
http://creativecommons.org/licenses/by-nc/4.0/


1 Introduction45

During infectious disease outbreaks, real-time surveillance data contributes to situational awareness and46

risk management, informing resource planning and control measures. However, the timely interpretation of47

epidemiological indicators is often hampered by the preliminary nature of real-time data. Due to reporting48

delays, the most recent data points are usually incomplete and subject to retrospective upward corrections.49

This bias can lead to incorrect conclusions about current trends. Statistical nowcasting methods aim to50

remedy this problem by predicting how strongly preliminary data points are still going to be corrected51

upwards, taking into account the associated uncertainty. Nowcasts thus help to uncover current trends52

which are not yet visible in reported numbers.53

Problems of this type have been extensively researched across various disciplines; e.g., in econometrics, the54

gross domestic product and the inflation rate are routinely nowcasted [1]. Methods for preliminary count55

data as encountered in the present work originated in the actuarial sciences, where they were developed56

to handle insurance claims data [2]. In epidemiology, the problem of delayed reporting has been treated57

in diverse contexts, including the HIV pandemic [3], foodborne Escherichia coli outbreaks [4], the 200958

influenza pandemic [5] and mosquito-borne diseases like malaria [6] and dengue [7], [8]. During the COVID-59

19 pandemic, the problem has seen growing interest, and new approaches tailored to a variety of settings60

have been suggested [9]–[14]. There is thus an ever-growing number of methods to statistically correct61

reporting delays. However, two important aspects are rarely addressed in the current literature. Firstly,62

few studies assess the performance of methods in real-time settings. The papers we are aware of – with [14]63

as an exception – contain only retrospective case studies which risk smoothing over some of the difficulties64

occurring in real time (e.g., major data revisions, time pressure on analysts). Also, few studies include65

comparisons with existing methods. While occasionally one additional model is applied for comparison [8],66

[11], [13], systematic comparative assessments are lacking. Our work fills this gap by examining multiple67

procedures in real time, thus providing a realistic picture of nowcast performance and the arising practical68

challenges. By bringing together several different models, our study is moreover the first able to assess the69

potential of combined ensemble nowcasts.70

We evaluate the different nowcasting approaches in an application to German 7-day hospitalization inci-71

dences. These have played an important role in the management of the pandemic in Germany. Indeed, in72

November 2021, they were defined as the key indicator to determine levels of non-pharmaceutical interven-73

tions. Via a system of thresholds [15], they played an important role in the management of the pandemic, in74

particular in the fall and winter of 2021. Nowcasting is of particular importance for this indicator due to the75

way it was defined. As will be detailed in Section 2.1, the official German hospitalization numbers published76

by Robert Koch Institute (RKI) are aggregated by the reporting date of the associated positive test rather77

than the date of hospital admission. The total time span between the case report and the hospitalization78

report (i.e. the ”delay” that has to be predicted) thus consists of two parts: the time between the report79

of the positive test and hospital admission and the actual reporting delay between hospitalization and the80

reporting thereof. This definition led to some criticism in the public discourse but was defended as a neces-81

sary compromise between timeliness and data quality by RKI [16]. Figure 1 illustrates the nowcasting task82

in the context of the 7-day hospitalization incidence. It shows real-time nowcasts from 1 December 2021, 183

February 2022, and 1 April 2022. Comparison with a more stable data version from 8 August 2022 shows84

that in these instances, the nowcasts were able to correctly reveal the actual trends, which differed sharply85

from the apparent declines found in the data as available at the time of nowcasting.86

The present work is based on a collaborative platform, the COVID-19 Nowcast Hub, which we launched87

soon after the hospitalization incidence became the guideline value for the German pandemic policy. It served88

to collect and combine real-time nowcasts from several models on a daily basis. The approach builds upon89

the COVID-19 Forecast Hubs, which during the pandemic were run in the US [17], Germany and Poland90

[18], and later the entire European Economic Area, Switzerland and the UK [19]. These Hubs showed that91

combining different epidemiological models into an ensemble can produce more robust predictions, confirm-92

ing results from forecasting challenges like FluSight on seasonal influenza [20]. We aimed for compatibility93

with the Forecast Hub ecosystem in many technical and methodological aspects, in particular by following94

the same submission format and evaluation criteria [21]. This way we contribute to a growing evidence base95

on predictive epidemic modeling in real time.96

97
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Figure 1: Illustration of the nowcasting task. Data as available in real time (colored lines) are incomplete
and especially for recent dates considerably lower than the final corrected values (black line). Nowcasts
(blue-shaded areas) aim to predict in real time what the final data points are going to be. The light grey
line shows the initially reported value as available on the respective date.

The remainder of the manuscript is structured as follows. In Section 2, we introduce the 7-day hospital-98

ization incidence as defined by RKI and outline the agreed-upon nowcast targets. We present the individual99

nowcasting methods and ensemble approaches, as well as the prespecified evaluation criteria. Section 3100

presents the results of our formal performance evaluation, followed by qualitative observations on periods of101

unusual reporting patterns or the emergence of a new variant. We then assess the impact of model revisions102

as well as the sensitivity of the results to the exact definition of the nowcast target. Section 4 concludes103

with a discussion.104

2 Methods105

To facilitate a transparent assessment, we preregistered our evaluation study, specifying the criteria to assess106

the submitted nowcasts. The study protocol was deposited at the registry of the Open Science Foundation107

on 23 November 2021 [22]. In some instances, we had to deviate from the protocol. These are detailed in108

the respective subsections and summarized in Supplementary Table 2.109

2.1 Definition of the COVID-19 7-day hospitalization incidence110

Data on the German COVID-19 hospitalization incidence was published in a daily rhythm by Robert Koch111

Institute [23]. By its official definition [24], it is given by the number of hospitalized COVID-19 cases among112

cases reported over a 7-day period relative to 100,000 inhabitants. Hospitalizations are thus aggregated by113

the case reporting date, more precisely, when a case was digitally registered by a local health authority, rather114

than the date of hospital admission (though the two may coincide). We will refer to this case reporting date as115

the reference date in the following. We note that the hospitalization is not required to occur during the 7-day116

window mentioned previously, nor is COVID-19 required to be the main reason for hospitalization. When117

new hospitalizations are added to the record, they may thus change the value of the 7-day hospitalization118

incidence for past periods, depending on how much time has passed between the positive test, the time of119

hospitalization, and ultimately its reporting. The initially reported value of the hospitalization incidence is120

thus only an approximate and typically too low value.121

To illustrate the extent of these revisions, Figure 2 shows the fraction of the 7-day hospitalization incidence122

that was reported 0 – 70 days after the respective reference date. Same-day values covered 50–60% of the123

ultimately reported hospitalizations, with a slight upward trend over the study period (left panel). Around124

85% were reached after 14 days and even after 70 days, there were upward corrections of more than 3%.125

As illustrated in the second panel, same-day reporting completeness varied considerably across states. In126

Bremen (HB) it exceeded 75%, whereas it was below 50% in Saxony (SN) and Hamburg (HH). Reporting127
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Figure 2: Completeness of 7-day hospitalization incidences 0 to 70 days after the respective reference date.
First panel: temporal development over the considered study period, aggregated over states and age groups.
Second: by state, ordered by initial reporting completeness (see Supplementary Figure 13 for the definition
of abbreviations). Third: by age group. Fourth: by weekday.

completeness was also variable across age groups and weekdays (third and fourth panels). A detailed display128

of temporal variations in initial reporting completeness across states can be found in Supplementary Figure129

13. It should be noted that initial reporting completeness can also depend on the overall strain on the health130

system, and delays tend to be longer in times of high caseloads [25].131

As mentioned before, thresholds of 3, 6, and 9 per 100,000 population were introduced in the fall of 2021132

and used to determine the necessary extent of non-pharmaceutical interventions [15]. These were applied to133

the initial value of the hospitalization incidence as reported on the respective day without any retrospective134

completion. This value is also referred to as the frozen value. For illustration, these frozen values were added135

to Figure 1 (light grey line). We note that due to the temporal and geographic differences shown in Figure136

2, the same frozen value can translate to rather different final values of the hospitalization incidence.137

2.2 Nowcast targets and study period138

The goal of the collected nowcasts was to predict how much the preliminary values of the hospitalization139

incidence were still going to change. Specifically, on each day during the period from Monday 22 November140

2021 to Friday 29 April 2022, a prediction needed to be issued for the final value the 7-day hospitalization141

incidence would take for that day and the previous 28 days. In the study protocol, we defined the final state142

to be predicted as the time series available on 8 August 2022. This date was chosen to be 100 days after the143

end of our study period. Originally, teams were asked to provide nowcasts for all working days of the study144

period, excluding a Christmas break. However, as all teams fully automated their approaches, we were able145

to collect nowcasts on weekends and public holidays and include them in the study.146

Teams were asked to issue nowcasts for the national level as well as for the 16 German states and seven147

different age groups (as available in public RKI data; 00-04, 05-14, 15-34, 35-59, 60-79 and 80+ years). No148

age-specific nowcasts at the state level were generated. To quantify prediction uncertainty, a probabilistic149

format was adopted, where teams had to submit seven quantiles (2.5%, 10%, 25%, 50%, 75%, 90%, 97.5%)150

of the predictive distribution in addition to the mean. Following the procedure in the various COVID-19151

Forecast Hubs, our main analysis treated all outcomes on their original count scales, i.e. not standardized152

by population. This means that the relative size of states or age strata is reflected in the weight they receive153

in the overall evaluation [21].154

In the study protocol, we also defined a retrospective study period reaching from 1 July 2021 to 19155

November 2021. The motivation was to compare the retrospective performance on historical data available156

during model development to prospective performance under real-world conditions. However, due to time157

constraints, only two teams provided complete sets of retrospective nowcasts prior to the beginning of the158

prospective study. We therefore chose to omit this aspect. Instead, we added an evaluation of retrospective159

nowcasts from four revised models to the main study period from 22 November 2021 to 29 April 2022.160
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Figure 3: Illustration of an aggregation approach to combine a set of individual nowcasts into an ensemble
nowcast. Here, the ensemble is computed as the quantile-wise mean of all submissions.

2.3 Overview of models161

Nowcasts from eight independently run models were collected for the duration of our study. Six of them were162

contributed by groups of academics, one by the Robert Koch Institute (RKI) and one by the data science163

team of the newspaper Süddeutsche Zeitung (SZ). A short description of the different methods is provided164

in Table 1. Most approaches took preliminary hospitalization numbers as their only input, applying various165

techniques to model delay distributions and the underlying time series of hospitalizations. Only the ILM166

model took a different approach, in which the number of confirmed cases was included as an explanatory167

variable. Approaches also differed in terms of the methods used for inference, uncertainty quantification,168

the flexibility and complexity of their delay distribution and time series models, as well as the maximum169

delay considered (ranging from 35 to 84 days). Some models obtained nowcasts at a coarser spatial or age170

resolution by hierarchically aggregating nowcasts generated for finer strata. Models were typically not fitted171

to the entire available data set, but only a recent subset, the size of which again differed by team.172

2.4 Ensemble approaches173

On a daily basis, all submissions that were available at 2pm were combined to generate an ensemble nowcast,174

see Figure 3 for an illustration. We created the two following ensembles.175

• For the MeanEnsemble each predictive quantile was obtained as the arithmetic mean of the respective176

quantiles of the member nowcasts. The ensemble mean was obtained as the mean of the submitted177

predictive means.178

• For the MedianEnsemble the same procedure was applied using the median rather than the arithmetic179

mean for aggregation.180

This direct aggregation at the level of quantiles rather than, e.g., probability density functions, is known181

as Vincentization [32]. A discussion of its properties and differences to the aggregation of density functions182

can be found in [33]. As the expected number of contributed models was moderate, the MeanEnsemble was183

expected to be better-behaved than the MedianEnsemble, which can produce oddly shaped distributions in184

such settings [18]. The MeanEnsemble was therefore prespecified as the primary ensemble approach (unlike185

in e.g. [17] or [18]).186
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Table 1: Description of nowcast models contributed to the collaborative project.
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2.5 Evaluation metrics187

Proper scoring rules are an established tool to evaluate probabilistic forecasts [34], or, in our setting, now-
casts. They are constructed such that they encourage honest forecasting, i.e., forecasters optimize their
expected score by reporting their true beliefs about the future. Put differently, there is no way of “gaming”
the system and obtaining improved scores by reporting modified versions of one’s actual prediction. As in
our setting nowcasts consist of three nested central prediction intervals, a natural choice is the interval score
[34]. For an interval [l, u] at the level (1−α), α ∈ (0, 1), reaching from the α

2 - to the (1− α
2 )-quantile of the

predictive distribution F , it is defined as

ISα(F, y) = (u− l) +
2

α
× (l − y)× 1(y < l) +

2

α
× (y − u)× 1(y > u), (1)

where 1 is the indicator function and y is the realized value. Here, the first term characterizes the spread
of the predictive distribution, the second penalizes overprediction (observations fall below the prediction
interval) and the third term penalizes underprediction. To assess all submitted quantiles of the predictive
distribution jointly we use the weighted interval score (WIS; [21]), which is a weighted average of interval
scores at different nominal levels and the absolute error. For N nested prediction intervals it is defined as

WIS(F, y) =
1

2N + 1
×

(
|y −m| +

N∑
k=1

αk × ISαk
(F, y)

)
, (2)

where m is the predictive median and in our setting N = 3 and α1 = 0.5, α2 = 0.2, α3 = 0.05. We note188

that it is equivalent to the mean pinball loss across the respective quantile levels, which is often employed189

in quantile regression [21]. The WIS approximates the widely used continuous ranked probability score190

(CRPS) and can be interpreted as a generalization of the absolute error to probabilistic predictions. It191

is negatively oriented, meaning that lower values are better. The decomposition of the interval score into192

spread, overprediction, and underprediction also translates to the WIS and can be used to enhance the193

interpretability of results.194

To put results into perspective, we defined the simplistic baseline model FrozenBaseline which applies
no correction and just issues the current data version as its deterministic nowcast (i.e., with all quantiles set
to the same value). This allowed us to compute relative scores

relative WIS of model m =
mean WIS achieved by model m

mean WIS achieved by baseline model
,

characterizing the improvement over the uncorrected time series. Here, lower values are better, and values195

below 1 imply that the nowcasts reduce the error of the uncorrected time series. We note that while the196

study protocol specified that a baseline model was to be included, its definition was only agreed upon later.197

We note that the KIT model was originally conceived as a baseline model, but later considered too complex198

for this purpose; in the preregistration, it is therefore referred to as a “reference model”.199

To assess the central tendency of nowcasts we used the mean absolute error for predictive medians and
the mean squared error for predictive means (i.e., for each functional we use the respective consistent scoring
function [35]). To evaluate calibration, i.e., the statistical consistency between nowcasts and observations,
we consider the empirical coverage of the 50% and 95% prediction intervals,

coverage =
# times nowcast intervals covered the final value

# of nowcast intervals issued
.

In case of missing submissions, i.e., if a team failed to provide a nowcast on a given day, nowcasts could be200

filled in retrospectively. To assess whether this had a substantial impact on the comparative evaluation, we201

applied a pairwise comparison scheme as described in [17] to compare models using only the sets of nowcast202

tasks treated in real time by each model. Details can be found in Supplementary Section C.203
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3 Results204

3.1 Completeness of submissions205

All participating teams produced nowcasts over the entire study period and only rarely failed to submit206

nowcasts in time (see Supplementary Table 4). In most cases, missing nowcasts were filled in retrospectively.207

In very few cases (0.3% of all targets; see Table 4) it was not possible to obtain submissions from all teams;208

to handle these cases we chose to slightly deviate from the study protocol and omit the respective targets209

in our evaluation. The ILM model did not provide state-level nowcasts, while the RKI model did not include210

age-stratified results. Moreover, the RKI model only provided point nowcasts and two quantiles in real time211

(at levels 2.5% and 97.5%); the remaining quantiles were only provided in retrospect. We encountered some212

more minor difficulties, e.g., due to missing quantiles for certain targets; we summarize these and the chosen213

solutions in Supplementary Table 5.214

3.2 Visual inspection of nowcasts215

For a first impression of nowcast performance, Figure 4 shows same-day nowcasts at the national level (i.e.,216

at each date the respective nowcast with a horizon of 0 days is shown). Figure 5 shows the same for nowcasts217

14 days back in time (i.e., for each day the nowcast issued 14 days later is shown). Displayed are the median218

predictions along with the central 50% and 95% prediction intervals. The light grey line shows the data as219

available when the nowcast was issued (which in Figure 4 corresponds to the frozen values), and the red line220

shows the respective final value as available on 8 August 2022. In both figures, it can be seen that nowcasts221

from all models are generally close to the final values to be predicted. However, considerable variability222

in interval widths is apparent, ranging from rather wide (KIT) to very narrow intervals (LMU, RKI). Some223

models, in particular KIT and SZ, display pronounced weekday patterns in their same-day nowcasts, which224

to a lower degree also carry through to the ensemble nowcasts. For the nowcasts 14 days back in time we225

observe a slight downward bias in the central tendency, the only exception being the ILM model. As most of226

the concerned models moreover feature quite narrow prediction intervals, these often do not cover the final227

values.228

3.3 Formal evaluation229

To consolidate the qualitative findings from the previous section, we turn to a formal evaluation and consider230

evaluation scores and interval coverage rates. Figure 6 displays the mean and relative WIS values achieved231

by different models for the three considered aggregation levels (national level, states, and age groups). The232

left column shows mean scores (on the absolute and relative scale) across all strata and horizons, decomposed233

into contributions of spread, underprediction, and overprediction. The middle and right panels show the234

mean WIS and relative WIS by horizon, respectively (-28 to 0 days; see Section 2.5). At the national level235

and across age groups, the overall scores of the ILM model were considerably lower than the scores of all other236

models. The stratification by horizon indicates that it performed especially well for nowcasts seven or more237

days back. For the most recent days (-3 to 0 at the national level, -6 to 0 for age groups) the MeanEnsemble238

performed best. Across states, the MeanEnsemble outperformed the other models for horizons of -11 to 0239

days. For horizons of -28 to -12 days, the KIT model achieved the best scores, which (by a narrow margin) led240

to the best overall result pooled across horizons. The relative scores indicate that pooled over all horizons,241

most models were able to reduce the error of the uncorrected time series (FrozenBaseline) by roughly 80%242

(relative WIS of 0.2), while the ILM model achieved a reduction of about 90% (relative WIS 0.1). It is243

notable that ILM achieved almost constant improvements across horizons, while the improvements achieved244

by the other models were quite modest for horizons further into the past. To allow for a more detailed245

exploration of results we provide a display of the distribution of model ranks across individual nowcasting246

tasks (Supplementary Figure 18) and of scores over time (Supplementary Figure 19). Similarly to [17], we247

find that the MeanEnsemble reliably achieved above-average performance across all locations and age groups248

(almost never ranking in the bottom).249
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Figure 4: Same-day nowcasts (with a horizon of 0 days) of the 7-day hospitalization incidence as issued
on each day of the study period. Nowcasts are shown for the German national level pooled across all age
groups.

MeanEnsemble MedianEnsemble

SU SZ FrozenBaseline

LMU RIVM RKI

Epiforecasts ILM KIT

Dec Feb Apr Dec Feb Apr

Dec Feb Apr

5000

10000

5000

10000

5000

10000

5000

10000

7−
da

y 
ho

sp
ita

liz
at

io
n 

in
ci

de
nc

e

Truth

Final
At time of nowcast

Nowcasts with 
prediction intervals:

50%
95%

Horizon: 14 days

Figure 5: Nowcasts of the 7-day hospitalization incidence as issued 14 days after the respective date (with
a horizon of 14 days). Nowcasts are shown for the German national level pooled across all age groups.
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Supplementary Figures 15 and 16 summarize results in terms of mean absolute errors of predictive me-250

dians and mean squared errors of predictive means in the same format as in Figure 6. The ILM model251

again performed favorably. Among the remaining models, RIVM shows good performance, in many cases252

outperforming the ensembles. The KIT model, on the other hand, which performed relatively well on WIS,253

achieved below-average results.254

Empirical coverage rates of the 50% and 95% prediction intervals are displayed in Figure 7. Results are255

stratified by aggregation level (national, states, age groups) and nowcast horizon (-28 days to 0 days). The256

best calibration was achieved by the ILM model, with coverage rates close to the nominal levels at most257

horizons. Only for short horizons of -10 to 0 days coverage dropped moderately. In contrast, the KIT model258

achieved higher coverage rates for horizons between -4 and 0 days, which considerably dropped for nowcasts259

further into the past. All other models were overconfident and did not reach the respective nominal coverage260

levels. As for KIT, coverage was lower for nowcasts further back in time, for some models to a point where261

only a few observations were covered at -28 days.262

To assess the impact of retrospective fill-in nowcasts for missing submissions, we recomputed relative WIS263

values using only real-time submissions and the pairwise comparison scheme from [17]. As can be seen from264

Supplementary Table 6, the results barely change, indicating that fill-in nowcasts did not have a relevant265

impact on overall scores. Furthermore, as designated in the study protocol, we reran the evaluation using266

hospitalization incidences per 100,000 population rather than absolute hospitalization counts. The results267

are displayed in Supplementary Figure 20 and do not differ qualitatively from those in Figure 6.268

As we consider the nowcasts for the most recent days the most relevant from a public health perspective,269

we conclude with an additional non-preregistered summary of scores across horizons -7 to 0 days. Figure 8270

shows the average weighted interval scores and interval coverage rates. For this subset of nowcasting tasks,271

the MeanEnsemble outperformed the individual models in all three categories, closely followed by ILM. The272

KIT model reaches close to nominal coverage, while the other models are again overconfident.273

3.4 Interpretation of evaluation results274

As some of the presented results may seem contradictory at first sight, we provide some additional inter-275

pretations. Firstly, the opposed trends in absolute and relative WIS across horizons in Figure 6 can be276

interpreted as follows. All nowcasts – including the FrozenBaseline – get closer to the later observed final277

value as time passes and more complete data accumulates; thus, the absolute WIS decreases. However, most278

models seemed to have more difficulties predicting the small number of late additions than the bulk of early279

additions, leading to higher relative WIS. A possible explanation is that modelers needed to make a choice280

on which maximum delay to take into account. In light of Figure 2, the values of around 40 days as chosen by281

most teams may have been too low and led models to ignore a non-negligible fraction of hospitalizations still282

to be added. As can be seen from Figure 4, the resulting bias got largely absorbed in the overall uncertainty283

for same-day nowcasts. For the horizon of -14 days (Figure 5), on the other hand, it caused a visible shift284

between nowcasts and final values, which likewise led to insufficient coverage of prediction intervals.285

The maximum delay chosen may also explain why the ILM model, which used a value of 80 rather than286

40 days, was the best-performing individual method. However, the model also differed from the others in its287

general approach, using a regression on case incidences in addition to preliminary hospitalization numbers.288

We will attempt to shed more light on this aspect in Section 3.6. As a last relevant difference to most other289

models, the ILM approach based uncertainty intervals directly on the errors of past real-time nowcasts, an290

approach close to the idea of conformal prediction [36]. A similar approach was also taken by the KIT model291

(Appendix E). The fact that these two models achieved the best calibration indicates that this approach292

may quantify nowcast uncertainty more realistically than standard model-based uncertainty intervals.293

The decomposition of the WIS into components for spread, overprediction, and underprediction [21],294

displayed in the left column of Figure 6, is informative on the challenges the different approaches faced.295

Penalties for underprediction make up a very large part of the overall scores for all models except for ILM.296

This confirms the observation of a downward bias from Figure 5. The best-performing individual models297

ILM and KIT issued predictive distributions with higher variability than the other models, indicated by the298

larger spread component. As can be seen from the diamond symbols in Figure 15 and in more detail from299

Supplementary Figure 15, at least the KIT model did not issue particularly good predictive medians; instead,300

its lower WIS values stem from somewhat better uncertainty quantification.301
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Figure 6: Scores for the national level (top) and averaged across states (middle) and age groups (bottom).
The first panel in each row displays the average across all horizons (on the absolute and relative scales). The
decomposition into nowcast spread, underprediction, and overprediction (see Section 2.5) is represented by
blocks of different color intensities. The absolute error is indicated by a diamond (⋄). The second and third
panels in each row show the mean WIS and the relative WIS, respectively, stratified by horizon.
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Figure 7: Empirical coverage proportions for the national level (top), across states (middle), and age groups
(bottom). The first panel in each row displays the overall coverage of the 50% and 95% prediction intervals
across all horizons. The second and third panels in each row show the empirical coverage of the 50% and
95% prediction intervals, respectively, stratified by horizon. The dashed lines indicate the desired nominal
levels.
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Figure 8: Mean WIS and AE (top) as well as empirical coverage rates (bottom) across horizons from 0 to
-7 days.

3.5 Impact of unusual reporting patterns and changes in virus properties302

The nowcasting models in our study assumed either that the probability of hospitalization given a positive303

test remains roughly constant (the ILM model) or that the delay distribution in hospitalizations does so304

(all other models). In Figure 9, we therefore show four exemplary instances where these assumptions were305

violated. In mid-November 2022, hospitals in Saxony were overwhelmed [37], leading to disruptions in306

the reporting system. As a consequence, initial reporting completeness dropped rather suddenly, see also307

Supplementary Figure 13. This resulted in considerably too low nowcasts, as illustrated in Figure 9a. We308

note that in this instance we were aware that nowcasts for Saxony were likely unreliable and issued a warning309

on our website. Figure 9b shows an unusual reporting pattern from the state of Bremen from early 2022.310

Here, a relevant number of reported hospitalizations got removed from the record on 12 and 13 January,311

presumably due to faulty initial reporting. Nowcasts issued up to 11 January were thus considerably above312

the final data version from 8 August. Figures 9c and 9d show issues arising after the Easter weekend of313

2022, when initial reporting was considerably lower than usual. As can be seen in Figure 9c, this led to too314

low ensemble nowcasts on Tuesday, 19 April. Also, over the following days, it seems to have caused issues in315

the fitting of certain models. As an example, Figure 9d shows the Epiforecasts output for Lower Saxony316

on 20 April. It features an excessively wide prediction interval, likely as a reaction to rapidly shifting delay317

distributions in the previous days. The MeanEnsemble, shown in green, was strongly affected by this unusual318

behavior of a member nowcast, while the more robust MedianEnsemble remained unaffected.319

A last noteworthy particularity is the behavior of the ILM model in January 2022, following the transition320

from the Delta to the Omicron variant. The Omicron variant is known to have lower clinical severity than321

the Delta variant [38], meaning that during the transition the ratio of hospitalizations and confirmed cases322

gradually declined. For the ILM model, which assumes this ratio to remain constant, this led to an upward323

bias in nowcasts, which can be discerned from Figure 4 as an upward bump not present in the other models.324
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Figure 9: Examples of time points when delay distributions were subject to sudden changes.
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Figure 10: Comparison of retrospective variations of the ILM, KIT, LMU, and RKI models and the same models
as submitted in real time. Results are comparable to those from Figures 6 and 7.

3.6 Retrospective variations of models325

We next aim to shed some more light on how different modeling choices impact performance and how learn-326

ings from our study period facilitated the improvement of methods. To this end, we assess the performance327

of four variations of previously discussed models, which were applied retrospectively:328

• The LMU team implemented a new approach to generate uncertainty intervals, which like the ILM and329

KIT methods is based on past nowcast errors.330

• The RKI team obtained nowcasts by aggregating over finer strata and originally assumed independence331

across strata to generate prediction intervals at the aggregate level. This was changed to an assumption332

of strong correlations across strata, leading to wider prediction intervals.333

• The KIT team reran its model with an increased maximum delay of 80 days, in contrast to the 40 days334

used in real time. This also required an increased length of training data, which was set to 100 days.335

• Conversely, the ILM model was rerun with a maximum delay of 42 rather than 84 days, which is com-336

parable to the maximum delays used by the remaining models. This was not meant as an improvement337

but as an adjustment to assess the impact of longer/shorter maximum delays.338

The results are shown in Figure 10. They indicate improvements across all aggregation levels and horizons339

for the revised LMU, RKI, and KIT models. In particular across age groups, the KIT model now came close to340

the performance the ILM model achieved in real time. The coverage proportion of prediction intervals was341

increased for all three models, with the updated KIT model even leaning towards over-coverage (too wide342

intervals). The LMU and RKI models, on the other hand, remained overconfident. Decreasing the maximum343

delay in the ILM model slightly reduced the overall performance on the national level, while average scores344

across age groups remained almost unchanged. The score decomposition shows that the adjusted model345

tended to underpredict (similarly to the other models), while the original model tended to overpredict.346

Possible explanations will be discussed in Section 4.347
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Figure 11: Mean WIS of the compared models computed using different data versions as the ”final” version.
The version prespecified in the study protocol is 8 August 2022, marked by a vertical line. Top left: national
level. Top right: averaged over states. Bottom left: averaged over age groups. The bottom right panel
overlays the national-level data versions of 8 August and 31 December to illustrate the importance of late
revisions.

3.7 Sensitivity of results to definition of final data348

In our study protocol, we specified that the final state of the time series to be predicted was the version349

available on 8 August 2022, i.e., 100 days after the end of the study period. However, as we became aware of350

the fact that data revisions could occur with considerably longer delays than initially expected, we performed351

a sensitivity analysis to assess the impact of this choice. Figure 11 shows how the average WIS aggregated352

over horizons and different levels of stratification (i.e., the results shown in the left column of Figure 6)353

change when using a different data version as the final one. It can be seen that the average scores of all354

models except for ILM increase in parallel the later a data version is used, with a slightly flatter increase for355

KIT. This is because these models tend to underpredict, and as time passes and more additions are made to356

the data, this problem is exacerbated. For the ILM model, which tends to overpredict, average scores initially357

decline and then plateau, leading to an even more pronounced lead relative to the other models. As can be358

seen from Supplementary Figure 17, using a later data version for evaluation, ILM ultimately also surpasses359

the ensemble when restricting results to horizons 0 to 7 days back.360

An alternative to choosing one specific data version as the nowcast target is a “rolling” approach that361

considers delayed reports for each reference date up to a specified maximum delay. Figure 12 shows the362

results this approach yields for a maximum delay of 40 days, which corresponds roughly to the maximum363

delay used by most teams. As this target definition is better aligned with the practical implementations364

teams chose, it is not a surprise that mean WIS values are lower and coverage is higher. The ILM model (in365

its adjusted version with a maximum delay of 42 days) now shows quite similar performance to the other366

approaches, with a tendency to overpredict. The score components for the other models are more balanced367

and the ensemble nowcasts clearly lead the field. Retrospectively, we think that this definition of targets368

might have been a more coherent and operationally meaningful approach, see Section 4 for a discussion.369
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Figure 12: Mean WIS and coverage of nowcasts with respect to a revised target defined as the number of
hospitalizations reported with a delay of up to 40 days. For the ILM model we used the revised model with
a maximum delay of 42 days and also recomputed the ensembles with these revised nowcasts. For the other
models, the assumed maximum delays are approximately aligned with the redefined target, see Table 1.
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4 Discussion370

In this paper, we presented results from a preregistered study to evaluate probabilistic real-time nowcasts371

of the 7-day hospitalization incidence in Germany from November 2021 to April 2022. We found that all372

models were able to correct for a large part of the biases caused by reporting delays. Further, we identified373

calibration of uncertainty intervals as a major challenge, as the empirical coverage rates achieved by most374

models were considerably below the respective nominal levels. The exception was the ILM model which also375

stood out in terms of score-based performance for the national level and across age groups. Reasons for376

insufficient coverage likely include too inflexible modeling of dispersion and delay distributions, but also the377

fact that most teams truncated delay distributions at a too short maximum delay.378

Our analyses from Sections 3.6 and 3.7 suggest that the success of the ILM model arose from the interplay379

of two aspects. On the one hand, it used a maximum delay that is longer than those of the other models,380

but, judging by Figure 2, still somewhat too short. On the other hand, the model appears to have a381

tendency to slightly overpredict the number of hospitalizations added up to a given maximum delay. As382

these two aspects work in different directions, the resulting nowcasts are overall well-aligned with the defined383

target (data version from 8 August 2022). Whether nowcasts taking into account case incidence inherently384

perform better needs to be explored in future work. A combination of different data streams may reduce the385

dependence of nowcasts on certain assumptions, such as the constant completeness of initial reports. The386

Epiforecasts and SU models have been extended in this direction. In an application to COVID-19 deaths387

in Sweden [39], the inclusion of reported cases and intensive care admissions as leading indicators indeed led388

to improved predictions.389

The MeanEnsemble, along with the KIT model, performed best across federal states (for which the ILM390

model did not provide nowcasts). Also, it showed very good relative performance for horizons -7 to 0 days,391

as well as for the revised “rolling” target. We therefore conclude that ensemble approaches are a promising392

avenue in order to improve disease nowcasting. However, our case study also illustrates a limitation of393

unweighted ensembles. The ensemble may have been imbalanced in the sense that a majority of its members394

followed similar strategies and had similar weaknesses (specifically a downward bias due to neglecting very395

long delays). A weighted ensemble could have capitalized on the strengths of the ILM model, which followed396

a conceptually different approach and could have served as a counterbalance. However, it is not obvious397

how ensemble members can be assigned weights in real time in a nowcasting setting. This represents an398

interesting future research area.399

A difficulty we encountered in terms of our study design is that results depend on which data version is400

used as the “final” one (i.e., the values against which nowcasts are evaluated; Section 3.7). As the choice401

of 8 August 2022 was preregistered and known to all participating teams, the prediction task was well-402

defined, and we stuck to this choice for our main analysis. Nonetheless, this definition, which was based403

on the assumption that data would be stable after 100 days, turned out not to be ideal in retrospect. In404

particular, it implies that for the first day of our study period (22 November 2021), retrospective additions405

could accumulate over 259 days, while for the last (29 April 2022) this was restricted to 100 days. Defining406

the nowcast target in a “rolling” fashion as explored in Section 3.7 might have been a more appropriate407

choice. This would have been a more clearly defined modeling task, and modelers would not have had to408

choose a maximum delay for their models themselves.409

The question of whether additions should be ignored from a certain maximum delay onward is closely410

linked to what these additions actually mean and whether they are relevant from a public health perspective.411

As mentioned in Section 2.1, the 7-day hospitalization incidence also contains hospitalizations that are not412

primarily due to COVID-19. These hospitalizations have been found to represent a considerable fraction413

[40]. It seems plausible that very long delays are due to large time differences between the positive test and414

hospital admission, in which case the share of hospitalizations that are not primarily due to COVID-19 may415

be high. Also, it can be questioned whether hospitalizations a long time after a positive test are relevant for416

the real-time assessment of healthcare burden. Both aspects strengthen the case for limiting nowcasting to417

hospitalizations reported up to a carefully chosen maximum delay.418

The definition of the frozen values used by the Robert Koch Institute when applying legally defined419

thresholds can be seen as a strong form of discarding delayed hospitalizations. It has the advantage of420

simplicity and unambiguity, which are required for actionable guidelines in a legal context. After all, it421

seems difficult to integrate complex statistical methods with many tuning parameters into a binding legal422
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document. An important downside, however, is that the same frozen value can mean rather different things423

at different time points and in different locations, due to differences in initial reporting completeness. We424

thus argue that outside of purely legal considerations, nowcasts can provide a more thorough picture of425

current developments.426

All nowcasts generated within the presented collaborative project are available in a public repository (see427

data availability statement). Time-stamped versions of hospitalization data as available at different points in428

time can be retrieved from the commit history of the repository as well as directly from Robert Koch Institute429

[23]. We hope that this data can be of use as a benchmarking system for future nowcasting methods. In this430

context, we note, however, that the present paper is a comparison of nowcasting systems, which are given by431

a statistical model, but also various additional analytical choices, in particular the assumed maximum delay432

and the length of training data used at each time point. These decisions can have a substantial impact on433

predictive performance (see Section 3.6) and are easier to get right in hindsight than in real time. To ensure434

a fair comparison, it may therefore be reasonable to use the “rolling” target as discussed in Section 3.7.435

The nowcasts produced for this project were routinely displayed by numerous German-speaking media,436

including Die Zeit, Neue Zürcher Zeitung and Norddeutscher Rundfunk. While some displays were limited437

to the point nowcasts (predictive medians), others made the predictive uncertainty clearly visible. This438

development should be further encouraged by scientists advising the media on the display of epidemiological439

data and models. In this context, we also note that data journalists were overall hesitant to use the ensemble440

nowcasts and prioritized individual nowcasts based on methods described in peer-reviewed publications.441

Interestingly, the best-performing models in our study were the MeanEnsemble and the yet unpublished ILM442

approach. However, our analyses show that all compared approaches provided a good qualitative impression443

of current incidence trends and levels, and we consider each of them a helpful addition and improvement444

over showing uncorrected data.445

To conclude, we highlight some advantages of the collaborative nowcasting approach adopted in our study.446

The ensemble nowcast not only showed strong relative performance but was also the most consistently447

available nowcast, with almost all other models unavailable due to technical problems on some days during448

the study period. Additionally, our collaborative approach fostered frequent exchange and interaction among449

modelers via bi-weekly coordination calls, creating a valuable platform for knowledge sharing, feedback, and450

collaboration on methodological advancements. Through these interactions, the project facilitated model451

improvements, as seen for the LMU, RKI and KIT approaches in Section 3.6, and fostered discussion on new452

methodological topics beyond the scope of the present article. For example, the Epinowcast community453

(https://www.epinowcast.org/) was established to build and assess real-time analysis tools, publically454

available in the R package epinowcast [41]. The benefits of our collaborative approach demonstrate the455

importance of ongoing communication and cooperation in the development and refinement of epidemiological456

models, particularly during rapidly evolving public health crises such as infectious disease outbreaks.457

Data availability458

The nowcasts collected for this study are available in a GitHub repository (https://github.com/KITmetricslab/459

hospitalization-nowcast-hub), with a stable release published at https://zenodo.org/record/7828604.460

The repository also contains the truth data used for evaluation. An interactive dashboard to visualize the461

nowcasts is provided at https://covid19nowcasthub.de/.462

Code availability463

Code to reproduce results and figures are provided at https://github.com/dwolffram/hospitalization-464

nowcast-hub-evaluation. A list of the participants’ code repositories can be found in Appendix D.465
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[35] W. Ehm, T. Gneiting, A. Jordan, and F. Krüger, “Of quantiles and expectiles: Consistent scoring567

functions, Choquet representations and forecast rankings,” Journal of the Royal Statistical Society:568

Series B (Statistical Methodology), vol. 78, no. 3, pp. 505–562, 2016.569

[36] G. Shafer and V. Vovk, “A tutorial on conformal prediction,” Journal of Machine Learning Research,570

vol. 9, no. 12, pp. 371–421, 2008.571

[37] Berliner Morgenpost, “Triage in Sachsen: Kliniken bereiten sich auf Schlimmes vor,” Berliner Mor-572

genpost, 2021, published online on 23 November 2021, https://www.morgenpost.de/vermischtes/573

article233915811/corona-sachsen-triage-intensivstationen-ueberlastung.html.574

[38] N. Wolter, W. Jassat, S. Walaza, R. Welch, et al., “Early assessment of the clinical severity of the575

SARS-CoV-2 omicron variant in South Africa: A data linkage study,” The Lancet, vol. 10323, pp. 437–576

446, 2022.577
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Appendix588

A Deviations from study protocol and completeness of nowcasts589

As we have deviated in some minor parts from the study protocol, we provide a list of these adjustments.590

Table 2: Deviations from the study protocol.

Description Reasoning

Inclusion of weekends into the study
period.

Initially, weekends were excluded from the study period as we
expected submission to require some human intervention at least
initially. As all teams completely automated their procedures
very quickly, we were able to update models on weekends and
include them in the evaluation.

Inclusion of the Christmas period into
the study period.

In the study protocol, the Christmas period was excluded from
the study period as (i) we expected irregular reporting behavior
and (ii) we did not want to oblige modelers to perform any man-
ual steps for submission during this period. However, as there
were no unusual patterns and all submissions were completely
automated, we decided to include this period. We note that,
contrary to our expectations, the Easter period showed some
unusual reporting patterns. We nonetheless kept it in the eval-
uation as removing periods for which nowcasts were expected to
work normally but did not would unduly embellish our results.

Omission of the retrospective study
period from 1 July 2021 to 19 Novem-
ber 2021.

We initially planned to include a retrospective study period in
order to contrast the performance of methods in retrospect and
in real time. However, as only two teams provided retrospective
nowcast before the start of the study period, we chose to omit
this aspect. Instead, we chose to include an analysis of four
revised versions of contributed models applied retrospectively
to the period 22 November to 29 April.

Omission of nowcast targets for which
even including fill-in nowcasts results
could not be obtained from all meth-
ods.

For a very small set of targets we were unable to obtain submis-
sions from all models, even including fill-in nowcasts. As these
represented a negligible fraction of all targets (0.3%) we prag-
matically chose to omit these from the main analysis in order
to achieve a balanced data set.

Omission of interval coverage results
at the 80% level.

As interval coverage results at the 80% level provided no ad-
ditional insights and led to overly full figures we chose to omit
them.

Definition of näıve baseline model. At the time of writing the protocol we had decided that a näıve
baseline model should be included, but it was unclear how it
should be defined. The FrozenBaseline used in the main anal-
ysis was only defined during the work on the manuscript.

Tightening of ensemble inclusion cri-
teria.

During the study period, we realized that one model (SZ) occa-
sionally issued nowcast values below the already known values
(which in almost all cases only get corrected upwards). This is
due to a smoothing step that is included in the procedure. We
decided to exclude these from the ensemble. Specifically, sub-
missions were excluded from the ensemble whenever the median
or mean nowcast was below the already known value.
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Table 3: Missingness of real-time submissions by the participating teams. Apart from the targets listed in
Table 4, all of these could be imputed with fill-in nowcasts.

Model dates without submission
Epiforecasts 25–26 Jan 2022
ILM 27–28 Nov 2021, 24, 26, 30 Dec 2021, 16 Jan 2022, 8–20 April 2022
RIVM 8 Dec 2021, 23 Apr 2022
RKI 8 Dec 2021; all 0 and -1 day nowcasts
SU 27–28 Nov 2021, 5 Dec 2022

Table 4: Nowcast targets for which no complete sets of submissions could be obtained. These amount to
394 nowcast targets among the 109,968 considered in total.

Dates Excluded targets Reason
22 November 2021 Horizons -1 and 0 days, all

strata
On the first day of our study sev-
eral models provided only now-
casts from −2 days backward.

22–24 November 2021 Horizons -23 to -28 days,
all strata.

The SZ model initially only
provided nowcasts three weeks
back.

31 Jan, 1 Feb 2022 State of Hamburg, all hori-
zons.

Nowcasts from Epinowcasts

model not available due to
convergence issues.

Table 5: Other decisions in response to unexpected difficulties.

Description Reasoning

Imputation of 0.1-quantiles from
Epiforecasts model via an interpola-
tion/normal approximation.

For several months the Epiforecasts model did not provide
0.1 quantiles, which was only noticed towards the end of the
study period. in order to be able to evaluate the WIS without
having to rerun the model for all concerned dates, we imputed
the 0.1-quantile by interpolating between the 0.025 and the 0.25
quantile based on a normal approximation (which implies that
the 0.1 quantile is almost exactly halfway between the 0.025 and
0.25 quantiles).

LMU nowcasts for Saarland and Bremen
were replaced by nowcasts from the
retrospectively revised model version
discussed in Section 3.6.

In their real-time submissions, the LMU team only reported point
nowcasts for the states of Saarland and Bremen, which are con-
siderably smaller than the other states (1M and 700k inhabi-
tants, respectively). To be able to nonetheless evaluate the WIS
and keep these two states in the overall evaluation, we used the
revised nowcasts as discussed in Section 3.6 as these contained
all quantiles for these states. We consider this defensible as the
role of these two states in the overall evaluation under WIS is
very small (the WIS typically scales with the order of magnitude
of the target).

Filling in some missing entries of
ILM with nowcasts from the updated
model.

Nowcasts from 22-26 and 29 November 2021 were missing entries
for horizons -28, -1, and 0 days. To fill these in, we used the
revised nowcasts as discussed in Section 3.6.

Removal of a small number of obvi-
ously erroneous nowcasts for the RKI

model.

In a handful of instances, the RKI model submitted obviously
erroneous nowcasts for the 0-day horizon. These stated values
of more than 1 billion hospitalizations. We replaced these with
the respective -1 day nowcasts.
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B Supplementary Figures591

SL SN ST TH

NI NW RP SH

HB HE HH MV

BB BE BW BY

Jan Mar May Jan Mar May Jan Mar May Jan Mar May

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n 
of

 fi
na

l r
ep

or
t

Days after
initial report

70+
70
49
28
14
7
2
0

Figure 13: Completeness of 7-day hospitalization incidences 0 to 70 days after the respective reference date.
Temporal development in the 16 German states. Abbreviations of federal states: BB = Brandenburg, BE
= Berlin, BW = Baden-Württemberg, BY = Bavaria, HB = Bremen, HE = Hessen, HH = Hamburg,
MV = Mecklenburg-Vorpommern, NI = Lower Saxony, NW = North Rhine-Westphalie, RP = Rhineland
Pallatinate, SH = Schleswig Holstein, SL = Saarland, SN = Saxony, ST = Saxony Anhalt, TH = Thuringia.
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Figure 14: Temporal development of reporting completeness in different age groups.

C Sensitivity analysis via pairwise comparisons592

C.1 Motivation and procedure593

In some instances, teams failed to submit nowcasts in time and had to fill them in post hoc. Allowing them594

to do so may seem lenient as, in principle, teams could use additional information, thus unfairly improving595

their nowcasts. As specified in our protocol, we thus perform a sensitivity analysis based purely on nowcasts596

submitted on time of the respective day.597

As each team failed to submit nowcasts on different days this leads to a setting where methods need to598

be compared based on incongruent sets of nowcasting tasks. In this setting, the relative WIS could still599

be evaluated for each method by considering only the subset of targets treated by the respective method.600

This, however, ignores that improving upon the näıve baseline is easier for certain locations, age groups, and601

time periods than others. To handle this difficulty, we use the pairwise comparison approach suggested in602

[17]. It is based on the assumption that achieving good nowcast performance relative to all other considered603

methods is similarly difficult across locations, age groups, and time periods. Considering a set of N models604

(including the baseline model), the relative WIS corrected for missing submissions is determined as follows:605

1. In the first step for each pair of models i, j we compute the ratio

θij =
mean WIS achieved by model i

mean WIS achieved by model j
.

2. For each model i we then compute the geometric average of the ratios θij achieved in the comparisons
to all other models

θi =

(
N∏
i=1

θij

)1/N

.

3. Lastly, we re-scale the θi to the one achieved by the baseline model to obtain the relative WIS:

adjusted relative WIS of model i =
θi
θBL

,

where θBL refers to the baseline model (FrozenBaseline).606

If all models submitted all required nowcasts it is straightforward to show that this boils down to the regular607

relative WIS as defined in Section 2.5. If some submissions are missing for certain models, the procedure608

will adjust the relative WIS to how well other models fared on the respective subset of addressed targets.609
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Figure 15: Mean absolute errors for the national level (top) and averaged across states (middle) and age
groups (bottom). The first panel in each row displays the average across all horizons (on the absolute and
relative scales). The second and third panels in each row show the mean MAE and the relative MAE,
respectively, stratified by horizon.

27

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.17.23288668doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.17.23288668
http://creativecommons.org/licenses/by-nc/4.0/


233519.0

201454.9

526699.9

339200.3

260805.5

178872.0

331625.0

309474.0

113781.7

419127.1

0.00 0.05 0.10

MedianEnsemble

MeanEnsemble

SZ

SU

RKI

RIVM

LMU

KIT

ILM

Epiforecasts

0e+00 2e+05 4e+05

Relative squared error

Mean squared error

0

500000

1000000

1500000

2000000

0−5−10−15−20−25

Horizon (days)

M
ea

n 
sq

ua
re

d 
er

ro
r

National level

0.00

0.25

0.50

0.75

1.00

0−5−10−15−20−25

Horizon (days)

R
el

at
iv

e 
sq

ua
re

d 
er

ro
r

3314.2

3168.4

6237.5

4513.5

3938.0

3279.7

3876.9

4149.7

6344.4

0.00 0.05 0.10 0.15 0.20

MedianEnsemble

MeanEnsemble

SZ

SU

RKI

RIVM

LMU

KIT

ILM

Epiforecasts

0 2000 4000 6000

Relative squared error

Mean squared error

0

20000

40000

60000

0−5−10−15−20−25

Horizon (days)

M
ea

n 
sq

ua
re

d 
er

ro
r

States

0.0

0.3

0.6

0.9

0−5−10−15−20−25

Horizon (days)

R
el

at
iv

e 
sq

ua
re

d 
er

ro
r

10684.6

9479.4

24760.7

14459.4

8351.8

17343.7

14217.9

7061.0

17629.9

0.00 0.05 0.10

MedianEnsemble

MeanEnsemble

SZ

SU

RKI

RIVM

LMU

KIT

ILM

Epiforecasts

0 5000 10000 15000 20000 25000

Relative squared error

Mean squared error

0

20000

40000

60000

80000

0−5−10−15−20−25

Horizon (days)

M
ea

n 
sq

ua
re

d 
er

ro
r

Age groups

0.0

0.3

0.6

0.9

0−5−10−15−20−25

Horizon (days)

R
el

at
iv

e 
sq

ua
re

d 
er

ro
r

Figure 16: Mean squared errors for the national level (top) and averaged across states (middle) and age
groups (bottom). The first panel in each row displays the average across all horizons (on the absolute and
relative scales). The second and third panels in each row show the MSE and the relative MSE, respectively,
stratified by horizon.
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Figure 17: Mean WIS across horizons from 0-7 days of the compared models computed using different data
versions as the ”final” version. The version prespecified in the study protocol is 8 August 2022, marked by
a vertical line.
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Figure 18: Distribution of each model’s standardized rank for each nowcast-observation pair (see [17] for
details on the definition) The models are ordered by the mean standardized rank, which is indicated by a
plus sign.
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Figure 19: Relative mean WIS across all horizons by nowcast date and stratification level. Top: national
level; middle: across states; bottom: across age groups.
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Figure 20: Scores as in Figure 6, but for hospitalizations by 100,000 inhabitants. This gives similar weight
to all states irrespective of their population size.
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C.2 Results610

Table 6 compares the relative WIS computed using fill-in nowcasts as in the main analysis and the pairwise611

comparison approach. The differences are very modest, meaning that the missingness of nowcasts does not612

substantially affect the results. This is not surprising, given the low number of missing submissions.613

Table 6: Comparison of relative WIS values obtained using retrospective fill-in nowcasts and the pairwise
comparison approach from [17] (PC).

National level States Age groups
PC fill-in PC fill-in PC fill-in

Epiforecasts 0.2679 0.2690 0.2686 0.2686 0.2465 0.2472
FrozenBaseline 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ILM 0.0907 0.0907 0.1124 0.1117
KIT 0.1627 0.1628 0.2227 0.2232 0.1676 0.1677
LMU 0.2961 0.2962 0.2993 0.2988 0.2925 0.2926
MeanEnsemble 0.1643 0.1651 0.2254 0.2254 0.1574 0.1581
MedianEnsemble 0.2034 0.2034 0.2414 0.2415 0.1919 0.1920
RIVM 0.1845 0.1838 0.2471 0.2473 0.1767 0.1764
RKI 0.2435 0.3120
SU 0.2427 0.2432 0.2590 0.2585 0.2265 0.2268
SZ 0.3314 0.3317 0.3703 0.3709 0.3330 0.3332

1 No nowcasts submitted for this target.
2 WIS could only be evaluated for fill-in nowcasts as real-time submissions did not contain all required quantiles.

D Repositories of participating teams614

- Epiforecasts: https://epiforecasts.io/eval-germany-sp-nowcasting/615

- KIT: https://github.com/KITmetricslab/hospitalization-nowcast-hub/tree/main/code/baseline616

- LMU: https://github.com/MaxWeigert/Nowcasting_covid19_hospitalizations617

- RIVM: https://github.com/kassteele/Nowcast-hub618

- SU: https://github.com/FelixGuenther/hospitalization-nowcast-hub_SU-public619

E Documentation of the KIT model620

As the KIT model was conceived as a conceptually simple (though not näıve) reference model for the current621

study we provide a brief documentation of its methodology.622

Notation Denote by Xt,d, d = 0, . . . , D the number of hospitalizations for reference date t which appear
in the data set at day t+ d and by

Xt,≤d =
d∑

i=0

Xt,i

the number of hospitalizations reported for reference date t up to day t+ d. Moreover, denote by

Xt = Xt,≤D =
D∑
i=0

Xt,i
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the total number of reported hospitalizations for t, where D denotes an assumed maximum possible delay.623

In the following, we denote by Xt, etc. a random variable and by xt the corresponding observation.624

The observed xt,d as available at a given time point t∗ can be arranged into the so-called reporting triangle,625

see Table 7.626

Table 7: Illustration of the reporting triangle for time t∗ and D = 5. Quantities known at time t are shown
in black, yet unknown quantities are shown in grey.

day d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 total
1 x1,0 x1,1 x1,2 x1,3 x1,4 x1,5 x1
2 x2,0 x2,1 x2,2 x2,3 x2,4 x2,5 x2
...

t∗ − 5 xt∗−5,0 xt∗−5,1 xt∗−5,2 xt∗−5,3 xt∗−5,4 xt∗−5,5 xt∗−5

t∗ − 4 xt∗−4,0 xt∗−4,1 xt∗−4,2 xt∗−4,3 xt∗−4,4 xt∗−4,4 xt∗−4

t∗ − 3 xt∗−3,0 xt∗−3,1 xt∗−3,2 xt∗−3,3 xt∗−3,4 xt∗−3,5 xt∗−3

t∗ − 2 xt∗−2,0 xt∗−2,1 xt∗−2,2 xt∗−2,3 xt∗−2,4 xt∗−2,5 xt∗−2

t∗ − 1 xt∗−1,0 xt∗−1,1 xt∗−1,2 xt∗−1,3 xt∗−1,4 xt∗−1,5 xt∗−1

t∗ xt∗,0 xt∗,1 xt∗,2 xt∗,3 xt∗,4 xt∗,5 xt∗

As we will focus on seven-day hospitalization incidences we moreover need to consider rolling sums over
windows of length W (usually W = 7)

Yt =
W−1∑
w=0

Xt−w.

Goal Our aim is to estimate or nowcast Yt based on the information available at time t∗ ≥ t. We do not
take into account any information other than data on hospitalizations and their reporting delays, meaning
that we model

Yt | Xs,d : s+ d ≤ t∗, d ≥ 0.

Point nowcast The following describes a simple heuristic to obtain a point prediction of Yt based on627

information available at time t∗.628

We start by imputing

xt∗,1 = xt∗,0 ×
∑t∗−1

i=1 xt∗−i,1∑t∗−1
i=1 xt∗−i,0

,

i.e. use a simple multiplication factor computed from the complete rows of our data set. Next, we compute

xt∗,2 = xt∗,≤1 ×
∑t∗−1

i=1 xt∗−i,2∑t∗−1
i=1 xt∗−i,≤1

,

where in the computation of
xt∗−i,≤1 = xt∗−i,≤0 + xt∗−i,1

we just treat the xt∗−i,1 imputed in the first step as if it was a known value. The same can be done for

xt∗−1,2 = xt∗−1,≤1 ×
∑t∗−1

i=1 xt∗−i,2∑t∗−1
i=1 xt∗−i,≤1

.

We repeat this same procedure to fill in the missing values of the reporting triangle step by step, moving629

from the left to the right and the bottom to the top.630
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This is equivalent to the following slightly more formal formulation: We denote by πd the probability that
a hospitalization with reference date t appears in the data on day t+ d and by

π≤d =
d∑

i=0

πi

the probability that such a hospitalization appears in the data no later than t+ d. We introduce

θd =
πd

π≤d−1
,

which allows us to formulate the recursion

π≤d = (1 + θd)π≤d−1.

To estimate the θd for d = 1, . . . , D < t based on quantities available at time t∗ we use

θ̂d(t
∗) =

∑J
j=dXt∗−j,d∑J

j=dXt∗−j,≤d−1

,

where J is the number of past observations to include in the estimation (in practice it is often helpful to use
only a recent subset rather than the entire available history). Note that we treat this estimate as a function
of t∗ as it may change over time. Estimates of the probabilities π≤d can then be obtained as

π̂≤d(t
∗) = (1 + θ̂d)π̂≤d−1.

These can subsequently serve to estimate the total number Xt of hospitalizations with reference date t based
on the Xt,≤t∗−t hospitalizations already reported by time t∗:

X̂t(t
∗) =

Xt,≤t∗−t

π̂≤t∗−t(t∗)
.

We can also compute the estimates for the respective number of hospitalizations reported with a given delay
d > t∗ − t, which is given by

X̂t,d(t
∗) = π̂d(t

∗)X̂t(t
∗).

In the last step we move to the rolling sum Yt, which we estimate as

Ŷt(t
∗) =

W−1∑
w=0

X̂t−w(t
∗).

Uncertainty quantification Our general idea to quantify the nowcast uncertainty for Ŷt(t
∗) is to gen-631

erate point nowcasts Ŷt−1(t
∗ − 1), Ŷt−2(t

∗ − 2), . . . , Ŷt−K(t∗ −K) for K > D past time points, each based632

on the information available at the respective time point. These could then be compared to the correspond-633

ing observations Yt∗−1, . . . , Yt∗−K , and nowcast dispersion could be based on a simple parametric model.634

However, two aspects need to be taken into account:635

• The information available at t∗, on which the nowcast Ŷt(t
∗) is based, already implies a lower bound

for Yt, namely the hospitalizations which have already been observed. Only the hospitalizations for
reference date t which will be reported after t∗ need to be modeled probabilistically. We thus introduce
the decomposition

Yt = Yt,≤t∗−t + Yt,>t∗−t.

Here,

Yt,≤t∗−t =
W−1∑
w=0

D∑
d=0

Xt−w,d × I(−w + d ≤ t∗ − t)
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are those already observed by t∗ (i.e., the lower bound) and

Yt,>t∗−t =
W−1∑
w=0

D∑
d=0

Xt−w,d × I(−w + d > t∗ − t)

are those yet to be observed. We only need to quantify the uncertainty about the latter.636

• At time t∗, the realizations of Yt,>t∗−t are only available for t ≤ t∗−D. If we only want to use complete637

observations we would need to discard a lot of recent information.638

We therefore construct a set of observations Zt−j,>t∗−t, j = 1, . . . ,K and corresponding point predictions639

Ẑt−j,>t∗−t, (t
∗ − j) as follows:640

• For j = D, . . . ,K we can simply set

Zt−j,>t∗−t = Yt−j,>t∗−t

and point predictions Ẑt−j,>t∗−t(t
∗ − j) = Ŷt−j,>t∗−t(t

∗ − j) as all relevant information are already641

available at t∗.642

• For j = 1, . . . , D − 1 we use partial observations

Zt−j,>t∗−t =

W−1∑
w=0

D∑
d=0

Xt−j−w,d × I( t− j − w + d ≤ t∗︸ ︷︷ ︸
”already observed at t∗”

),

= Yt−j,>t∗−t − Yt−j,>t∗−t+j

which are restricted to hospitalizations already reported by time t∗, so that Zt−j,>t∗−t can be evaluated.
The corresponding point nowcasts are given by

Ẑt−j,>t∗−t =

W−1∑
w=0

D∑
d=0

X̂t−j−w,d × I( t− j − w + d ≤ t∗︸ ︷︷ ︸
”already observed at t∗”

).

We then pragmatically assume that

Zt−j | Ẑt−j(t
∗ − j) ∼ NegBin(mean = Ẑt−j(t

∗ − j), disp = ψt∗−t),

where we parameterize the negative binomial distribution via its mean and the dispersion (size) parameter643

ψt∗−t. Note that the dispersion parameter depends on how far back into the past we nowcast (i.e., how644

much information has already accumulated between t− j and t∗ − j). The parameters ψ0, . . . , ψD are then645

estimated via maximum likelihood. To avoid issues with zero expectations we add 0.1 to the expected values646

when feeding them into the maximum likelihood procedure.647

The predictive distributions for Yt are then set to NegBin(mean = Ŷt,>t∗−t(t
∗), size = ψt∗−t), shifted

by Yt,≤t∗−t. As a motivation for the use of partial observations in the estimation of the overdispersion
parameters, we note that if

A ∼ NegBin(mean = Â,disp = ψ)

and
B | A ∼ Bin(A, π)

one gets
B ∼ NegBin(mean = πÂ,disp = ψ).

The negative binomial distribution with a given dispersion parameter is thus closed to binomial subsampling,648

with only the expectation, but not the size parameter changing. It is therefore defendable to assume the649

same size parameter for the constructed partial observations Zt−j,>t∗−t and the actual Yt−j,>t∗−t which we650

would use if they were already available.651

Parameter choices To apply the suggested method, the numbers J and K of past observations are used652

to estimate the nowcast mean and dispersion parameters. Here one needs to strike a balance between a653

sufficient amount and recency of training data. We set both J and K to 60 days without further assessing654

the impact on nowcast quality. The maximum delay of D was set to 40 days.655
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