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ABSTRACT 
 
Post-traumatic stress disorder is a mental disorder that may occur in the aftermath of 
severe psychological trauma. We examined 1,065,750 DNA methylation (DNAm) sites 
from 171 donors including neurotypicals, PTSD, and major depressive disorder cases 
across six areas implicated in the fear circuitry of the brain. We found significant 
differential methylation for PTSD near 195 genes and utilizing cross-region modeling, 
identified 6,641 candidate genes. Approximately 26% of differentially methylated CpGs 
were present near risk loci for PTSD. To identify potential therapeutic intersections for 
PTSD, we found significant methylation changes in the MAD1L1, ELFN1, and WNT5A 
genes in ketamine responders. Finally, to better understand the unique biology of 
PTSD, we analyzed matching methylation data for a cohort of MDD donors with no 
known history of trauma or PTSD. Our results implicate DNAm as an epigenetic 
mechanism underlying the molecular changes associated with the subcortical fear 
circuitry of the PTSD brain.  
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INTRODUCTION 

Post-traumatic stress disorder is a debilitating psychiatric disorder with an 

approximately 7% prevalence in the general population1–3. PTSD typically emerges 

following extremely stressful life events, such as direct threats to one’s life. Particularly 

when chronic, it is often comorbid with other psychiatric diagnoses including major 

depression4 and substance use disorder5. Because the diagnostic criteria for PTSD 

specify that it is a lasting clinical condition arising from discrete environmental 

exposures (trauma), epigenetic mechanisms are very likely to contribute substantially to 

its pathophysiology.  

Methylation of DNA (specifically at cytosine nucleotides) is a critical, epigenetic 

regulator of genome architecture, gene expression, and cell function6. These processes 

are important for mammalian brain development7, aging8, disease9, and response to 

external stimuli such as stress10. Epigenetic changes evoked by stress are thus 

encoded onto the genome and can serve as a link between the genetic architecture and 

the response (i.e., gene expression). In this way, epigenetic changes are a path through 

which traumatic stress and other environmental exposures influence PTSD vulnerability 

and resilience and converge mechanistically with underlying risk for PTSD11. Elucidating 

this interplay is thus fundamental to advancing our understanding of the etiology and 

pathophysiology of PTSD. Previous studies of the PTSD methylome have 

predominantly examined peripheral tissues such as blood12–15. These findings have 

largely centered on changes in inflammatory/immune response and glucocorticoid 

signaling. However, because epigenetic changes are tissue-, region-, and cell-specific, 
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peripheral studies are limited in their ability to inform the understanding of brain 

epigenetic regulation of gene expression. 

In this study, we focused on subregions of the amygdala and the hippocampus 

because these are among the most well-understood components of the brain’s fear 

circuitry with known functional engagement in PTSD16. The amygdala is comprised of 

several nuclei with discrete functions including the basolateral nucleus (BLA), the 

central nucleus (CeA) and the medial nucleus (MeA). Neuroimaging and animal studies 

have found that the amygdala modulates the fear response17–19 and recent studies have 

demonstrated that individuals with PTSD exhibit greater amygdala activation relative to 

comparison subjects20,21. Further, functional imaging studies have examined 

connectivity between the prefrontal cortex (PFC) and the amygdala and observed 

impaired inhibition in PTSD subjects22. The hippocampus is primarily involved in storing 

memory. Notably, gross hippocampal volume is decreased in PTSD patients compared 

to traumatized controls who did not develop PTSD23.  We included three subregions of 

the hippocampus in our analysis: the dentate gyrus (DG), CA subfields (CA), and the 

subiculum (Sub).  

 We generated DNAm data from six postmortem primary brain regions from 171 

individual donors using the targeted next-generation sequencing of bisulfite converted 

DNA (targeted methyl-seq). After rigorous quality control, this provided genomic 

coverage across 1,065,750 CpG sites representing 22,544 genes, in a much larger 

sample size (117 cases versus 54 controls) than previous studies, across two unique 

diagnostic groups (PTSD and major depressive disorder) compared to neurotypical 
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controls in brain regions (subregions of the amygdala and hippocampus) not extensively 

examined in previous large DNA methylation cohorts. The goal of this effort was to 

comprehensively measure epigenetic responses (i.e., DNA methylation differences) 

across discrete brain regions with known involvement in PTSD pathophysiology. We 

have also included a non-PTSD psychiatric comparison group of individuals with (MDD) 

due to the high comorbidity between the two disorders24. We find differential DNAm 

signatures across all six regions including many non-overlapping, sex-specific 

differences. Many DNAm signals are present near genes regulating GABAergic 

transmission such as ELFN1 which has previously been implicated in PTSD interneuron 

dysfunction25 and glucocorticoid signaling including CRH1. We also find that DNAm 

changes aggregate at genes previously implicated in genetic risk for PTSD and its 

associated clinical phenotypes including KANSL1, MAD1L1, and CRHR126. 

Remarkably, we also identified significant changes in methylation of the ELFN1, 

MAD1L1, and WNT5A genes in response to the rapid-acting antidepressant ketamine in 

a cohort of PTSD patients. Taken together, this work represents a unique and powerful 

resource for exploring DNA methylation changes in human subcortical regions important 

for psychological stress pathology and provides critical neurobiological targets for future 

development of therapeutics.  

 

RESULTS 

Widespread DNAm differences in subcortical brain regions 
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 We obtained high-quality DNAm data from 171 human postmortem individuals 

matched for sex, including donors diagnosed with PTSD, major depressive disorder 

(MDD), and neurotypical controls using targeted sequencing of bisulfite converted DNA 

(Targeted Methyl-Seq).  We mapped the DNAm landscape of six postmortem brain 

regions: three amygdala nuclei: basolateral (BLA), central (CeA), and medial (MeA); 

and three hippocampal subregions: Cornu Ammonis (CA) subfields, dentate gyrus (DG), 

and subiculum (Sub) using a custom bioinformatic analysis pipeline (Figure 1A and 

Github link). We removed probes on the sex chromosomes, leaving 1,065,750 

autosomal probes for analysis. Principal components (PC) analysis of PC1 versus PC2 

found that sex had the greatest effect on methylation level variation (Figure 1B). Our 

cohort was well matched for sex (PTSD: 31 females, 30 males; MDD: 24 females, 33 

males; and normal controls: 21 females, 32 males). We observed substantial variation 

in DNAm levels between all six regions. Notably, while we observed relatively distinct 

clusters for each subregion, amygdala (red, orange, and yellow) and hippocampal (blue, 

purple, and green) subregions tended to cluster together suggesting regional similarities 

in CpG methylation patterns (Figure 1C). Given the similarities in DNAm levels between 

subregions of the amygdala and hippocampus observed by PCA, we tested for unique 

DNAm signals for each subregion. For each subregion, we performed differential 

methylation analysis to compare each region to the other combined five regions. Figure 

1D shows the heatmap of z-score transformed median methylation levels of the 1,200 

CpG sites (top 200 most significant CpG sites for each of the six regions). Hierarchical 

clustering of these 1,200 sites reveals subregion similarities within each primary region. 
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The top 200 significant CpGs are listed in Supplementary Table 1. Interestingly, few 

genes (24) overlapped between regions. The transcription factor ZIC1 had shared CpGs 

across four regions including the CA, DG, subiculum and BLA which is likely consistent 

with its role in neurogenesis27. Taken together, these findings reveal region-specific 

differentially methylated CpGs (DMCs) within distinct genomic loci and biological 

pathways. 

To better understand the regional differences in DNAm, we annotated each CpG 

site for its genic features, CpG features, and chromatin features. Odds ratios of 

Bonferroni-corrected significant CpG sites within each feature versus excluded were 

calculated (Figure 1E). Significant subcortical CpGs are more enriched in bivalent 

promoter regions (mean O.R.= 1.47, mean P < 0.0001), enhancer regions (weak (mean 

O.R. = 1.57, mean P < 0.0001) and active enhancers (mean O.R. = 1.39, mean P < 

0.0001)) and less enriched in TSS (mean O.R. = 0.39, mean P < 0.0001), ZNF genes 

(mean O.R. = 0.32, mean P < 0.0001) and gaps (mean O.R.=0.11, mean P < 0.0001), 

consistent with previous studies examining CpG methylation patterns in other brain 

regions28.  

 

DNAm differences between PTSD subjects and neurotypical controls 

 We compared differences in CpG methylation levels for each region between our 

control and PTSD cohorts controlling for sex, age at death, ancestry, brain bank, PMI, 

and smoking status (Extended Data Figure 1). We used dispersion shrinkage for 

sequencing29 which was initially developed for the analysis of bisulfite sequencing data.  
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Figure 1 | DNA isolated from different brain regions display widespread 
differences in CpG methylation. (A) Bioinformatics analysis pipeline. (B) Individual 
scores from principal components analysis of all samples included in the study. PC1 
and PC2 maximally separate subjects by sex. (C) PC1 and PC3 maximally separate 
subjects by brain regions. (D) heatmap of median methylation levels of the 1,200 CpG 
sites (top 200 most significant CpG sites for each region that distinguish each of the six 
brain regions from the five others); only samples with data from every brain region were 
included. Hierarchical clustering of these 1,200 sites reveals subregion similarities 
within each primary region. (E) Heatmap of z-score transformed odds ratios for genic, 
CpG and chromatin features showing the odds ratio of Bonferroni-corrected significant 
CpG sites within the feature versus excluded. Significant subcortical CpGs are more 
enriched in bivalent promoter, weak and active enhancer regions (P < 0.0001) and less 
enriched in TSS, ZNF genes, and gaps (P < 0.0001).  
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In the combined sex analyses, we identified five FDR-significant DMCs (P < 0.05). We 

found one hypermethylated DMCs in the CA for the SNAR-G2 gene and four 

hypomethylated DMCs for microRNA miR54812 and NDUFAF1, HORMAD2-AS1, and 

NXN genes in the DG (Figure 2A).  In females, we found six significant DMCs in the 

BLA, 10 in the CeA, 16 in the MeA, 19 in the CA, 86 in the DG, and 13 in the subiculum 

(Figure 2B shows the top ten most FDR significant sites; the full list is available in 

Supplementary Table 2). We also found non-overlapping male-specific gene-

associated DMCs in the BLA (three genes), in the CeA (eight genes), in the MeA (11 

genes), in the CA (11 genes), in the DG (15 genes), in the subiculum (16 genes) 

(Figure 2C). The most significant genes with DMCs for all regions and by sex-specificity 

are shown in Table 1.  

 

PTSD-associated JMCs identified by joint brain region analysis 

 To identify differentially methylated sites with common effects across multiple 

brain regions, we adopted a powerful cross-brain joint region analysis strategy. The 

existing methods for differential methylation analysis are mostly based on the analysis 

of a single marker (univariate analysis) that requires a significantly larger number of 

samples. In fact, we were only able to find a limited number of DMCs (and associated 

genes) between PTSD and controls in each brain region after the Benjamini-Hochberg 

correction (Figure 2). The Markov Random Field (MRF) model has been applied to both 

genome-wide association studies and bulk RNA-seq studies to model biological 

dependencies/networks in genomic and transcriptomic data30–32. In these previous  
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Figure 2 | Univariate analysis reveals regional and sex-specific differences in CpG 
methylation between PTSD cases and controls (A) Two-sided Manhattan plot for 
PTSD case-control differential methylation using all samples included in the study. 
Differential methylation analysis was performed using a Bayesian hierarchical model, 
covarying for age, sex, ancestry, post-mortem interval, data source, and smoking 
status. The association test statistics for each variant tested is reported on the y-axis for 
hypermethylation (above) and hypomethylation (below). The top FDR significant 
markers across six regions are annotated. Labels indicate gene and regions for 
significant DNAm. (B) Two-sided Manhattan plot for PTSD case-control differential 
methylation using only female samples, covarying the same set of covariates excluding 
sex. (C) Manhattan plot for PTSD case-control differential methylation using only male 
samples, covarying the same set of covariates excluding sex. For female- and male-
specific analysis, only top the ten most significant CpGs across six brain regions are 
annotated; the full list is available in Supplementary Table 2. 
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studies, MRF modeling of cross-regional genomics was extensively simulated to limit 

the detection of false positives making it ideal for use in our postmortem methylation 

dataset. Therefore, we employed a statistical framework that incorporates network 

topology information to better classify each CpG site into different methylation patterns 

to identify shared epigenetically modified biological processes (Figures 1C and 1D).  

 There are a total of 64 patterns for each sex-specific and combined sex-

comparison (26, for each region a site is either a DMC or not (two possibilities) across 

six subregions) (Supplementary Table 3 and Extended Data Figure 2). Joint analysis 

revealed 17,481 joint-region methylated CpGs (JMCs) (across all six regions, mean of 

2,914 JMCs per region) (out of a total of 1,065,750 CpGs or 0.27%) for all single region 

analyses in our combined-sex dataset. This corresponded to 1,761 nearest genes for 

BLA, 1,672 for CeA, 2,134 for MeA, 2,015 for CA, 1,687 for DG, and 1,859 for Sub 

(within 10 kb and nominally significant by univariate analysis) (Supplementary Table 

3). Across all differential DNAm patterns, we identified 48,158 JMCs, of which 41.3% 

are significant DMCs in single subnuclei of the amygdala and 40.3% are significant in 

specific hippocampal subregions, indicating similar changes of DNAm across regions 

(Extended Data Figure 2A). Consistent with our univariate PCA analysis, most jointly 

shared DMCs fall within the combined amygdala (9%) or combined hippocampal 

comparisons (7.8%). Additionally, this pattern was observed in both the female-specific 

(Extended Data Figure 2B) and male-specific comparisons (Extended Data Figure 

2C). Interestingly, we found 52 JMCs mapping to 36 genes common to all regions 

(Supplementary Table 3). Gene ontology analysis of each pattern was performed 
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individually. We show the top 10 canonical pathways across the six individual subregion 

patterns in Extended Data Figure 3 and found the greatest enrichment for pathways 

related to axon guidance signaling, transcription factor CREB signaling in neurons, 

GABA receptor signaling, and endocannabinoid signaling (P £ 0.01 for all gene sets). 

We observed similar pathway enrichments in our sex-specific analyses 

(Supplementary Table 4) and in the multi-regional pattern analyses confirming our 

expectation that PTSD has similar associations with DNAm at many sites across 

different brain regions. The complete set of gene set enrichments for each region and 

joint-region comparison are in Supplementary Table 4. 

 

Gene network analysis reveals sex-specific and regional convergence of PTSD 

affected biological processes 

 In order to better understand how PTSD DMCs are affecting brain regions, we 

performed gene network analysis to identify possible convergent biological processes 

and interactions these DMC-associated genes are having. For each enrichment 

analysis, we extracted the most significant (network score > 30) gene networks for each 

single regional pattern and integrated hub genes and their nearest neighbors with the 

hub genes and neighbors of networks for multiple regions (Figure 3). Genes 

SMARCA4, ESR1, TCF4, WNT3A, and WNT5A were hub genes among the six regional 

patterns with the greatest number connected neighbors. We found significant DNA 

methylation changes in SMARCA4 (P = 0.0007), ESR1 (P = 0.0005), TCF4 (P = 

0.0004), WNT3A (P = 0.0003) and WNT5A (P = 0.0004). SMARCA4 (60 connections) is 
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Figure 3 | Network analysis. Gene network analysis was performed using IPA for 
JMCs in each differential methylation pattern. The most significant gene networks 
(network score > 30) from the six single-regional analyses were obtained and merged 
by integrating the hub genes and their nearest neighbors in IPA. Pie-circles were used 
to indicate the differential methylation regions for genes that have more than two 
neighboring genes. The amygdala regions (BLA: red, CeA: orange, and MeA: yellow) 
are in warm colors and the three hippocampus regions (CA: purple, DG: blue, and Sub: 
green) are in cold colors. Genes SMARCA4, ESR1, TCF4, WNT3A, and WNT5A were 
hub genes with the greatest number of nearest neighbors.  
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a hub gene in the top networks for BLA, MeA and Sub regions. Several studies33,34 have 

identified SMARCA4 as a dysregulated gene in peripheral blood gene expression 

analyses of PTSD patients. Differences in ESR1 (39 connections) were previously 

identified in a female-only cohort analyzing PTSD blood methylation levels35 and we 

identified a female-specific ESR1 network that was not present in the male network 

analyses (Extended Data Figures 4 and 5), suggesting sex-specific biological network 

changes involving sex hormones in PTSD. TCF4 (9 connections) is one of the most 

significant PTSD risk variants detected by GWAS26,36 and is a significant hub gene in 

the MeA. We also found hub genes related to WNT signaling including WNT3A (66 

connections) that was a hub in BLA, MeA, CA, and DG regions, and WNT5A (10 

connections) which was a hub gene in five of the six regions. Previous studies have 

identified roles for WNT signaling in the impairment of fear extinction, excessive anxiety 

and in depression37,38. Taken together, these data suggest convergent and highly 

coordinated disruption of gene networks in the fear circuitry of the PTSD brain that 

differs between males and females. The full list of gene network results is found in 

Supplementary Table 5. 

 

DNAm changes at PTSD risk loci 

 We next tested for enrichment between DMCs that display epigenetic differences 

associated with PTSD and genetic risk variants identified in genome-wide association 

study for PTSD26,36. We downloaded and analyzed the entire NHGRI GWAS catalog39 

for PTSD that included 20 studies and included 137 SNPs and 147 mapped genes. 
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First, we performed GWAS enrichment to identify variant-gene-disease networks 

associated with our DMCs. We mapped our DMCs to SNPs within the MVP GWAS so 

that we could test association of our DMCs with disease variants in the DisGeNet 

database (See Methods)40. We identified a variant-gene-disease network centered on 

MAD1L1, its risk variants and its connections to Major Depression and Cardiovascular 

Disease. We examined whether the risk variants were specific for any diseases and 

found significant enrichment for mental disorders, digestive system diseases and 

cardiovascular disease (Extended Data Figure 6).  

Second, we found that 11,470 CpG sites (of the 42,582 CpG sites (26.9%), P < 

0.05) were significantly, differentially methylated within the LD regions spanning 137 

PTSD genome-wide significant loci. We found significant differences in DNA 

methylation ratios for MAD1L1 (P < 0.0001), CAMKV (P = 0.0061), KCNIP4 (P = 

0.0012), KANSL1 (P = 0.0023), CRHR1 (P = 0.0004), and TCF4 (P = 0.0004) and 

suggestive changes in HSD17B11 (P = 0.0114) and SPRK2 (P = 0.0015) (Figure 4A). 

We specifically examined methylation changes at nine genes identified by the MVP 

PTSD GWAS26 and plotted their differential methylation for each subregion (Figure 4B).  

We found significant changes for KCNIP4, HSD17B11, MAD1L1, SRPK2, KANSL1, 

CRHR1, and TCF4 for at least one brain subregion. Because we identified a large 

portion of DMCs near PTSD risk genes (26.9%), we reasoned it was likely that 

enrichment of DMCs maybe occurring near or within other genes implicated in PTSD 

pathophysiology. Therefore, we explored the possibility of enriched methylation 

differences within PTSD genetically regulated genes identified by TWAS25. We found 
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significant enrichment of DNAm changes in the interneuron gene ELFN1 (Figure 4A) 

(O.R. = 12.25; P < 0.0001)25.  

 

 

 
Figure 4 | Examples of DNAm changes for 10 GWAS-positive loci for PTSD. (A) 
Examples of group-specific DNA methylation ratios for ten PTSD risk genes. MAD1L1, 
CAMKV, KCNIP4, SPRK2, KANSL1, CRHR1, and TCF4 are significant risk genes 
(identified by GWAS) for PTSD. ELFN1 is a significant TWAS hit for PTSD, and 
SLC32A1 is a previously identified transcriptomic key driver in PTSD. For each boxplot, 
y-axis dots show methylation levels at a specific CpG site. P-value corresponds to 
differential methylation. For box plots, center line is the median, limits are the IQR, and 
whiskers are 1.5X the IQR. (B) Methylation changes at nine genes identified by the 
largest PTSD GWAS using data from MVP were examined. Significant changes were 
found for KCNIP4, HSD17B11, MAD1L1, SRPK2, KANSL1, CRHR1, and TCF4 for at 
least one brain subregion. Significant enrichment of DNAm changes were also found in 
the interneuron gene ELFN1, which was a PTSD genetically regulated genes identified 
by TWAS.  
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Finally, we extended this analysis to include all of the key drivers identified in the 

cortical interneuron module (Extended Data Figure 7) and found significant differential 

methylation for several GABAergic markers including SLC32A1, GAD1, GAD2, LHX6, 

PNOC, GABRA1, GABRA1, PVALB, and VIP. These genes are significant 

transcriptomic molecular drivers and their epigenetic regulation in the current study 

indicates disruption of GABA signaling plays a key role in subcortical regions and 

maybe associated with genetic regulation of CpG methylation at ELFN1. Taken 

together, these findings suggest that DNA methylation level changes proximal to risk 

loci for PTSD may influence or possibly mediate the effect of genotype on clinical risk 

for many genome-wide significant loci. 

 

Ketamine alters blood DNAm signatures in PTSD patients 

In order to link our findings with potential clinical significance, we explored the 

methylation patterns in peripheral blood of PTSD patients who responded to the rapid 

acting antidepressant ketamine41. Intravenous ketamine was administrated twice a 

week to 97 veterans and active-duty service members with PTSD for four weeks. PTSD 

severity was assessed by self-reported PTSD check list for DSM-V (PCL-5) prior to 

each ketamine infusion and 24h post first and last infusions. Responder status was 

determined by the slope of trajectory on the PCL-5 score. DNA methylation was 

measured at 24h post 1st and 8th ketamine infusions and 2-3 days post 4th ketamine 

infusion.  We found significant ketamine-induced methylation changes in the several 

PTSD associated genes identified in our study (Figure 5). We observed significant 
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hypomethylation at five sites (P = 0.00004, 0.0002, 0.00014, 0.0005, 0.0008) in 

MAD1L1, three in ELFN1 (P = 0.00008, 0.0003, 0.0005), and one hypermethylated in 

WNT5A (P = 0.0005). For complete details on the differential CpG methylation changes 

induced by ketamine see Supplementary Table 6. These single gene analyses 

suggest broader clinical implications for methylation changes in PTSD patients.  

 

 

Figure 5 | Examples of ketamine altered DNA methylation ratios for three PTSD 
genes. Significant hypomethylation at five sites in the promoter of MAD1L1 (P = 
0.00004, 0.0002, 0.00014, 0.0005, 0.0008) in patients who responded to ketamine, 
three in the ELFN1 promoter (P = 0.00008, 0.0003, 0.0005), and one in the WNT5A 
promoter (P = 0.0005). For each boxplot, y-axis dots show methylation levels at a 
specific CpG site. P value corresponds to differential methylation. For box plots, center 
line is the median, limits are the IQR, and whiskers are 1.5X the IQR. 

p−value = 0.000157

0.7

0.8

0.9

1.0

1.1

NR R
chr7:1992105

Nearest Gene:  MAD1L1

p−value = 0.000849

0.7

0.8

0.9

1.0

1.1

NR R

chr7:1962317

Nearest Gene:  MAD1L1

p−value = 0.000041

0.4

0.6

0.8

1.0

NR R
chr7:1952716

M
et

hy
la

tio
n 

R
at

io

Nearest Gene:  MAD1L1

p−value = 0.000141

0.5

0.6

0.7

0.8

0.9

1.0

NR R
chr7:1952724

Nearest Gene:  MAD1L1
p−value = 0.000485

0.2

0.4

0.6

0.8

NR R
chr7:1961960

Nearest Gene:  MAD1L1

p−value = 0.000275

0.6

0.8

1.0

NR R

chr7:1740220

Nearest Gene:  ELFN1

p−value = 0.0000822

0.2

0.4

0.6

0.8

1.0

NR R
chr7:1748025

Nearest Gene:  ELFN1

p−value = 0.000543

0.7

0.8

0.9

1.0

1.1

NR R
chr7:1748325

Nearest Gene:  ELFN1

p−value = 0.000495

−0.1

0.0

0.1

0.2

0.3

NR R
chr3:55517732

Nearest Gene:  WNT5A

M
et

hy
la

tio
n 

R
at

io
M

et
hy

la
tio

n 
R

at
io

Figure 5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.18.23288704doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288704
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Distinguishing DNAm associations of PTSD and MDD diagnoses 

 PTSD is highly co-morbid with major depressive disorder (MDD) with more than 

50% of newly diagnosed cases of PTSD also experiencing depressive symptoms24. 

Therefore, we included analyses of an MDD cohort matched for age, sex, PMI, and with 

a similar history of drug use to disentangle the unique and divergent biological 

processes of both disorders. We analyzed this MDD cohort in the same manner as our 

PTSD cohort (Figure 1A) and corrected for the same covariates (age at death, sex, 

ancestry, brain bank, PMI score, and smoking status) to make relevant biological 

comparisons between the two diagnostic groups (Extended Data Figure 8,  

Supplementary Tables 7 and 8). Unsurprisingly, we found that between disorders, 

JMCs were most similar between the same regions than in any other regional or multi-

regional comparison and unique for PTSD and MDD (Extended Data Figures 9 and 

10). Therefore, we collapsed each subregion in our univariate analysis (Figure 2 and 

Extended Data Figure 8) to directly compare the overlap in the DMCs and genes 

between the disorders. Few specific DMCs overlapped between PTSD and MDD with 

the most overlap observed in the amygdala (5.9%) and fewer overlapping in the 

hippocampus (3.5%) (Figure 6A).  

Interestingly, we noted that the medial amygdala (MeA) had significantly more, 

albeit unique DMCs in PTSD donors (8,100 CpGs) compared to MDD donors (5,659 

CpGs) (O.R. = 1.31, P < 0.0001). This finding also held in all joint amygdala subregion 

comparisons that included the MeA (BLA/MeA: O.R. = 1.53, P < 0.0001, CeA/MeA: 
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O.R. = 1.17, P = 0.0012, BLA/CeA/MeA: O.R. = 1.32, P < 0.0001) (Figure 6B).  By 

relaying olfactory information to hypothalamic nuclei responsible for reproduction and 

defense, the medial amygdala plays a significant role in emotional behaviors42. 

Interestingly, previous findings43 using a partially overlapping set of PTSD and 

neurotypical donors to the current study found that the MeA had far more significant 

differentially expressed genes (1,054 DEGs, FDR < 0.05) when compared to the 

number of DEGs found in the dorsolateral prefrontal cortex (209 DEGs), anterior 

cingulate cortex (43 DEGs) and the basolateral amygdala (62 DEGs) analyzed in the 

same study. Taken together, these findings suggest a unique role for the medial 

amygdala in the fear circuitry of the PTSD brain. 

We next directly compared the genes associated with these DMCs (Figure 6C) 

to identify overlapping and convergent biological processes. We identified one gene that 

overlapped across all regions and both diagnostic cohorts: AQP12B (P = 0.0006). We 

averaged P values across all six regions for all nominally significant sites and found 239 

genes that were convergent between the PTSD and MDD amygdala and in the 

hippocampus, 244 genes overlapped between MDD and PTSD. In diagnosis-specific 

regional comparisons, we found 46 DMC associated genes were significant across both 

amygdala and hippocampal regions in the MDD group and 55 were significant across 

both regions in the PTSD group (Figure 6C). 

We found several significant DMCs in the MAD1L1 locus, a major risk gene for 

both PTSD and MDD (Figures 6D and 6E). MAD1L1’s nearest neighbor gene is ELFN1 

(approximately 68 kbp away) and both genes are in high linkage disequilibrium.  
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Figure 6 | Common and divergent epigenetic signatures for PTSD and MDD. (A) 
Venn diagram shows overlap of DMC-associated genes from the PTSD and MDD 
amygdala regions and hippocampus regions. The top 2,000 significant CpG sites from 
each region (BLA, CeA, MeA, CA, DG, Sub) were extracted from the univariate PTSD 
case-control differential methylation analysis and MDD case-control differential 
methylation analysis. We combined the sub-regional signals into amygdala and 
hippocampus primary regions. (B) –log10(p-values) are shown in the heatmap to show 
convergent and divergent genes for PTSD and MDD amygdala and hippocampus 
regions.  We used all significant CpGs from the joint analysis as background CpGs. We 
used the mean p-value from three sub-regions to construct the unified p-value 
(amygdala: BLA, CNA, MNA; hippocampus: CA, DG, Sub). We plot CpG sites that have 
mean p-value less than 0.025. (C) Bar plot shows number of significant CpG sites in the 
joint analysis PTSD case-control analysis and MDD case-control analysis. *P<0.05, 
**P<1e-20, ***P<1e-40. (D) Locus zoom-in plots on chromosome 7 for PTSD combined-
sex analysis and (E) MDD combined-sex analysis. The significant hits in amygdala 
regions were plotted by subregion (red- BLA, orange- CeA, yellow- MeA, purple- CA, 
blue- DG, and green- subiculum. Non-significant hits are colored in dark blue color.  
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Previous studies have identified significant changes in ELFN1 gene expression in the 

dorsolateral prefrontal cortex of the PTSD brain and ELFN1 was a significant TWAS hit 

in the same study25. Interestingly, we found multiple hits in the intronic and exonic 

regions of ELFN1 that were specific to PTSD and not found in the MDD cohort where no 

significant DMCs were found. These findings reveal unique regulation of ELFN1 in 

subcortical brain of individuals with PTSD and suggest alterations in GABAergic 

signaling that do not appear to be occurring in MDD. 

 

DISCUSSION 

Here we present the most comprehensive DNA methylation study of the 

postmortem PTSD brain.  By using targeted methyl-sequencing, we were able to 

leverage the specificity of a DNA microarray chip with the resolution of sequencing 

technology. We focused on brain regions that are commonly overlooked in epigenetic 

studies of postmortem tissue, specifically the amygdala and hippocampus. Our study 

exhaustively catalogued DNA methylation signals in specific subregions of the 

amygdala and the hippocampus, identifying common and distinct molecular profiles for 

each that provide a powerful and invaluable genomic resource for normal epigenetic 

states and variation in these brain regions. These data are made available via dbGaP. 

Because each region of the brain has a unique cellular composition and 

regulatory landscape that contributes to neurobiological function, studying several brain 

regions simultaneously is essential to translating knowledge of epigenetic modifications 

into insight of molecular risk processes. We were able to cast a wide net to catch PTSD-
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related genomic alterations by examining the epigenomes of six brain subregions 

concurrently: three subnuclei of the amygdala and three subregions of the 

hippocampus. As much as we concentrated on "cross-region" differential methylation – 

differences present in many brain regions – we also found and analyzed a sizable 

number of sites that differed in methylation depending on the region. It is important to 

note that gene expression patterns might not be the same across amygdala and 

hippocampal brain areas, even if differential methylation is shared across them. We will 

likely gain further understanding of the molecular mechanisms underlying the diverse 

susceptibilities of specific brain areas underlying PTSD neuropathology by examining 

the distinctive transcriptional profiles of these brain regions. Nevertheless, a sizeable 

portion (26.9%) of the DNAm differences were enriched inside currently known PTSD 

genetic risk loci, suggesting that some of the DNAm differences revealed here are 

relevant to the etiology of PTSD and particular symptom clusters, such as 

reexperiencing. However, to more firmly identify which of these DNAm alterations are 

causative vs an epiphenomenon in the brains of PTSD patients, more mechanistic 

investigations to better understand the co-occurrence of DNAm and expression 

changes are required. 

Univariate analysis of our dataset identified a handful of genes with significant 

DMCs, a caveat noted in other postmortem methylation studies44. Previous work from 

our group and others have successfully applied “Joint Analysis” to transcriptomic and 

other high dimensional genomic data to identify significant biological signals where 

power maybe lacking30,31,45,46. Therefore, we employed a Markov random field model 
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joint analysis to take advantage of the regional colocalization of sub nuclei of the 

amygdala and subregions of the hippocampus and integrate univariate summary 

statistics from differential methylation analysis with topology information from these 

regions in order to improve our power in detecting biologically significant DMCs. 

Consequently, in our combined-sex analysis we were able to identify 6,641 genes with 

significant DMCs across six brain regions in PTSD and 6,462 in MDD, as opposed to 

five DMC-associated genes using simple univariate analysis. We anticipate expanded 

application of this strategy in future genomic studies.  

To better understand the biological processes underlying the differential 

methylation signals we identified, we performed gene network analysis using Ingenuity 

Pathway Analysis (IPA) from Qiagen47. IPA curates a large database of empirically 

derived biological interactions providing a powerful tool for identifying how genes (in this 

case genes that differentially methylated in PTSD) are coordinated in regulating 

biological process and identifying hub genes with significantly large numbers of 

biological connections to other genes. Our gene network analysis identified several hub 

genes including TCF4 (Transcription Factor 4). TCF4 is a genetic risk gene for PTSD36 

that is involved in transcriptional regulation during neurodevelopment and has long been 

known as a risk gene for schizophrenia48. We observed enrichment for DMCs 

associated with risk loci for PTSD (26.9%) suggesting a genetic regulation of CpG 

methylation in diseased tissue. We observed significant DMCs within the MAD1L1 gene 

that is a significant risk gene for PTSD26, MDD49, Schizophrenia and Bipolar Disorder50 

pointing to a convergent role across neuropsychiatric disorders. However, our results 
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also point to significant changes in methylation patterns in MAD1L1’s neighboring gene 

ELFN1 that appears to be PTSD-specific (Figures 6A and 6B). We have previously 

reported ELFN1 gene expression changes in the frontal cortex of PTSD and MDD 

patients25. To date, no evidence has emerged implicating ELFN1 involvement in these 

disorders stemming from subcortical gene expression dysregulation. The lack of 

significantly methylated CpGs in ELFN1 in our MDD comparison group strongly 

suggests a unique role in the amygdala and hippocampus of PTSD subjects. Further 

studies of GABAergic transmission disruption are thus warranted. 

Many studies have suggested that DNA methylation can be altered by 

antidepressants and promote symptom remission51. We therefore reasoned that 

epigenetic modification of PTSD genes with DMCs could be clinically relevant. 

Therefore, we explored changes in DNA methylation in the peripheral blood of PTSD 

patients treated with the rapid acting antidepressant ketamine (both responders and 

non-responders), with the aim of understanding the potential contribution 

antidepressants might play in the epigenome of PTSD. PTSD patient responders to 

ketamine had significant decreases in methylation in three PTSD hub genes (ELFN1, 

MAD1L1, and WNT5A) compared to those who did not respond to ketamine. Ketamine 

treatment response is based on DNA methylation changes across three time points, 

long after the drug was fully metabolized, suggesting longer term epigenetic changes. 

Previous studies have identified hypomethylation of the MAD1L1 gene associated with 

PTSD among post-combat male military cohorts52. Further investigation into the 

relationship between ketamine, DNA methylation, and PTSD is needed to identify 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.18.23288704doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288704
http://creativecommons.org/licenses/by-nc-nd/4.0/


genome-wide epigenetic changes associated with rapid acting antidepressant 

administration.    

In summary, we present results from the largest DNA methylation study of 

human brain subcortical regions to date. These results support the role of DNAm as a 

critical epigenetic modulator of gene expression in PTSD etiology. We observed sex-

specific changes in the methylome males and females with PTSD. DNAm changes 

aggregated near PTSD risk loci and PTSD risk genes were major hub genes in gene 

networks suggesting a genetic link to downstream molecular functions. Further, we 

identified convergent and divergent epigenetic regulatory mechanisms between PTSD 

and MDD highlighting common pathways and genetic risk links. More generally, we 

illustrate the value of integrating epigenetic data across multiple brain regions to study 

complex psychiatric disorders. 

 

ONLINE METHODS 

Donors and Tissue 

Human postmortem brain tissue samples were obtained from the National Center 

for PTSD Brain Bank (with consent of next of kin) and the University of Pittsburgh 

Tissue Donation Program. Individuals were a mix of European– and African–American 

descent. Males and females were group-matched for age and PMI. Sociodemographic 

and clinical details are listed in Extended Data Figure 1 and include the cause and 

manner of death and comorbidities such as tobacco use and substances of abuse. 

Inclusion criteria for PTSD, MDD and control cases were as follows: PMI < 48h, age 
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range >18 to < 85 years. A total of 171 individuals (61 PTSD: 31 females, 30 males; 57 

MDD: 24 females, 33 males; and 53 healthy controls: 21 females, 32 males) were used 

in this study. The brain tissue was fresh frozen and samples from the basolateral 

nucleus (20 mg), basomedial nucleus (10mg), and central nucleus (10 mg) of the 

amygdala, the subiculum (20 mg), and the dentate gyrus (10 mg) and combined CA 

regions of the hippocampus (10 mg)53 were collected from each postmortem sample. 

Psychiatric history and demographic information were obtained by psychological 

autopsies performed postmortem as well as a review of medical records and toxicology 

reports. Trained clinicians conducted structured interviews with informants (usually the 

next of kin) with knowledge of the deceased individuals. To avoid systematic biases, 

PTSD, MDD and control cases from each source were characterized by the same 

psychological methods. Consensus DSM-IV diagnoses for each subject were made by 

trained clinicians who did not conduct the psychological autopsies. Of the 61 individuals 

in the PTSD cohort, 82% (28 cases) were also comorbid for depression. 

 

Targeted Methylation Enrichment 

Targeted next-generation sequencing of bisulfite converted DNA (targeted Methyl-seq) 

was achieved using the Roche KAPA HyperPrep Kits in combination with the SeqCap 

Epi CpGiant Probes.  A panel of more than 2.1 million long oligonucleotide DNA probes 

(total capture size of 80.5 Mb) were used to interrogate >5.5 million methylation sites 

per sample at single-nucleotide resolution. 
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For each sample, DNA concentration was measured using a ThermoFisher 

Scientific Qubit Fluorometer and 250ng was subsequently fragmented using a Covaris 

E210 Focused-ultrasonicator to generate ~300bp DNA fragments. Fragmented DNA 

samples were then converted into Illumina libraries using the KAPA HyperPrep Kit.  In 

brief, DNA fragments were end repaired, A-tailed and ligated to barcoded Illumina 

adapters. Each library was then bisulfite converted using the EZ DNA Methylation-

Lightning Kit by Zymo Research and amplified by polymerase chain reaction (PCR). 

The bisulfite converted libraries were then hybridized with the SeqCap Epi 

CpGiant Probes in order to enrich the libraries for the > 5.5 million methylation sites 

across the genome. Enriched libraires were subsequently amplified by PCR before 

being pooled for sequencing on an Illumina NovaSeq 6000 Sequencing System.  Three 

pools of 332 samples each were prepared. Each pool was sequenced on a NovaSeq 

6000 S4 flow cell at 150bp paired-end, generating about 9Gb of data per sample. 

 

Blood Methylation Sample Description 

Blood methylation analysis was a sub-study from the ketamine treatment on PTSD 

cohort41. DNA samples for DNA methylation in blood were from a double-blind, 

randomized, controlled trial study that was designed to examine ketamine treatment 

response among veterans and active-duty service members with PTSD. The 

participants (N = 158) were randomly administrated intravenous infusion of either 

placebo or ketamine for eight sessions. Only participants treated with ketamine (N = 97) 

were included in this analysis. Self-reported PTSD Checklist for DSM-5 (PCL-5) was 
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used to assess PTSD symptoms. A slope from four weeks PCL-5 assessments were 

estimated using linear mixed regression model. Median of slope distribution was -1.98. 

Ketamine responder was defined as slope < -1.98 and non-responders was defined as 

slope > -1.98. DNA was extracted from whole blood. A total of 242 samples from three 

timepoints, day 1, 14, and 25 post first administration were used to assess ketamine 

response. Methylation was profiled by Agilent Sure SelectX Methyl-seq library 

preparation. Data processing and quality control followed our previous reported 

method54. Methylation at the sites near or in three genes, MAD1L1, ELFN1, and 

WNT5A, were extracted for association analysis for ketamine treatment response using 

linear mixed regression model, where timepoint was a random effect and covaried with 

age, sex, and self-reported ancestry. 

 

Bioinformatics 

Data Processing & Quality Control 

Raw data was processed using the fastp55 algorithm to trim low-quality bases and 

adapter sequences. Read-pairs that were still at least 200nt in length were mapped to 

the hg38 version of the human genome using the BSMAP algorithm56. Amplification 

artifacts were removed using the MarkDuplicates application from the Picard toolkit.  

The methRatio application from BSMAP was then used to call depth and percent 

methylation at each CpG loci in the human genome. CpG sites with a depth lower than 

10x or greater than 125x within any sample were considered missing in that sample.  

Sites that are not present in at least 90% of the cohort were excluded from subsequent 
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analysis. The median coverage of all sites for each sample were then scaled to the 

maximum median coverage of all samples. CpG sites were further excluded if they 

matched a common SNP as defined by dbSNP57 build 155. Finally, CpG sites that were 

considered invariant were excluded from analysis. Invariance was defined by CpG sites 

whose difference in the 10th percentile from the 90th percentile was less than a 5% 

change in methylation across the whole cohort CpG sites were annotated with the 

nearest gene based on their genomic coordinates in the hg38 version of the human 

genome (Ensembl58 version 96).   

 

Assessment of Technical and Biological Variation 

To assess for the presence of outliers, explore group structure and identify potential 

covariates, PCA was performed using the pcaMethods59 Bioconductor60 package in R. 

Associations between demographic and technical covariates and the first five principal 

components were tested utilizing an ANOVA for categorical covariates and a general 

linear model for numeric covariates. Association tests between group status 

(Control/PTSD/MDD) and covariates were conducted utilizing a general linear model for 

numeric covariates and Fisher’s Exact Test for categorical covariates. All p-values were 

adjusted for multiple testing via the Benjamini-Hochberg procedure (also referred to as 

FDR). 

Each CpG site was annotated for its genic features, CpG features, and chromatin 

features. For genic features, we used the most recent human genome sequence 

datasets generated by UCSC (hg38) that included five genic features including intron, 
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exon, promoter, upstream, and downstream. For CpG features, we also used the most 

updated hg38 reference database61 that included the following features: island, shore, 

shelf, and open sea. For chromatin features, we used the most recent universal 

chromatin state annotation of the genome, that uses a ChromHMM model and unifies 

over 1000 datasets62 that are divided into 16 chromatin features including weak 

enhancers, enhancers, transcribed & enhancer, weak transcription, transcription, exon 

& transcription, bivalent promoter, flanking promoter, quiescent, HET, polycomb 

repressed, acetylation, transcription start site (TSS), DNase, ZNF genes, assembly 

gaps & artifacts. Odds ratios of Bonferroni-corrected significant CpG sites within each 

feature versus excluded were calculated. 

 

Differentially Methylated CpG Sites 

To identify potentially differentially methylated CpG sites (DMCs) between control and 

PTSD and control and MDD individuals, a beta binomial linear regression model with an 

arc-sine link function was performed on each CpG site individually utilizing the DSS29 

Bioconductor package in R. Age, sex, post-mortem interval (PMI), smoking status, 

ancestry, and tissue source were included as co-factors in the model. The models were 

run separately for each brain region and also for males and females jointly and 

individually (sex was excluded as a co-factor in the sex-specific models). To identify 

differentially methylated CpG sites across brain regions, six different sets of beta-

binomial linear regression models were run. For each brain region, the region of interest 

was included as one factor level and the five other brain regions were considered to be 
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the other factor level. SubjectID was included as a covariate in the model and only 

those subjects with data from all six brain regions were included. 

 

Cross-region, Joint Differential Methylation Analysis 

We utilized the nearest neighbor Gibbs measure to model the topology of brain network, 

which subsequently defines a Markov Random Field (MRF) model. We propose and 

implement an efficient algorithm that uses an Empirical Bayes method to maximize the 

pseudo-conditional likelihood for computational efficiency. Under mild regularity 

conditions, Besag63 showed that the maximum pseudo likelihood estimator is consistent 

and more efficient.  

Summary statistics (p-values) from univariate analysis are used for input. The 

dimensions are 1,073,960 CpG sites by six brain regions. We performed filtering to 

remove CpG sites that have at least one missing p-value. 43,167 (about 4%) CpG sites 

were removed. Joint analysis was performed using a Markov Random Field model 

incorporating summary statistics from differential methylation analysis and topology 

information among brain regions. The CpG sites were classified into 64 methylation 

patterns.  

For each CpG site, we assume that there is a known network between six brain 

regions. The network is represented by an undirected graph 𝐺 = (𝒱, ℰ) where 𝒱 =

{1,… , 𝐵} is a set of brain regions, here 𝐵 = 6; ℰ = {< 𝑖, 𝑗 >: 𝑖	and	𝑗	are	directly	connected} 

denotes the set of all edges. For brain region 𝑖 in 𝒱, let 𝑁! = {𝑗:< 𝑖, 𝑗 >	∈ ℰ} denote the 

set of its neighbors, and 𝑑! = |𝑁!| denote the number of its neighbors. The true DM 
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status for each CpG site is unknown, and we let 𝑋! denote the true association status 

where 𝑋! = +1 if brain region 𝑖 is differentially methylated in PTSD, and 𝑋! = −1 if brain 

region 𝑖 is NOT differentially methylated in PTSD. Let 𝑋 = (𝑋", 𝑋#, … , 𝑋$) denote the 

node of each brain region. There is a total of 2$ = 64 unique configurations of the 

network. The objective is to infer the value of 𝑋! based on the brain network topology 

and the observed DM evidence. We adapt the statistical approach proposed by Chen et 

al.64 to improve statistical power to detect differential methylation patterns across brain 

regions. They used connectivity information among genes in a pathway to increase 

statistical power in GWAS analysis. We utilize the nearest neighbor Gibbs measure to 

model that CpG sites in connected brain regions tend to have similar DM status, 

Pr(𝑋|𝜃%) =
1

𝑧(𝜃%)
exp MℎO ℐ&"(𝑋!)

!∈𝒱
+ 𝜏%O R𝑤! +𝑤)Tℐ*"(𝑋!)ℐ*"R𝑋)T

+!,)-	∈ℰ

+ 𝜏"O R𝑤! +𝑤)Tℐ&"(𝑋!)ℐ&"R𝑋)T
+!,)-	∈ℰ

U, 

where 𝜃% = (ℎ, 𝜏%, 𝜏") are hyperparameters; ℐ is an indicator function, i.e., when 𝑋! = +1, 

ℐ&"(𝑋!) = 1; 𝑤! = V𝑑!; and 𝑧(𝜃%) is a normalizing function that is the sum over all 20 

possible configurations. The observed statistical evidence for DM is summarized by p-

values obtained from the univariate analysis when we treat each brain region 

separately. In addition, we consider the transformation that 𝑦! = Φ*" Y1 − 1!
#
Z, where Φ 

is the cumulative distribution function of a standard normal distribution. Under the null 

hypothesis of no association, we assume that 𝑓%(𝑦!) ∼ 𝑁(0, 1). In contrast, where there 

is association, we assume that 𝑓"(𝑦!) ∼ 𝑁(𝜇! , 𝜎!#). Here 𝜇! and 𝜎!# are unknown 

parameters and we put conjugate priors for 𝜇! and 𝜎!#,  
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𝜇!|𝜎!# ∼ 𝑁`�̅�,
𝜎!#

𝑎 c 	and	𝜎!
# ∼ InvGamma h

𝜈
2 ,
𝜈𝑑
2 j, 

where we denote 𝜃" = (�̅�, 𝑎, 𝜈, 𝑑). The marginal density of 𝑦! is  

𝑓"(𝑦!|𝑋! = +1, 𝜃") = 𝜋*
"
#(𝜈𝑑)

2
#

√𝑎
√𝑎 + 1

Γ Y𝜈 + 12 Z

Γ Y𝜈2Z
Y

𝑎
𝑎 + 1

(𝑦! − �̅�)# + 𝜈𝑑Z
*"&2# 	, 

and the corresponding joint marginal density of 𝑦 is 

𝑓(𝑦|𝑋, 𝜃") = n 𝑓%R𝑦)T
3):5"6*"7

n 𝑓"(𝑦!|𝜃")
3):5"6&"7

. 

Therefore, according to Bayes' theorem, the posterior distribution of 𝑋 given 𝑦 is 

proportional to 

Pr(𝑋|𝑦, 𝜃%, 𝜃") ∝ 	𝑓(𝑦|𝑋, 𝜃") Pr(𝑋|𝜃%) 

The hyperparameters can be estimated using the Empirical Bayes method by 

maximizing the pseudo conditional likelihood for computational efficiency, 

ℒ(𝜃%, 𝜃"|𝑋, 𝑦) =n 𝑓"(𝑦!|𝑋! , 𝜃") PrR𝑋!r𝑋8! , 𝜃%T .
0

!6"
 

Under mild regularity conditions, Besag showed that the maximum pseudo likelihood 

estimator is consistent and more efficient. We estimate 𝜃" as follows:  �̅� =

𝑛"*"∑ 𝑦!5!6" , 𝑑 = maxR𝑛"*" ∑ (𝑦! − �̅�)5!6" , 1T , 𝜈 = 10 and 𝑎 = maxR𝑛"*" ∑ (𝑦! − �̅�)5!6" /

	𝑛"*"∑ (𝑦! − �̂�)!6" , 3T. Meanwhile, 𝜃% can be estimated by maximizing ∏ PrR𝑋!r𝑋8! , 𝜃%T .
0
!6"  

After we obtain hyperparameter estimates 𝜃y% and 𝜃y", 𝑋 can be sequentially updated by 

fixing 𝜃y% and 𝜃y". We use the following algorithm to obtain the final DM configuration that 

maximizes the pseudo conditional likelihood: 

1. Randomly set an initial configuration 𝑋(%); 
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2. In the 𝑘;< iteration, obtain Y𝜃y%
(=), 𝜃y"

(=)Z using 𝑋(=*"); 

3. Given Y𝜃y%
(=), 𝜃y"

(=)Z, sequentially update the labels of 𝑋(=) that maximize the 

pseudo conditional likelihood;  

4. Repeat steps 2 and 3 until convergence; 

5. Repeat steps 1 - 4 with different initial configurations;  

6. Obtain the joint methylation pattern.  

 

Gene Set Enrichment Analysis 

To identify pathways and processes governing differences in Control vs. PTSD and 

Control vs. MDD, pathway analysis and GO enrichment analyses were performed.  A p-

value cut-off of 1e-4 was set as a threshold for inclusion of CpG sites in enrichment 

analyses for each model set run; this cutoff allowed for the inclusion of ~100-500 unique 

genes in each enrichment analysis. Canonical Pathways Analysis was run in Ingenuity 

Pathway Analysis (IPA, QIAGEN); due to some genes being represented by more than 

one CpG site, the analysis was conducted using only p-value. In this case, only the 

hypergeometric test for pathway membership overlap is conducted and there is no 

independent test of directionality or corresponding z-score. DMCs in 64 differential 

methylation patterns (Extended Data Figure 2) were annotated to genes and IPA was 

performed on the mapped genes based on their relative genomic locations. Genes not 

mapped to the IPA database were excluded in our pathway analysis.  

 

Gene network analysis 
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We also performed gene network analysis using IPA tools for six single-regional 

differential methylation patterns. Molecules are represented as nodes, and the biological 

relationship between two nodes is represented as an edge. All edges are supported by 

at least one reference that is in the IPA human database. The most significant network 

for each pattern was obtained and then merged using IPA. Pie-circles are used to 

indicate the differential methylation regions for genes that have more than two 

neighboring genes.  

 

GWAS Enrichment of PTSD CpGs 

We analyzed the published 137 genomic loci for PTSD risk corresponding to 147 

associated genes in the NHGRI GWAS catalog. We calculated the proportion of DMCs 

that fall into mapped linkage disequilibrium (LD) regions to determine whether CpGs 

within PTSD risk loci differed in their DNAm effects. Specifically, we compared median 

differential methylation effect sizes between PTSD and normal control donors for each 

brain region. 

 

Sex-specific Analysis 

Sex is an important confounder in psychiatric disorder studies, especially for PTSD. We 

include sex as a confounding variable in the combined-sex differential methylation 

analysis and subsequent downstream analyses. We also performed sex-specific 

comparisons. We used only female samples and male samples to perform female-

specific and male-specific differential methylation analysis, respectively. We then 
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perform downstream analyses including enrichment analysis and gene network analysis 

using these sex-specific results.  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.18.23288704doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288704
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES 

1. Breslau, N. The epidemiology of posttraumatic stress disorder: what is the extent of 
the problem? The Journal of clinical psychiatry 62 Suppl 17, 16–22 (2001). 

2. McLaughlin, K. A. et al. Subthreshold Posttraumatic Stress Disorder in the World 
Health Organization World Mental Health Surveys. Biol Psychiat 77, 375–384 
(2015). 

3. Bromet, E., Sonnega, A. & Kessler, R. C. Risk Factors for DSM-III-R Posttraumatic 
Stress Disorder: Findings from the National Comorbidity Survey. Am J Epidemiol 
147, 353–361 (1998). 

4. Flory, J. D. & Yehuda, R. Comorbidity between post-traumatic stress disorder and 
major depressive disorder: alternative explanations and treatment 
considerations. Dialogues Clin Neurosci 17, 141–150 (2015). 

5. Pietrzak, R. H., Goldstein, R. B., Southwick, S. M. & Grant, B. F. Prevalence and Axis 
I comorbidity of full and partial posttraumatic stress disorder in the United States: 
Results from Wave 2 of the National Epidemiologic Survey on Alcohol and 
Related Conditions. J Anxiety Disord 25, 456–465 (2011). 

6. Moore, L. D., Le, T. & Fan, G. DNA Methylation and Its Basic Function. 
Neuropsychopharmacol 38, 23–38 (2013). 

7. Colantuoni, C. et al. Temporal dynamics and genetic control of transcription in the 
human prefrontal cortex. Nature 478, 519–523 (2011). 

8. Numata, S. et al. DNA Methylation Signatures in Development and Aging of the 
Human Prefrontal Cortex. Am J Hum Genetics 91, 765 (2012). 

9. Grayson, D. R. & Guidotti, A. The Dynamics of DNA Methylation in Schizophrenia 
and Related Psychiatric Disorders. Neuropsychopharmacol 38, 138–166 (2013). 

10. Houtepen, L. C. et al. Genome-wide DNA methylation levels and altered cortisol 
stress reactivity following childhood trauma in humans. Nat Commun 7, 10967 
(2016). 

11. Matosin, N., Cruceanu, C. & Binder, E. B. Preclinical and Clinical Evidence of DNA 
Methylation Changes in Response to Trauma and Chronic Stress. Chronic Stress 
1, 2470547017710764 (2017). 

12. Smith, A. K. et al. Differential immune system DNA methylation and cytokine 
regulation in post‐traumatic stress disorder. Am J Medical Genetics Part B 
Neuropsychiatric Genetics 156, 700–708 (2011). 

13. Mehta, D. et al. Genomewide DNA methylation analysis in combat veterans reveals 
a novel locus for PTSD. Acta Psychiat Scand 136, 493–505 (2017). 

14. Rutten, B. P. F. et al. Longitudinal analyses of the DNA methylome in deployed 
military servicemen identify susceptibility loci for post-traumatic stress disorder. 
Mol Psychiatr 23, 1145–1156 (2018). 

15. Logue, M. W. et al. An epigenome-wide association study of posttraumatic stress 
disorder in US veterans implicates several new DNA methylation loci. Clin 
Epigenetics 12, 46 (2020). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.18.23288704doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288704
http://creativecommons.org/licenses/by-nc-nd/4.0/


16. Charney, D. S., Deutch, A. Y., Krystal, J. H., Southwick, S. M. & Davis, M. 
Psychobiologic Mechanisms of Posttraumatic Stress Disorder. Arch Gen 
Psychiat 50, 294–305 (1993). 

17. LeDoux, J. E. Brain mechanisms of emotion and emotional learning. Curr Opin 
Neurobiol 2, 191–197 (1992). 

18. Davis, M., Falls, W. A., Campeau, S. & Kim, M. Fear-potentiated startle: A neural 
and pharmacological analysis. Behav Brain Res 58, 175–198 (1993). 

19. Davis, M., Gendelman, D., Tischler, M. & Gendelman, P. A primary acoustic startle 
circuit: lesion and stimulation studies. J Neurosci 2, 791–805 (1982). 

20. LaBar, K. S., Gatenby, J. C., Gore, J. C., LeDoux, J. E. & Phelps, E. A. Human 
Amygdala Activation during Conditioned Fear Acquisition and Extinction: a 
Mixed-Trial fMRI Study. Neuron 20, 937–945 (1998). 

21. BREMNER, J. D. et al. Positron emission tomographic imaging of neural correlates 
of a fear acquisition and extinction paradigm in women with childhood sexual-
abuse-related post-traumatic stress disorder. Psychol Med 35, 791–806 (2005). 

22. Lanius, R. A. et al. The Nature of Traumatic Memories: A 4-T fMRI Functional 
Connectivity Analysis. Am J Psychiat 161, 36–44 (2004). 

23. Logue, M. W. et al. Smaller Hippocampal Volume in Posttraumatic Stress Disorder: 
A Multisite ENIGMA-PGC Study: Subcortical Volumetry Results From 
Posttraumatic Stress Disorder Consortia. Biol Psychiat 83, 244–253 (2018). 

24. Rytwinski, N. K., Scur, M. D., Feeny, N. C. & Youngstrom, E. A. The Co‐Occurrence 
of Major Depressive Disorder Among Individuals With Posttraumatic Stress 
Disorder: A Meta‐Analysis. J Trauma Stress 26, 299–309 (2013). 

25. Girgenti, M. J. et al. Transcriptomic organization of the human brain in post-
traumatic stress disorder. Nat Neurosci 24, 24–33 (2021). 

26. Stein, M. B. et al. Genome-wide association analyses of post-traumatic stress 
disorder and its symptom subdomains in the Million Veteran Program. Nat Genet 
53, 174–184 (2021). 

27. Tiveron, M.-C. et al. Zic-Proteins Are Repressors of Dopaminergic Forebrain Fate in 
Mice and C. elegans. J Neurosci 37, 10611–10623 (2017). 

28. Rizzardi, L. F. et al. Neuronal brain region-specific DNA methylation and chromatin 
accessibility are associated with neuropsychiatric trait heritability. Nat Neurosci 
22, 307–316 (2019). 

29. Park, Y. & Wu, H. Differential methylation analysis for BS-seq data under general 
experimental design. Bioinformatics 32, 1446–1453 (2016). 

30. Zhu, B., Li, H., Zhang, L., Chandra, S. S. & Zhao, H. A Markov random field model-
based approach for differentially expressed gene detection from single-cell RNA-
seq data. Brief Bioinform 23, bbac166 (2022). 

31. Xie, Y. et al. Network assisted analysis of de novo variants using protein-protein 
interaction information identified 46 candidate genes for congenital heart disease. 
Plos Genet 18, e1010252 (2022). 

32. Li, H. et al. A Markov random field model for network-based differential expression 
analysis of single-cell RNA-seq data. Bmc Bioinformatics 22, 524 (2021). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.18.23288704doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288704
http://creativecommons.org/licenses/by-nc-nd/4.0/


33. Segman, R. H. et al. Peripheral blood mononuclear cell gene expression profiles 
identify emergent post-traumatic stress disorder among trauma survivors. Mol 
Psychiatr 10, 425–425 (2005). 

34. Breen, M. S. et al. Differential transcriptional response following glucocorticoid 
activation in cultured blood immune cells: a novel approach to PTSD biomarker 
development. Transl Psychiat 9, 201 (2019). 

35. Maddox, S. A. et al. Estrogen-dependent association of HDAC4 with fear in female 
mice and women with PTSD. Mol Psychiatr 23, 658–665 (2018). 

36. Program, D. of V. A. C. S. P. (#575B) and M. V. et al. Genome-wide association 
study of post-traumatic stress disorder reexperiencing symptoms in >165,000 US 
veterans. Nat Neurosci 22, 1394–1401 (2019). 

37. Narvaes, R. F. et al. Involvement of medial prefrontal cortex canonical Wnt/β-
catenin and non-canonical Wnt/Ca2+ signaling pathways in contextual fear 
memory in male rats. Behav Brain Res 430, 113948 (2022). 

38. Maguschak, K. A. & Ressler, K. J. Wnt signaling in amygdala-dependent learning 
and memory. J Neurosci Official J Soc Neurosci 31, 13057–67 (2011). 

39. Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition 
resource. Nucleic Acids Res (2022) doi:10.1093/nar/gkac1010. 

40. Piñero, J. et al. The DisGeNET knowledge platform for disease genomics: 2019 
update. Nucleic Acids Res 48, D845–D855 (2020). 

41. Abdallah, C. G. et al. Dose-related effects of ketamine for antidepressant-resistant 
symptoms of posttraumatic stress disorder in veterans and active duty military: a 
double-blind, randomized, placebo-controlled multi-center clinical trial. 
Neuropsychopharmacol 47, 1574–1581 (2022). 

42. Keshavarzi, S., Sullivan, R. K. P., Ianno, D. J. & Sah, P. Functional Properties and 
Projections of Neurons in the Medial Amygdala. J Neurosci 34, 8699–8715 
(2014). 

43. Jaffe, A. E. et al. Decoding Shared Versus Divergent Transcriptomic Signatures 
Across Cortico-Amygdala Circuitry in PTSD and Depressive Disorders. Am J 
Psychiat 179, 673–686 (2022). 

44. Semick, S. A. et al. Integrated DNA methylation and gene expression profiling 
across multiple brain regions implicate novel genes in Alzheimer’s disease. Acta 
Neuropathol 137, 557–569 (2019). 

45. Lin, Z., Li, M., Sestan, N. & Zhao, H. A Markov random field-based approach for 
joint estimation of differentially expressed genes in mouse transcriptome data. 
Stat Appl Genet Mol 15, 139–150 (2016). 

46. Li, H., Xu, Z., Adams, T., Kaminski, N. & Zhao, H. A Markov Random Field Model 
for Network-based Differential Expression Analysis of Single-cell RNA-seq Data. 
(2020) doi:10.21203/rs.3.rs-116107/v1. 

47. Krämer, A., Green, J., Pollard, J. & Tugendreich, S. Causal analysis approaches in 
Ingenuity Pathway Analysis. Bioinformatics 30, 523–530 (2014). 

48. Stefansson, H. et al. Common variants conferring risk of schizophrenia. Nature 460, 
744–747 (2009). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.18.23288704doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288704
http://creativecommons.org/licenses/by-nc-nd/4.0/


49. Levey, D. F. et al. Bi-ancestral depression GWAS in the Million Veteran Program 
and meta-analysis in >1.2 million individuals highlight new therapeutic directions. 
Nat Neurosci 24, 954–963 (2021). 

50. Ruderfer, D. M. et al. Polygenic dissection of diagnosis and clinical dimensions of 
bipolar disorder and schizophrenia. Mol Psychiatr 19, 1017–1024 (2014). 

51. Webb, L. M., Phillips, K. E., Ho, M. C., Veldic, M. & Blacker, C. J. The Relationship 
between DNA Methylation and Antidepressant Medications: A Systematic 
Review. Int J Mol Sci 21, 826 (2020). 

52. Consortium, P. P. E. et al. Longitudinal epigenome-wide association studies of three 
male military cohorts reveal multiple CpG sites associated with post-traumatic 
stress disorder. Clin Epigenetics 12, 11 (2020). 

53. Pouratian, N. Jurgen K. Mai Milan Majtanik George Paxinos Atlas of the Human 
Brain, 4th Edition 2016 Elsevier/Academic Press 445 pages Price: $192 ISBN: 
9780128028001. World Neurosurg 120, 176 (2018). 

54. Shu, C., Zhang, X., Aouizerat, B. E. & Xu, K. Comparison of methylation capture 
sequencing and Infinium MethylationEPIC array in peripheral blood mononuclear 
cells. Epigenet Chromatin 13, 51 (2020). 

55. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ 
preprocessor. Bioinformatics 34, i884–i890 (2018). 

56. Xi, Y. & Li, W. BSMAP: whole genome bisulfite sequence MAPping program. Bmc 
Bioinformatics 10, 232 (2009). 

57. Sherry, S. T., Ward, M. & Sirotkin, K. dbSNP—Database for Single Nucleotide 
Polymorphisms and Other Classes of Minor Genetic Variation. Genome Res 9, 
677–679 (1999). 

58. Fortin, J.-P. et al. Functional normalization of 450k methylation array data improves 
replication in large cancer studies. Genome Biol 15, 503 (2014). 

59. Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods--a 
bioconductor package providing PCA methods for incomplete data. Bioinform Oxf 
Engl 23, 1164–7 (2007). 

60. Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. 
Nat Methods 12, 115–121 (2015). 

61. Cavalcante, R. G. & Sartor, M. A. annotatr: genomic regions in context. 
Bioinformatics 33, 2381–2383 (2017). 

62. Vu, H. & Ernst, J. Universal annotation of the human genome through integration of 
over a thousand epigenomic datasets. Genome Biol 23, 9 (2022). 

63. Besag, J. Statistical Analysis of Non-Lattice Data. Statistician 24, 179 (1975). 
64. Chen, M., Cho, J. & Zhao, H. Incorporating Biological Pathways via a Markov 

Random Field Model in Genome-Wide Association Studies. Plos Genet 7, 
e1001353 (2011). 

  
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.18.23288704doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288704
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Figures 

Extended Data Figure 1. Postmortem Donor Demographics. Demographics in the 
study stratified by PTSD, MDD, and normal control groups. Sex, age at death, ancestry, 
brain bank, PMI score, smoking status were recorded.  
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Extended Data Figure 2. Joint analysis results for PTSD case-control combined-
sex analysis. (A) Joint analysis was performed using a Markov Random Field model 
incorporating summary statistics from genome-wide differential methylation analysis and 
topology information among brain regions. The CpG sites are classified into 64 
methylation patterns. The complete list of differential methylation patterns for each CpG 
site can be found in Supplementary Table 3. (B) Joint analysis results for PTSD case-
control female analysis. (C) Joint analysis results for PTSD case-control male analysis.  
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Extended Data Figure 3. Brain region joint analysis of PTSD DNAm reveals gene 
set enrichment (A) Canonical pathways for single-regional patterns in PTSD case-
control combined-sex joint analysis. CpG sites in six single-regional differential 
methylation patterns were annotated to genes and Ingenuity Pathway Analysis was 
performed on the mapped genes (genes not mapped to the IPA database were 
excluded in our pathway analysis). The top 10 canonical pathways across six patterns 
are reported. The complete list of canonical pathways for each single-regional patterns 
can be found in Supplementary Table 4. (B) Canonical pathways for multi-regional 
patterns in PTSD case-control combined-sex joint analysis.  
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Extended Data Figure 4. Female-specific Network analysis. Gene network analysis 
was performed using IPA for JMCs in each female-specific differential methylation 
pattern. The most significant gene networks (network score > 30) from the six single-
regional analyses were obtained and merged by integrating the hub genes and their 
nearest neighbors in IPA. Pie-circles were used to indicate the differential methylation 
regions for genes that have more than two neighboring genes. The amygdala regions 
are colored as follows: (BLA: red, CeA: orange, and MeA: yellow) and the three 
hippocampus regions (CA: purple, DG: blue, and Sub: green).  
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Extended Data Figure 5. Male-specific Network analysis. Gene network analysis 
was performed using IPA for JMCs in each male-specific differential methylation 
pattern. The most significant gene networks (network score > 30) from the six single-
regional analyses were obtained and merged by integrating the hub genes and their 
nearest neighbors in IPA. Pie-circles were used to indicate the differential methylation 
regions for genes that have more than two neighboring genes. The amygdala regions 
are colored BLA: red, CeA: orange, and MeA: yellow and the three hippocampus 
regions are colored CA: purple, DG: blue, and Sub: green.  
 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.18.23288704doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288704
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Extended Data Figure 6. PTSD DMC GWAS Enrichment. DMCs were mapped to 
SNPs within the MVP GWAS to test association of DMCs with disease variants in the 
DisGeNet database. A variant-gene-disease network centered on MAD1L1 was 
identified and its risk variants and its connections to major depression and 
cardiovascular disease were identified. 
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Extended Data Figure 7. DNAm changes at interneuron marker genes. Significant 
enrichment of DNAm changes were also found in key drivers identified in the cortical 
interneuron module. Significant differential methylation for several GABAergic markers 
including SLC32A1, GAD1, GAD2, LHX6, PNOC, GABRA1, GABRA1, PVALB, and VIP, 
which were all found to be significant transcriptomic molecular drivers in this network. 
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Extended Data Figure 8. Univariate analysis reveals regional and sex-specific 
differences in CpG methylation between MDD cases and controls (A) Manhattan 
plot for MDD case-control differential methylation using all samples. Differential 
methylation analysis was performed using a Bayesian hierarchical model, covarying for 
age, sex, ancestry, post-mortem interval, data source, and smoking status. The 
association test statistics for each variant tested is reported on the y-axis for 
hypermethylation (above) and hypomethylation (below). The top FDR significant 
markers across six regions are annotated. Labels indicate gene and regions for 
significant DNAm. (B) Manhattan plot for MDD case-control differential methylation 
using female samples. (C) Manhattan plot for MDD case-control differential methylation 
using male samples.  
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Extended Data Figure 9. Joint analysis results for MDD case-control combined-
sex analysis. (A) Joint analysis was performed using a Markov Random Field model 
incorporating summary statistics from genome-wide differential methylation analysis and 
topology information among brain regions. The CpG sites are classified into 64 
methylation patterns. The complete list of differential methylation patterns for each CpG 
site can be found in Supplementary Table 7. (B) Joint analysis results for MDD case-
control female analysis. (C) Joint analysis results for MDD case-control male analysis.  
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Extended Data Figure 10. Comparison of MDD and PTSD DNAm patterns. (A) Bar 
plot comparing number of JMCs discovered between PTSD case-control analysis and 
MDD case-control analysis for each differential methylation pattern. (B) Mutual 
information among different analysis results across brain regions and diagnosis groups 
revel that between disorders, JMCs were most similar between the same regions than 
in any other regional or multi-regional comparison. (C) UpSet plot shows overlap genes 
for JMCs across brain regions and diagnosis groups.   
 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.18.23288704doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288704
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tables 

Table 1. The top 5 FDR significant DMCs in the univariate analysis for combined-sex, 
and two sex-specific analyses.  

 

Supplementary Data Table Legends 
 
Supplementary Table 1. The region-specific top 200 significant DMCs comparing each 
brain region versus other five regions combined.  
 
Supplementary Table 2. The region-specific FDR significant DMCs from PTSD case-
control combined-sex and sex-specific genome-wide differential methylation analyses.  
 
Supplementary Table 3. The significant JMCs for each differential methylation pattern 
from PTSD case-control, combined-sex and sex-specific cross-region joint analyses. 
 
Supplementary Table 4. The gene set enrichment results for combined-sex, female-
specific and male-specific analyses.  
 
Supplementary Table 5. The gene network results for combined-sex, female-specific 
and male-specific analyses.  
 
Supplementary Table 6. Significant DMCs annotated to MAD1L1, ELFN1, and WNT5A 
genes in the ketamine response blood methylation data.   
 
Supplementary Table 7. The region-specific FDR significant DMCs from MDD case-
control combined-sex and sex-specific genome-wide differential methylation analyses.  
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.18.23288704doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288704
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 8. The significant JMCs for each differential methylation pattern 
from MDD case-control combined-sex and sex-specific cross-region joint analyses. 
 
 
 
 
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.18.23288704doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288704
http://creativecommons.org/licenses/by-nc-nd/4.0/

