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Abstract 

The primary risk factor for infection with members of the Klebsiella pneumoniae species complex 

is prior gut colonization, and infection is often caused by the colonizing strain. Despite the importance 

of the gut as a reservoir for infectious Klebsiella, little is known about the association between the gut 

microbiome and infection. To explore this relationship, we undertook a case-control study comparing 

the gut community structure of Klebsiella-colonized intensive care and hematology/oncology patients. 

Cases were Klebsiella-colonized patients infected by their colonizing strain (N = 83). Controls 

were Klebsiella-colonized patients that remained asymptomatic (N = 149). First, we characterized the 

gut community structure of Klebsiella-colonized patients agnostic to case status. Next, we determined 

that gut community data is useful for classifying cases and controls using machine learning models and 

that the gut community structure differed between cases and controls. Klebsiella relative abundance, a 

known risk factor for infection, had the greatest feature importance but other gut microbes were also 

informative. Finally, we show that integration of gut community structure with bacterial genotype or 

clinical variable data enhanced the ability of machine learning models to discriminate cases and 

controls. This study demonstrates that including gut community data with patient- and Klebsiella-

derived biomarkers improves our ability to predict infection in Klebsiella-colonized patients.  
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Importance 

Colonization is generally the first step in pathogenesis for bacteria with pathogenic potential. 

This step provides a unique window for intervention since a given potential pathogen has yet to cause 

damage to its host. Moreover, intervention during the colonization stage may help alleviate the burden 

of therapy failure as antimicrobial resistance rises. Yet, to understand the therapeutic potential of 

interventions that target colonization, we must first understand the biology of colonization and if 

biomarkers at the colonization stage can be used to stratify infection risk. The bacterial 

genus Klebsiella includes many species with varying degrees of pathogenic potential. Members of 

the K. pneumoniae species complex have the highest pathogenic potential. Patients colonized in their 

gut by these bacteria are at higher risk of subsequent infection with their colonizing strain. However, 

we do not understand if other members of the gut microbiota can be used as a biomarker to predict 

infection risk. In this study, we show that the gut microbiota differs between colonized patients that 

develop an infection versus those that do not. Additionally, we show that integrating gut microbiota data 

with patient and bacterial factors improves the ability to predict infections. As we continue to explore 

colonization as an intervention point to prevent infections in individuals colonized by potential 

pathogens, we must develop effective means for predicting and stratifying infection risk. 
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Introduction 

The gut is a vast ecosystem populated by trillions of bacteria, viruses, and microbial eukaryotes. 

The majority of these microbes have beneficial or neutral impacts on host health; however, some are 

potential pathogens. Under specific circumstances, some gut microbes can escape to distant body 

sites, leading to infection. One such group of pathogens is the Klebsiella pneumoniae species complex 

(referred to as “Klebsiella”). This complex contains several potentially pathogenic species of Klebsiella, 

including K. pneumoniae, K. variicola, K. quasipneumoniae, K. quasivariicola sp. nov., and K. 

africana (reviewed in (1)). These bacteria are common causes of bacteremia, pneumonia, and urinary 

tract infection (UTI). The genome content of a given strain of Klebsiella determines its infectious 

potential, where the presence of virulence and fitness factors permits and enhances infectivity, and 

antimicrobial resistance genes complicate infection treatment (2). As of 2019, Klebsiella is the third 

leading global cause of death attributable to, or associated with, antimicrobial resistance (3). More 

research is necessary to understand the Klebsiella pathogenesis. Such research may lead to improved 

diagnosis and treatment, and therein reduce the burden of Klebsiella disease.  

Klebsiella-colonized patients are at increased risk for subsequent infection (4-6). Though few 

patient-centered studies determine the specific origin of infectious Klebsiella, those that have 

demonstrate that Klebsiella-colonized patients are infected with their colonizing strains in about ~80% 

of cases (4, 6, 7). Additionally, gut dominance by Klebsiella is a risk factor for infection in Klebsiella-

colonized patients (8-10). The identification and interrogation of factors that permit, enhance, or restrict 

Klebsiella gut colonization are receiving increased attention due to the clear importance of the gut as a 

reservoir for infectious Klebsiella. Recent laboratory-based studies have identified novel gut fitness 

factors (11-14), microbes that enhance colonization resistance (15, 16), and gut community structures 

that are permissive or restrictive to colonization (11, 17). Despite increased interest, studies aiming to 

understand gut ecology in Klebsiella-colonized patients are comparatively sparse, limiting the 

translatability of laboratory-based findings to real-world settings.  
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Previously, we performed a cohort study of over 1,900 Klebsiella-colonized patients in the 

intensive care and hematology/oncology units (7). The goal of this study was to identify patient variables 

associated with infection and two corresponding nested case-control studies were performed to assess 

the role of gut dominance in Klebsiella infection (8) and to rigorously identify infection-associated 

Klebsiella factors (18). Here, we aimed to leverage this case-control cohort of patients to understand 

the gut ecology of Klebsiella-colonized patients and determine if microbiome-derived biomarkers can 

improve infection prediction in Klebsiella-colonized patients.  
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Results 

Description of study population  

238 patients were originally selected from a cohort of 1,978 Klebsiella colonized intensive care 

and hematology/oncology patients (7) for a nested case-control study to assess the role of gut 

colonization density as a risk factor for Klebsiella infection (8). Cases were defined as colonized patients 

who met clinical criteria for infection (see prior publications for detailed criteria and physician case 

review process) with a Klebsiella strain that was detectable in the gut prior to infection. Controls had 

rectal colonization but no subsequent, symptomatic clinical infection. Cases were matched 1:2 with 

asymptomatically colonized controls based on rectal swab collection date, age, and sex. For the present 

study, we selected 232 patients (Table 1) from the previous study based on inclusion in our previous 

comparative genomics study and available DNA extracted from the rectal swab most proximal to the 

infection (18). The most common infection type was bacteremia, followed by UTI and respiratory 

infection (Table 1). 16S rRNA sequencing was performed using the method described by Kozich et al. 

2013 (19).  

 

Table 1. Select patient demographics 

VARIABLE 
 

CASE  
(N = 83) 

CONTROL  
(N = 149) P-VALUE* 

AGE mean ± SD 60 ± 13 59 ± 12 0.556 
SEX male 43 (51.8%) 76 (51.0%) 1.000  

female 40 (48.2%) 71 (47.7%)  
 missing 0 (0%) 2 (1.3%)  
RACE white 70 (84.3%) 119 (79.9%) 0.592 
 nonwhite 13 (15.7%) 28 (18.8%)  
 missing 0 (0%) 2 (1.3%)  
INFECTION SITE blood 41 (49.4%) 

 
  

respiratory 19 (22.9%) 
 

  
urine 23 (27.7%) 

 
 

*age: student’s t test; sex/race: fisher’s exact test 

Description of the gut community of Klebsiella-colonized patients 
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 First, we aimed to explore the gut community structure of Klebsiella-colonized patients agnostic 

of case status. Klebsiella, Enterococcus, Escherichia/Shigella, Finegoldia, and Peptoniphilus were the 

dominant gut microbiota in this study population (Figure 1A). Probabilistic modelling using Dirichlet 

multinomial mixtures (20) was used to determine if metacommunities exist in our study population. The 

optimal number of community clusters was two (Laplace approximation = 194340.97, Table S1), though 

one and three-community clusters yielded similar fits (one-community Laplace approximation = 

194864.80, three-community Laplace approximation = 200401.69, Table S1). Case status was not 

associated with metacommunity structure in either the two (partition 1 v partition 2 odds ratio [95% CI] 

= 1.35 [0.789-2.32]) or three-community models (partition 1 v partition 2 odds ratio [95% CI] = 1.11 

[0.505-2.46], partition 1 v partition 3 odds ratio [95% CI] = 0.921 [0.414-2.05], partition 2 v partition 3 

odds ratio [95% CI] = 0.826 [0.46-1.48]). Principle coordinates analysis revealed that Klebsiella and 

Enterococcus were strong components determining metacommunity structure in both two (Partition 1, 

Figure 1B) and three-partition communities (Partition 3, Figure 1C), whereas other dominant gut 

microbiota influence different metacommunities (Figures 1B, C). Alpha-diversity analysis of these 

metacommunities revealed that Klebsiella influenced partitions (Partition 1 and Partition 3 in two and 

three partition communities, respectively) were significantly less rich (Chao), even (Shannon) and 

diverse (Inverse Simpson) than other metacommunities (Figures 1D-I). Interestingly, Partition 1 of the 

three-partition community clustering, which is heavily influenced by Escherichia/Shigella (Figure 1C), 

was significantly less rich, even, and diverse than Partition 2 (Figure 1G-I), which is influenced by 

Finegoldia and Peptoniphilus (Figure 1C). Given that Finegoldia and Peptoniphilus are strict anaerobes 

and Klebsiella, Enterococcus, and Escherichia/Shigella are facultative anaerobes, it may be the case 

that alpha diversity is driven by the presence or absence of anaerobic bacteria in the gut in this patient 

population. Collectively, these data indicate that Klebsiella is the dominant gut microbe in this 

population of Klebsiella-colonized patients, and is associated with reduced richness, evenness, and 

diversity. 
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Figure 1. Klebsiella is the dominant gut microbe in Klebsiella-colonized patients 

(A) Top five operational taxonomic units (OTUs) in Klebsiella-colonized patients (N = 232). Principal 

coordinates analysis with overlayed biplots of OTUs of two (B) and three-partition (C) community 

clustering using Dirichlet multinomial mixtures.  Analysis of the Chao, Shannon, and Inverse Simpson 

alpha-diversity indices in two (D-F) and three-partition community clustering (G-I, boxplot indicates 
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median with interquartile range, p indicates student’s t test p-value after Benjamini & Hochberg 

correction for multiple comparisons). For all panels, each datapoint indicates one patient.   

 

Determination of optimal taxonomic level to classify cases and controls 

 Out next goal was to determine the ability of microbiota composition to discriminate cases from 

controls. To this end, we used supervised machine learning models to classify case status, using 

different taxonomic levels as input data. Due to their high interpretability compared to other methods, 

we chose to use regularized logistic regression. To ensure optimal model performance, training was 

iterated across several combinations of hyperparameters (as in (21)), wherein the hyperparameter 

combination that yielded peak training performance was used for the final model (Figure S1). This 

process was repeated for phylum, class, order, family, genus, OTU, and amplicon sequence variant 

(ASV) level-data. ASVs provided the most robust discrimination of cases and controls (median area 

under the receiver-operator characteristic curve [AUC] = 0.68), followed by OTU (median AUC = 0.64) 

and phylum (median AUC = 0.63, Figure 2A). Additionally, models using ASVs as their input variables 

were most likely to yield an AUC > 0.5, indicating that classification of cases and controls was better 

than random chance. We found similar outcomes using the random forest method (Figure S2A), 

indicating that our results are robust across models that differ in method and interpretability. As we 

observed optimal model performance with ASVs, we decided to use the taxonomic level for the further 

study analyses. 
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Figure 2. Amplicon sequence variants best discriminate cases and controls 

(A) Regularized logistic regression model performance, as measured by area under the receiver-

operator characteristic curve (AUC), on 100 test data sets consisting of a random subset of samples 

(80%) to predict case status in Klebsiella colonized patients (N = 232) using different taxonomical data 

inputs. Black circles indicate median AUC values, and black lines indicate standard deviation (p 

indicates Tukey multiple pairwise-comparison ANOVA p-value following one way). (B) Top model 
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features for regularized logistic regression models using amplicon sequence variants (ASVs) as input 

data, corresponding to panel A, “ASVs.” Circles indicate mean feature importance and lines indicate 

interquartile range. Feature importance values in red and black indicate a regression weight that are 

weighted toward cases and controls, respectively. (C) Regularized logistic regression model 

performance on test data sets for 100 seeds predicting case status in Klebsiella colonized patients 

using all ASVs (All ASVs) or excluding ASVs ASV000001, ASV000021, and ASV000195 (-Top ASVs, 

p indicates student’s t test p-value). Black circles indicate median AUC values, and black lines indicate 

standard deviation. For panels A and C, each datapoint indicates one test data set.    

 

 Consistent with previous observations that gut dominance by Klebsiella is a risk factor for 

infection in colonized patients (8-10), ASV000001 Klebsiella was the most important feature in our 

regularized logistic regression models and was weighted toward cases (Figure 2B). Interestingly, two 

other ASVs, ASV000021 Akkermansia, and ASV000195 Anaerostipes, were also highly important 

features weighted toward cases (Figure 2B). This suggests that other members of the gut microbiota 

have discriminatory power for case status, rather than discriminatory power being limited to Klebsiella. 

Similar results were yielded in our random forest models (Figure S2A). Given the relatively high feature 

importance of these ASVs compared to other important features (Figure 2B), we hypothesized that 

removal of the ASVs may result in a model with no ability to classify cases and controls (AUC ≤ 0.5). 

Removal of these ASVs significantly reduced model performance (Figure 2C); however, most models 

were still able to classify cases and controls better than chance (AUC > 0.5). This indicates that peak 

model performance relies on inclusion of many or all ASVs, rather than a small subset of ASVs.  

 

Case and control gut community profiles differ 

 Given that cases and controls can be distinguished based on ASVs using machine learning, we 

next wanted to determine if the gut community profile of cases and controls differ. To this end, Yue and 

Clayton θ dissimilarity index was calculated for each patient and used to assess the difference in beta-
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diversity between cases and controls. Visualization of distances using principal coordinates analysis 

revealed subtly different clustering of these groups (Figure 3A). Though variance between the two 

groups was highly dimensional, as indicated by the low axis loadings (Figure 3A), the gut microbiota of 

cases and controls was significantly different (adjusted p-value = 1 x 10-4, AMOVA). Only community 

evenness (Shannon) was significantly different between cases and controls, though community 

richness and diversity displayed similar trends (Figure 3B-D). Interestingly, the ASVs that were highly 

important for classifying cases and controls using machine learning models (Figures 2B, S2B) partially 

differed from those enriched in either cases or controls. Linear discriminant analysis revealed that, as 

expected, ASV000001 Klebsiella was significantly enriched in cases, though unlike what was observed 

in the machine learning models, ASV000002 Enterococcus was also enriched in cases and ASV000012 

Streptococcus was enriched in controls (Figure 3E-F). Similar results were yielded using OTUs instead 

of ASVs to differentiate cases and controls (Figure S3). Network analysis revealed that the gut 

community of controls was more connected than the gut community of cases (Figure S4), suggesting 

a more stable gut community. Collectively, these data indicate that significant differences, not limited 

to Klebsiella relative abundance, exist between cases and controls that underpin the ability to 

discriminate these two groups based on gut community profile. 

 Previously, we were able to detect the presence of multiple Klebsiella strains in colonized 

patients (18). A deeper exploration of ASVs revealed 30 ASVs that were classified as Klebsiella, and 

another 10,470 ASVs that were only classified to the level of Enterobacteriaceae. The majority (83.1%, 

193/232) of patients had only one detectable Klebsiella ASV; however, 9.9% (23/323) of patients had 

multiple Klebsiella ASVs and 6.9% (16/232) had no Klebsiella ASVs (Figure S5A) despite 

microbiological confirmation of Klebsiella colonization. Interestingly, we detected ASV000019 

Klebsiella in several controls, though no cases (Figure S5B). Though ASVs based on the V4 region of 

the 16S rRNA gene do not provide high-confidence species-level resolution, it was notable that the 

ASV000019 sequence primarily aligned to members of the K. oxytoca complex (22), whereas the 

ASV000001 sequence primarily aligned to members of the K. pneumoniae complex (Table S2). 
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Interestingly, ASV000001 is absent from patients colonized by ASV000019 (Figure S5C). Collectively, 

these results suggest that strain-level measurement of cocolonization may be possible through targeted 

genomic sequencing to understand colonization dynamics. More sophisticated sequencing techniques 

will need to be developed to assay colonization dynamics using discarded rectal swabs. 
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Figure 3. Cases and controls have distinct gut community profiles based on ASVs 
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(A) Principal coordinates analysis with overlayed biplots of specific ASVs. Analysis 

of molecular variance (AMOVA) based on the Yue and Clayton θ dissimilarity index was used to assess 

the difference in beta-diversity between cases (N = 83) and controls (N = 149). Analysis of the (B) 

Chao, (C) Shannon, and (D) Inverse Simpson alpha-diversity indices between cases (N = 83) and 

controls (N = 149, boxplot indicates median with interquartile range, p indicates student’s t test p-value). 

(E) Linear discriminant analysis (LDA) effect size was used to identify differentially abundant (p-value 

< 0.05) ASVs between cases (N = 83) and controls (N = 149). (F) Summary of relative abundances of 

ASVs that were differentially abundant (Figure 3E) between cases (N = 83) and controls (N = 149) or 

highly important features for classification of cases and controls using regularized logistic regression 

shown in Figure 2B (boxplot indicates median with interquartile range). For all panels, each datapoint 

indicates one patient.   

 

Inclusion of gut microbiota data enhances discrimination of cases and controls 

 Finally, we hypothesized that inclusion of 16S rRNA gene sequencing data with clinical factors 

and Klebsiella genotype would enhance the ability of machine learning models to discriminate cases 

and controls. To test this hypothesis, we permutated ASVs with patient factors and Klebsiella genotype 

in our regularized logistic regression models. 84 clinical factors, including several laboratory values, 

antibiotic exposure, and comorbidities were included (Table S3) and the 27 infection-associated genes 

identified in our previous comparative genomics study were included as Klebsiella genotype (18). 

Clinical data were missing for two patients, so these patients were excluded from all analyses. Use of 

clinical factors as the sole input variables led to poor model performance (Figure 4): 14/100 of 

regularized logistic regression models had an AUC ≤ 0.5, with a median AUC = 0.6. Addition of ASVs 

to clinical factors enhanced median model performance (Figure 4, median AUC = 0.64). The lack of 

predictive ability of the clinical factors, especially antimicrobial exposure is somewhat surprising, as gut 

dominance is a known risk factor for infection (8-10), and disruption of the gut microbiota, such as what 

occurs with antibiotic exposure, leads to dominance in experimental gut colonization models (11, 13). 
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Therefore, one may expect that antibiotic exposure would be an important feature for discriminating 

cases and controls in this study. Rather, exposure to most antibiotics was not amongst the most 

important features in regularized logistic regression models using clinical factors as the input variables 

(Figure S6A) and the effects of antibiotic exposure on model performance was negligible (Figure S6B). 

This included a variable for “high-risk” antibiotic exposure, which is a composite variable that includes 

β-lactam/β-lactamase inhibitor combinations, carbapenems, third- and fourth-generation 

cephalosporins, fluoroquinolones, clindamycin, and oral vancomycin based on their impact on 

indigenous gut microbiota (23). The only antibiotic present amongst the most important features was 

aminoglycoside exposure, and its effects on model performance was subtle (Figure S6A). The 

importance of antibiotics was further reduced when ASVs were included (Figure S6C-D).  

 

 

Figure 4. Inclusion of ASVs enhances the ability to discriminate cases from controls 

Regularized logistic regression model performance, as measured by area under the receiver-operator 

characteristic curve (AUC), on test data sets for 100 seeds predicting case status in Klebsiella colonized 

patients (N = 230) using combinations of clinical variables, Klebsiella genotype, and ASVs. Black circles 
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indicate median AUC values, black lines indicate standard deviation, and p indicates Tukey multiple 

pairwise-comparison ANOVA p-value following one way. 

 

Use of Klebsiella genotype as the sole input variables led to a median model performance that 

was greater than that of clinical factors alone (Figure 4, median AUC = 0.67). This finding is expected, 

as the 27 genes used as input variables are known to be associated with cases in our previous study 

(18), whereas most clinical factors were not associated with case status in our original cohort study (7). 

Interestingly, addition of ASVs to Klebsiella genotype enhanced model performance, leading to a 

median model performance exceeding 0.7 (Figure 4, median AUC = 0.73). Finally, integration of all 

three datasets led to the highest median model performance, though performance was similar to 

models using only ASVs and Klebsiella genotype (Figure 4, median AUC = 0.74). Similar results were 

yielded using random forest; however, inclusion of clinical factors with ASVs and Klebsiella genotype 

reduced median model performance (Figure S7, median AUC = 0.74) compared to only ASVs and 

Klebsiella genotype (Figure S7, median AUC = 0.77). In total, these data indicate that inclusion of ASVs 

with Klebsiella genotype leads to peak model performance. This suggests that the gut community profile 

patients colonized by Klebsiella can be combined with other infection-associated variables to 

discriminate, and potentially predict, infection in these patients with reasonable confidence.  
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Discussion 

 In this study, we have described the gut community of Klebsiella-colonized patients and 

demonstrated that the gut community differs between patients that remain asymptomatic (controls) and 

those that acquire a subsequent symptomatic infection with their colonizing strain (cases). In machine 

learning models based on this data,  Klebsiella relative abundance had the greatest feature importance 

other gut microbes were also informative. Interestingly, clinical factors such as antibiotic exposure 

poorly discriminated cases and controls, whereas a combination of gut community data and Klebsiella 

genotype classified cases and controls with a reasonable degree of accuracy (AUC > 0.7). Collectively, 

this study demonstrates that the gut community of Klebsiella-colonized patients can be integrated with 

other biomarkers to assess infection risk.   

 An important facet of this study population compared to other study populations is the diversity 

of colonizing Klebsiella strains. Often, studies aimed at describing the gut microbiota of Klebsiella-

colonized patients capture patients colonized with highly clonal multi-drug resistant (MDR) Klebsiella 

strains (24, 25). In contrast, >100 unique sequence types of Klebsiella were identified in this study 

population, predominantly from non-MDR lineages (7). The attention given to MDR lineages is of course 

warranted; however, the majority of Klebsiella infections are caused by non-MDR lineages (26) and 

studies have demonstrated that the bulk of colonizing Klebsiella strains are diverse (27). It is likely that 

the gut microbiota, clinical, and genetic factors that increase infection risk in patients colonized by MDR 

Klebsiella differ from those colonized by non-MDR Klebsiella. Additionally, the Klebsiella in the study 

population was predominantly non-hypervirulent strains (e.g., “classical” Klebsiella). It is also likely that 

the gut microbiota, clinical, and genetic factors differ in individuals colonized by hypervirulent Klebsiella 

differ from those colonized by non-hypervirulent Klebsiella. For example, we identified a Klebsiella 

factor canonically associated with hypervirulence, the ter operon, as a microbiome-dependent gut 

fitness factor (11). This locus was associated with infection in a hospital-wide patient cohort (28) but 

not in this cohort of intensive care and hematology/oncology patients (7). This highlights the importance 
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of studying all lineages with pathogenic potential to enable accurate risk assessment in colonized 

patients to reduce the burden of Klebsiella disease. 

 Many microbiome studies classify individuals at risk for or experiencing disease as being in a 

state of dysbiosis; however, this imprecise term often lacks the context of the definition of a healthy 

microbiome. This is critical for establishing a causal link between the gut microbiome and disease, 

especially as the microbiome gradually shifts with age, environment, diet, healthcare exposure, and yet 

undiscovered variables (reviewed in (29)). The goal of the present study is not to indicate that the gut 

microbiome of Klebsiella-colonized patients is in a state of health or dysbiosis. Rather, the goal is to 

identify biomarkers that predict infection in colonized patients. Ideally, the observations here will be 

tested experimentally to explore a causal role in disease. For example, Akkermansia (ASV000021) is 

currently being considered as a probiotic therapy due to its positive impacts on health (30-32). Yet, in 

this study, Akkermansia is important for model performance (Figure 2B) but is relatively low abundance 

and not enriched in cases (Figure 3C-D). This finding highlights differences between machine leaning 

and classic linear discriminant analysis approaches for identifying sequences associated with specific 

communities. It may be the case that the ASVs identified through linear discriminant analysis have 

occult interactions with one another and/or other ASVs that explain the differential outcomes of these 

approaches. Similarly, laboratory experiments have demonstrated that members of the K. oxytoca 

complex can reduce K. pneumoniae gut colonization (15). Here we observed that the ASV that most 

likely represents the majority of the K. pneumoniae complex (ASV000001) is absent in patients 

colonized by the ASV that most likely represents the majority of the K. oxytoca complex (ASV000019, 

Figure S5C). Despite a potential probiotic effect against K. pneumoniae, K. oxytoca is a pathogen that 

is often highly antimicrobial resistant (reviewed in (22)). Therefore, while microbial competition with K. 

pneumoniae may explain this finding, characterizing K. oxytoca as a member of a healthy or dysbiotic 

gut microbiome remains in question. Further exploration of the biomarkers identified in this study is 

necessary to determine their importance in influencing infection risk in Klebsiella-colonized patients 

and therein define dysbiosis and its role in infection risk in this patient population.  
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The variables that are most important in classifying cases and controls likely differ between 

pathogens and patient populations.  For example, clinical biomarkers do not appear to be critical for 

discriminating case status in this study (Figure 4). This is in contrast to studies performed at the same 

clinical site leveraging electronic health records to stratify the risk of complicated Clostridium 

(Clostridioides) difficile infection (33), suggesting a disease-specific effect where the utility of these 

clinical data in making predictions varies across prediction tasks. Similarly, the finding that ASVs yield 

the optimal taxonomical resolution for classifying case status (Figure 2) is interesting. A recent machine 

learning study determined that OTUs were the optimal taxonomical level for predicting colorectal cancer 

(34). The preference for use of ASVs or OTUs in microbiome studies remains contested (35, 36); 

however, our study supports the premise that optimal taxonomical resolution is highly dependent on 

the patient population and outcomes of interest and does not necessarily favor OTUs or ASVs. Ideally, 

clinical studies interrogating the role of the microbiome in disease would report both OTU and ASV data 

when using 16S rRNA gene sequencing, such that we gain a greater understanding of how taxonomical 

resolution influences the stratification of patient risk in conjunction with other potential risk factors. 

Though this study adds to our understanding of the gut microbiome of Klebsiella-colonized 

patients, it is not without its limitations. First, we used a case-control design for this study to carefully 

control for the influence of known and unknown patient factors. However, this study design leads to an 

overrepresentation of infection in the study population and the predictive modeling metrics should be 

interpreted only in the context of this study, since in the general population we would expect a much 

lower infection risk, such as the 4.3% attack rate in our large cohort study from which this nested case-

control study was derived (7). Ideally, future studies assessing the role of the microbiome as a risk 

factor for Klebsiella infection will accurately represent the true attack rate while capturing a large enough 

number of patients, both colonized by Klebsiella and not, to maintain suitable study power. Therefore, 

hypotheses generated in small- and medium-sized studies can be rigorously tested in a study 

population that reflects the general population. Second, this study is limited in its ability to make 

functional conclusions about the microbiome due to the use of 16S rRNA gene sequencing instead of 
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metagenomics or other -omics approaches. Unfortunately, many -omics approaches remain cost 

restrictive and lack easily testable hypotheses. This and similar studies will aid in the generation of 

hypotheses that can be tested using these approaches in the future. Finally, the use of machine learning 

models in this study is a useful means of determining the discriminatory ability of a large set of variables 

but is limited in its interpretability. Clinically actionable risk stratification models should be comprised of 

a small set of easily observable variables. In our previous studies, we developed practical tools for 

identifying biomarkers in Klebsiella-colonized patients including measurement of Klebsiella relative 

abundance and detection of infection-associated genes by PCR (7, 8). We hope that additional practical 

tools to assess the role of the microbiome in infection risk in Klebsiella-colonized patients will be 

developed and integrated with our previously developed tools.  

The addition of this study to our collection of studies assessing patient factors, gut dominance, 

and Klebsiella genotype (7, 8, 18) represents one of the most comprehensive explorations of infection 

risk in a cohort of Klebsiella-colonized patients. Ultimately, this study provides a foundational framework 

for the development of integrated, actionable models for predicting and stratifying infection risk in 

Klebsiella-colonized patients. 
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Methods 

Ethics statement and study subject selection 

Patient enrollment and sample collection at the University of Michigan were approved by and 

performed per the Institutional Review Boards (IRB) of the University of Michigan Medical School (Study 

number HUM00123033). This study was performed with a waiver of informed consent since the 

research involves no more than minimal risk to the subjects, could not practicably be carried out without 

the waiver, and uses discarded samples. Cohort identification, enrollment, clinical data extraction, chart 

review, case definitions, and case-control matching criteria are described in detail elsewhere (7, 8, 18). 

Study subjects were selected based on matching criteria, the availability of rectal swab DNA (8), and 

whole-genome sequencing data corresponding to the colonizing Klebsiella strain (18). All infectious 

Klebsiella isolates were concordant with the colonizing strain in the same patients based on Sanger 

sequencing of the wzi locus (18).   

 

16S rRNA gene sequencing and data processing 

 DNA was previously extracted from patient rectal swabs (8) using the MagAttract 

PowerMicrobiome DNA/RNA Kit (Qiagen) and an epMotion 5075 liquid handling system. Standard 

PCRs used 1, 2, or 7 μL of undiluted DNA and touchdown PCR used 7 μL of undiluted DNA to amplify 

the V4 region of the 16S rRNA gene. Sequencing was performed as previously described (37). 16S 

rRNA gene sequences were processed with mothur (v. 1.48.0) (19, 38). The sequencing error rate was 

assessed using a predefined mock community and estimated to be 0.033%. Sequences were aligned 

to the SILVA reference alignment, release 132 (39) and binned into OTUs using the OptiClust method 

(40) based on 97% sequence similarity or kept as unique sequences for ASVs. Taxonomic composition 

was assigned by classifying sequences within mothur using a modified version of the Ribosomal 

Database Project training set, version 18 (41, 42). Data processing was performed using the Great 
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Lakes High-Performance Computing Cluster at the University of Michigan, Ann Arbor or the Carbonate 

large-memory computer cluster at Indiana University.  

 

Data analysis 

 Data analysis was carried out in RStudio 2021.09.0+351 "Ghost Orchid" Release for macOS or 

in R, v. 4.2.0. R was used instead of RStudio when the analysis was being performed on The Great 

Lakes High-Performance Computing Cluster at the University of Michigan, Ann Arbor or the Carbonate 

large-memory computer cluster at Indiana University. For all analyses except network analysis, sample 

read counts were rarefied to the lowest-abundance sample (4,438 reads). Alpha- and beta-diversity, 

principal coordinates analysis, and community typing were performed using mothur. θYC was used as 

the distance metric for principal coordinates analysis. Differences in community structure were 

assessed by AMOVA from the vegan package, v. 2.6-2 (43). Differences in alpha-diversity indices were 

assessed by student’s t-test using the stats package, v. 3.6.2. Assessment of differentially enriched 

OTUs and ASVs was performed with linear discriminant analysis effect size analysis. Supervised 

machine learning was performed using mikropml, v. 1.4.0 (44). First, continuous data were split into 

quartiles, then input data was preprocessed in mikropml using the default settings. Supervised machine 

learning was performed using case status as the outcome. Input data was split 80:20 into train and test 

groups. An optimal model was trained using 100X 5-fold cross-validation and model performance was 

evaluated using the test data. For regularized logistic regression, hyperparameter selection was semi-

automated. Each model was trained with alpha values ranging from 0 to 1, iterated in steps of 0.1, 

permutated with lambda values ranging from 10-4 to 101, iterated in steps of 3 between each log (e.g., 

10-4, 2.5x10-4, 5x10-4, 7.5x10-4, 10-3, 2.5x10-3…101). Trained model performance was assessed by 

area under the receiver-operator characteristic curve, and hyperparameters that yielded the best 

performance were selected to evaluate model performance using the test data. For random forest 

models, the default hyperparameters were used. For each method, this process was parallelized 100 

times, using 100 different seeds to determine the train:test data split, and feature importance and weight 
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(only regularized logistic regression) was determined for all variables. Network analysis was performed 

using NetCoMi v. 1.1.0 (45). Networks were constructed using the compositionally aware correlation 

estimators, SparCC (46), and networks were compared by permutation test with 100 permutations. For 

all analyses, a p-value ≤ 0.05 after multiple comparison adjustment was considered statistically 

significant. Data were visualized using ggplot2, v.4.1.2 (47).  

 

Data and code availability 

 The sequencing data generated in this study have been deposited in the Sequence Read 

Archive (SRA) database under accession PRJNA789565. Deidentified human data are available under 

restricted access and can be obtained from MAB within 1 year upon request, pending approval from 

the University of Michigan Institutional Review Board. All other source data and code are available at 

https://github.com/jayvorn. 
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Supplementary Information 

 

Figure S1. Example of regularized logistic regression hyperparameter selection. 

Regularized logistic regression trained model performance as measured by area under the receiver-

operator characteristic curve (AUC) for 100 seeds. ASVs were used as input data. Each box contains 

the mean AUC values for each hyperparameter combination. Future model testing was performed using 

the hyperparameter combination that yielded the peak AUC for a given seed.   
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Figure S2. Random forest model performance  

(A) Random forest model performance, as measured by area under the receiver-operator characteristic 

curve (AUC), on test data sets for 100 seeds predicting case status in Klebsiella colonized patients (N 

= 232). Black circles indicate median AUC values, black lines indicate standard deviation, and p 

indicates Tukey multiple pairwise-comparison ANOVA p-value following one way. (B) Top model 

features using amplicon sequence variants (ASVs) as input data, corresponding to panel A, “ASVs.” 

Circles indicate mean feature importance and lines indicate interquartile range.  
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Figure S3. Cases and controls have distinct gut community profiles based on OTUs 

(A) Principal coordinates analysis with overlayed biplots of specific OTUs. Analysis 

of molecular variance (AMOVA) based on the Yue and Clayton θ dissimilarity index was used to assess 

the difference in beta-diversity between cases (N = 83) and controls (N = 149).  (B) Analysis of the 

Chao, Shannon, and Inverse Simpson alpha-diversity indices between cases (N = 83) and controls (N 

= 149, boxplot indicates median with interquartile range, p indicates student’s t test p-value). (C) Linear 

discriminant analysis (LDA) effect size was used to identify differentially abundant OTUs between cases 

(N = 83) and controls (N = 149). (D) Summary of relative abundances of OTUs that were differentially 

abundant between cases (N = 83) and controls (N = 149, boxplot indicates median with interquartile 

range). For all panels, each datapoint indicates one patient.   
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Figure S4. Cases and controls have distinct gut community networks 

(A) Network plots of case and control gut communities. Only ASVs with 1,000 total reads were included 

in network construction, and only nodes with significant correlations (student’s t-test Benjamini & 

Hochberg corrected p-value < 0.05) in either group are shown. Each node is a single ASV, scaled to 

the total read count. Only nodes Black edges are positive correlations, and red edges are negative 

correlations. Node colors indicate distinct clusters. (B) Permutation test (N = 100 permutations) results 

comparing case and control network properties.  

 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.23288742doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288742


 

Figure S5. Multiple Klebsiella ASVs are present in Klebsiella-colonized patients 

(A) Count of the number of Klebsiella ASVs in each patient (N = 232). (B) Summary of relative 

abundances of Klebsiella ASVs with a sequence count >1 stratified by cases (N = 83) and controls (N 

= 149, boxplot indicates median with interquartile range). (C) Summary of relative abundance of 

ASV000001 when ASV000019 is absent (-ASV000019, N = 223) or present (+ASV000019, N = 9, 

boxplot indicates median with interquartile range). For panels B and C, each datapoint indicates one 

patient.   
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Figure S6. Antibiotic exposure is not important for classifying cases and controls 

(A) Top model features for regularized logistic regression models using clinical variables as input data, 

corresponding to Figure 4 “clinical.”  (B) Antibiotic exposure features for regularized logistic regression 

models using clinical variables as input data, corresponding to Figure 4 “clinical.” (C) Top model 

features for regularized logistic regression models using clinical variables and ASVs as input data, 

corresponding to Figure 4 “ASV+clinical.”  (D) Antibiotic exposure features for regularized logistic 

regression models using clinical variables as input data, corresponding to Figure 4 “ASV+clinical.” For 

all panels, circles indicate mean feature importance and lines indicate interquartile range. Feature 

importance values in red and black indicate a regression weight that are weighted toward cases and 

controls, respectively. 
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Figure S7. Inclusion of ASVs enhances the ability to discriminate cases from controls 

using random forest 

Random forest model performance, as measured by area under the receiver-operator characteristic 

curve (AUC), on test data sets for 100 seeds predicting case status in Klebsiella colonized patients (N 

= 230) using various input datasets. Black circles indicate median AUC values, black lines indicate 

standard deviation, and p indicates Tukey multiple pairwise-comparison ANOVA p-value following one 

way. 
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Table S1. Sample partitions 

sample case_status 2_partition 3_partition 
PR14363 control Partition_2 Partition_1 
PR14545 control Partition_2 Partition_2 
PR14583 case Partition_1 Partition_3 
PR14615 control Partition_2 Partition_1 
PR14638 control Partition_2 Partition_2 
PR15215 control Partition_1 Partition_3 
PR15313 case Partition_1 Partition_3 
PR15410 case Partition_1 Partition_3 
PR15430 case Partition_2 Partition_2 
PR15560 control Partition_1 Partition_3 
PR15562 control Partition_1 Partition_3 
PR15788 case Partition_1 Partition_3 
PR15904 case Partition_1 Partition_3 
PR16045 control Partition_2 Partition_2 
PR16059 control Partition_1 Partition_3 
PR16254 control Partition_2 Partition_2 
PR16263 case Partition_2 Partition_2 
PR16266 control Partition_2 Partition_2 
PR16461 control Partition_2 Partition_2 
PR16503 control Partition_1 Partition_3 
PR16633 control Partition_2 Partition_2 
PR16709 case Partition_2 Partition_1 
PR16746 case Partition_2 Partition_2 
PR16770 case Partition_2 Partition_2 
PR16832 control Partition_2 Partition_2 
PR16969 control Partition_2 Partition_1 
PR17000 control Partition_2 Partition_2 
PR17044 control Partition_2 Partition_2 
PR17117 control Partition_1 Partition_3 
PR17168 control Partition_1 Partition_3 
PR17194 case Partition_2 Partition_2 
PR17318 control Partition_2 Partition_2 
PR17332 control Partition_2 Partition_2 
PR17429 case Partition_2 Partition_2 
PR17433 control Partition_2 Partition_2 
PR17482 control Partition_1 Partition_3 
PR17584 control Partition_1 Partition_3 
PR17665 control Partition_2 Partition_1 
PR17699 control Partition_2 Partition_2 
PR17703 case Partition_2 Partition_2 
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PR17713 control Partition_2 Partition_1 
PR17781 control Partition_1 Partition_3 
PR17790 control Partition_1 Partition_3 
PR17853 control Partition_2 Partition_2 
PR17929 case Partition_2 Partition_1 
PR17967 control Partition_1 Partition_3 
PR18060 case Partition_1 Partition_3 
PR18088 case Partition_1 Partition_2 
PR18104 control Partition_1 Partition_3 
PR18133 case Partition_1 Partition_3 
PR18166 case Partition_1 Partition_2 
PR18170 case Partition_2 Partition_2 
PR18174 control Partition_2 Partition_2 
PR18203 control Partition_1 Partition_3 
PR18215 control Partition_2 Partition_2 
PR18227 control Partition_1 Partition_3 
PR18291 case Partition_2 Partition_2 
PR18332 control Partition_2 Partition_2 
PR18358 control Partition_2 Partition_2 
PR18399 case Partition_2 Partition_2 
PR18510 case Partition_1 Partition_3 
PR18520 control Partition_2 Partition_2 
PR18599 case Partition_1 Partition_3 
PR18603 control Partition_2 Partition_1 
PR18638 control Partition_1 Partition_3 
PR18797 control Partition_2 Partition_2 
PR18801 case Partition_1 Partition_3 
PR18838 control Partition_2 Partition_2 
PR18891 control Partition_2 Partition_1 
PR18900 case Partition_1 Partition_3 
PR18922 case Partition_1 Partition_3 
PR18975 control Partition_1 Partition_1 
PR19028 control Partition_2 Partition_2 
PR19076 control Partition_2 Partition_2 
PR19438 control Partition_2 Partition_2 
PR19612 case Partition_1 Partition_3 
PR19821 control Partition_2 Partition_2 
PR19881 control Partition_1 Partition_3 
PR20124 control Partition_2 Partition_2 
PR20197 control Partition_2 Partition_1 
PR20293 control Partition_1 Partition_2 
PR20569 control Partition_2 Partition_2 
PR20588 control Partition_2 Partition_2 
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PR20610 control Partition_2 Partition_2 
PR20649 control Partition_2 Partition_2 
PR20670 case Partition_2 Partition_2 
PR20723 case Partition_2 Partition_1 
PR20815 case Partition_2 Partition_2 
PR20827 control Partition_2 Partition_1 
PR20860 case Partition_1 Partition_3 
PR20876 case Partition_1 Partition_3 
PR21010 control Partition_2 Partition_2 
PR21255 control Partition_2 Partition_2 
PR21276 control Partition_1 Partition_3 
PR21324 case Partition_2 Partition_2 
PR21373 case Partition_2 Partition_2 
PR21593 control Partition_2 Partition_2 
PR21604 control Partition_1 Partition_3 
PR21624 control Partition_1 Partition_3 
PR21703 case Partition_1 Partition_3 
PR21718 case Partition_1 Partition_3 
PR21884 control Partition_1 Partition_3 
PR21917 control Partition_2 Partition_2 
PR21959 case Partition_2 Partition_2 
PR22037 control Partition_2 Partition_1 
PR22162 control Partition_2 Partition_2 
PR22265 case Partition_1 Partition_3 
PR22356 case Partition_1 Partition_3 
PR22440 control Partition_1 Partition_3 
PR22540 control Partition_1 Partition_3 
PR22591 case Partition_1 Partition_3 
PR22592 control Partition_1 Partition_1 
PR22826 control Partition_1 Partition_3 
PR22903 control Partition_1 Partition_3 
PR23003 case Partition_2 Partition_1 
PR23187 control Partition_1 Partition_3 
PR23271 control Partition_1 Partition_2 
PR23568 case Partition_2 Partition_2 
PR24010 control Partition_2 Partition_2 
PR24311 control Partition_1 Partition_3 
PR24548 control Partition_1 Partition_3 
PR24563 control Partition_1 Partition_3 
PR24588 control Partition_2 Partition_2 
PR24687 control Partition_2 Partition_2 
PR24765 control Partition_1 Partition_3 
PR24778 case Partition_2 Partition_2 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.23288742doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288742


PR24803 control Partition_2 Partition_2 
PR24863 case Partition_2 Partition_2 
PR24930 control Partition_1 Partition_1 
PR25045 control Partition_1 Partition_3 
PR25064 control Partition_2 Partition_2 
PR25082 case Partition_2 Partition_2 
PR25083 control Partition_2 Partition_2 
PR25100 control Partition_2 Partition_2 
PR25160 case Partition_2 Partition_2 
PR25239 case Partition_2 Partition_1 
PR25320 control Partition_2 Partition_2 
PR25343 control Partition_2 Partition_2 
PR25413 case Partition_1 Partition_3 
PR25434 case Partition_2 Partition_2 
PR25486 control Partition_1 Partition_3 
PR25565 case Partition_2 Partition_2 
PR25581 control Partition_1 Partition_3 
PR25587 control Partition_2 Partition_1 
PR25723 case Partition_1 Partition_3 
PR25832 case Partition_2 Partition_2 
PR25883 control Partition_1 Partition_3 
PR25897 case Partition_1 Partition_3 
PR25909 case Partition_1 Partition_1 
PR25957 case Partition_1 Partition_3 
PR26017 control Partition_1 Partition_3 
PR26083 control Partition_1 Partition_3 
PR26327 case Partition_2 Partition_2 
PR26333 case Partition_2 Partition_2 
PR26410 control Partition_1 Partition_3 
PR26421 control Partition_1 Partition_3 
PR26485 control Partition_2 Partition_2 
PR26491 control Partition_2 Partition_2 
PR26498 control Partition_1 Partition_3 
PR26564 control Partition_1 Partition_3 
PR26666 control Partition_2 Partition_2 
PR26691 control Partition_1 Partition_1 
PR26715 control Partition_2 Partition_2 
PR26774 control Partition_1 Partition_3 
PR26893 control Partition_1 Partition_3 
PR26959 case Partition_1 Partition_2 
PR27029 control Partition_2 Partition_2 
PR27184 case Partition_2 Partition_2 
PR27193 case Partition_2 Partition_1 
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PR27201 case Partition_1 Partition_3 
PR27221 control Partition_2 Partition_2 
PR27307 control Partition_1 Partition_3 
PR27309 control Partition_1 Partition_3 
PR27323 control Partition_1 Partition_3 
PR27351 case Partition_2 Partition_2 
PR27841 control Partition_2 Partition_1 
PR27885 control Partition_2 Partition_2 
PR27893 control Partition_2 Partition_2 
PR28009 control Partition_2 Partition_2 
PR28069 control Partition_2 Partition_2 
PR28122 control Partition_1 Partition_2 
PR28135 control Partition_1 Partition_3 
PR28152 control Partition_2 Partition_2 
PR28241 case Partition_1 Partition_3 
PR28314 control Partition_1 Partition_3 
PR28337 control Partition_2 Partition_2 
PR28635 control Partition_2 Partition_1 
PR28636 control Partition_2 Partition_2 
PR28720 case Partition_2 Partition_2 
PR28783 control Partition_2 Partition_2 
PR28861 control Partition_1 Partition_3 
PR28869 case Partition_1 Partition_3 
PR28885 case Partition_1 Partition_3 
PR28912 control Partition_2 Partition_2 
PR28930 case Partition_2 Partition_2 
PR28940 control Partition_2 Partition_2 
PR28990 control Partition_2 Partition_2 
PR29054 control Partition_1 Partition_3 
PR29065 case Partition_1 Partition_3 
PR29077 control Partition_1 Partition_3 
PR29080 case Partition_1 Partition_3 
PR29081 case Partition_2 Partition_1 
PR29089 control Partition_1 Partition_3 
PR29187 control Partition_1 Partition_1 
PR29189 control Partition_2 Partition_2 
PR29272 case Partition_2 Partition_1 
PR29281 case Partition_1 Partition_3 
PR29292 control Partition_2 Partition_2 
PR29346 control Partition_2 Partition_1 
PR29361 control Partition_2 Partition_1 
PR29415 control Partition_1 Partition_3 
PR29420 control Partition_1 Partition_3 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.23288742doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288742


PR29510 control Partition_2 Partition_1 
PR29556 control Partition_2 Partition_2 
PR29656 case Partition_1 Partition_3 
PR29663 control Partition_2 Partition_2 
PR29669 case Partition_1 Partition_3 
PR29826 control Partition_1 Partition_3 
PR29848 case Partition_1 Partition_2 
PR30067 control Partition_1 Partition_1 
PR30391 control Partition_2 Partition_1 
PR30422 control Partition_1 Partition_3 
PR30692 control Partition_1 Partition_3 
PR30710 control Partition_1 Partition_3 
PR30711 case Partition_1 Partition_3 
PR30890 case Partition_1 Partition_1 
PR30974 case Partition_1 Partition_3 
PR31280 case Partition_2 Partition_1 
PR31292 case Partition_1 Partition_2 
PR31436 case Partition_1 Partition_1 
PR31620 case Partition_2 Partition_1 
PR31764 case Partition_2 Partition_2 
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Table S2. BLAST alignment* to ASV000001 and ASV000019 rRNA sequences 

Query Subject Species 
complex Accession 

ASV000001 Klebsiella pneumoniae K. pneumoniae NR_036794.1 
ASV000001 Klebsiella pneumoniae K. pneumoniae NR_112009.1 
ASV000001 Klebsiella pneumoniae K. pneumoniae NR_113240.1 
ASV000001 Klebsiella pneumoniae K. pneumoniae NR_113702.1 
ASV000001 Klebsiella pneumoniae K. pneumoniae NR_114506.1 
ASV000001 Klebsiella pneumoniae K. pneumoniae NR_114715.1 
ASV000001 Klebsiella pneumoniae K. pneumoniae NR_117682.1 
ASV000001 Klebsiella pneumoniae K. pneumoniae NR_117683.1 
ASV000001 Klebsiella pneumoniae K. pneumoniae NR_117684.1 
ASV000001 Klebsiella pneumoniae K. pneumoniae NR_117685.1 
ASV000001 Klebsiella pneumoniae K. pneumoniae NR_117686.1 
ASV000001 Klebsiella pneumoniae K. pneumoniae NR_119278.1 
ASV000001 Klebsiella pneumoniae subsp. rhinoscleromatis K. pneumoniae NR_037084.1 
ASV000001 Klebsiella pneumoniae subsp. rhinoscleromatis ATCC 13884 K. pneumoniae NR_114507.1 
ASV000001 Klebsiella quasipneumoniae subsp. quasipneumoniae K. pneumoniae NR_134062.1 
ASV000001 Klebsiella quasipneumoniae subsp. similipneumoniae K. pneumoniae NR_134063.1 
ASV000001 Klebsiella variicola K. pneumoniae NR_025635.1 
ASV000001 Klebsiella huaxiensis K. oxytoca NR_171417.1 
ASV000001 Klebsiella aerogenes NA NR_024643.1 
ASV000001 Klebsiella aerogenes NA NR_113614.1 
ASV000001 Klebsiella aerogenes NA NR_114737.1 
ASV000001 Klebsiella aerogenes NA NR_118556.1 
ASV000001 Klebsiella aerogenes KCTC 2190 NA NR_102493.2 
ASV000019 Klebsiella grimontii K. oxytoca NR_159317.1 
ASV000019 Klebsiella michiganensis K. oxytoca NR_118335.1 
ASV000019 Klebsiella oxytoca K. oxytoca NR_041749.1 
ASV000019 Klebsiella oxytoca K. oxytoca NR_112010.1 
ASV000019 Klebsiella oxytoca K. oxytoca NR_113341.1 
ASV000019 Klebsiella oxytoca K. oxytoca NR_114152.1 
ASV000019 Klebsiella oxytoca K. oxytoca NR_118853.1 
ASV000019 Klebsiella oxytoca K. oxytoca NR_119277.1 

*Only alignments with 100% identity are shown  
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Table S3. Clinical variables included in machine learning models* 
 
Variable  Case (N = 83) Control (N = 147) 

depression 
yes 29 (34.9%) 39 (26.5%) 
no 54 (65.1%) 108 (73.5%) 

missing 0 (0%) 0 (0%) 

prior diuretic 
yes 30 (36.1%) 35 (23.8%) 
no 53 (63.9%) 112 (76.2%) 

missing 0 (0%) 0 (0%) 

prior vitamin D 
yes 18 (21.7%) 18 (12.2%) 
no 65 (78.3%) 129 (87.8%) 

missing 0 (0%) 0 (0%) 

prior vasopressin blocker 
yes 19 (22.9%) 14 (9.5%) 
no 64 (77.1%) 133 (90.5%) 

missing 0 (0%) 0 (0%) 

albumin < 2.5 g/dL 
yes 34 (41%) 34 (23.1%) 
no 46 (55.4%) 106 (72.1%) 

missing 3 (3.6%) 7 (4.8%) 

high risk antibiotics 
yes 30 (36.1%) 30 (20.4%) 
no 53 (63.9%) 117 (79.6%) 

missing 0 (0%) 0 (0%) 

weighted elixhauser  mean ± 
SD 22.4 ± 11.5 19.3 ± 12.5 

alcohol abuse 
yes 5 (6%) 17 (11.6%) 
no 78 (94%) 130 (88.4%) 

missing 0 (0%) 0 (0%) 

blood loss anemia 
yes 18 (21.7%) 17 (11.6%) 
no 65 (78.3%) 130 (88.4%) 

missing 0 (0%) 0 (0%) 

cardiac arrhythmias 
yes 50 (60.2%) 83 (56.5%) 
no 33 (39.8%) 64 (43.5%) 

missing 0 (0%) 0 (0%) 

chronic pulmonary disease 
yes 26 (31.3%) 46 (31.3%) 
no 57 (68.7%) 101 (68.7%) 

missing 0 (0%) 0 (0%) 

coagulopathy 
yes 36 (43.4%) 53 (36.1%) 
no 47 (56.6%) 94 (63.9%) 

missing 0 (0%) 0 (0%) 

congestive heart failure 
yes 28 (33.7%) 47 (32%) 
no 55 (66.3%) 100 (68%) 

missing 0 (0%) 0 (0%) 

deficiency anemia 
yes 11 (13.3%) 20 (13.6%) 
no 72 (86.7%) 127 (86.4%) 

missing 0 (0%) 0 (0%) 
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complicated diabetes 
yes 15 (18.1%) 21 (14.3%) 
no 68 (81.9%) 126 (85.7%) 

missing 0 (0%) 0 (0%) 

uncomplicated diabetes 
yes 27 (32.5%) 36 (24.5%) 
no 56 (67.5%) 111 (75.5%) 

missing 0 (0%) 0 (0%) 

drug abuse 
yes 6 (7.2%) 8 (5.4%) 
no 77 (92.8%) 139 (94.6%) 

missing 0 (0%) 0 (0%) 

fluid electrolyte disorders 
yes 57 (68.7%) 99 (67.3%) 
no 26 (31.3%) 48 (32.7%) 

missing 0 (0%) 0 (0%) 

complicated hypertension 
yes 33 (39.8%) 48 (32.7%) 
no 50 (60.2%) 99 (67.3%) 

missing 0 (0%) 0 (0%) 

uncomplicated hypertension 
yes 35 (42.2%) 86 (58.5%) 
no 48 (57.8%) 61 (41.5%) 

missing 0 (0%) 0 (0%) 

hypothyroidism 
yes 15 (18.1%) 16 (10.9%) 
no 68 (81.9%) 131 (89.1%) 

missing 0 (0%) 0 (0%) 

liver disease 
yes 19 (22.9%) 33 (22.4%) 
no 64 (77.1%) 114 (77.6%) 

missing 0 (0%) 0 (0%) 

lymphoma 
yes 8 (9.6%) 19 (12.9%) 
no 75 (90.4%) 128 (87.1%) 

missing 0 (0%) 0 (0%) 

metastatic cancer 
yes 15 (18.1%) 22 (15%) 
no 68 (81.9%) 125 (85%) 

missing 0 (0%) 0 (0%) 

obesity 
yes 26 (31.3%) 39 (26.5%) 
no 57 (68.7%) 108 (73.5%) 

missing 0 (0%) 0 (0%) 

other neurological disorders 
yes 24 (28.9%) 23 (15.6%) 
no 59 (71.1%) 124 (84.4%) 

missing 0 (0%) 0 (0%) 

paralysis 
yes 6 (7.2%) 4 (2.7%) 
no 77 (92.8%) 143 (97.3%) 

missing 0 (0%) 0 (0%) 

peptic ulcer disease excluding bleeding 
yes 5 (6%) 6 (4.1%) 
no 78 (94%) 141 (95.9%) 

missing 0 (0%) 0 (0%) 
peripheral vascular disorders yes 17 (20.5%) 41 (27.9%) 
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no 66 (79.5%) 106 (72.1%) 
missing 0 (0%) 0 (0%) 

psychoses 
yes 4 (4.8%) 4 (2.7%) 
no 79 (95.2%) 143 (97.3%) 

missing 0 (0%) 0 (0%) 

pulmonary circulation disorders 
yes 14 (16.9%) 33 (22.4%) 
no 69 (83.1%) 114 (77.6%) 

missing 0 (0%) 0 (0%) 

renal failure 
yes 26 (31.3%) 35 (23.8%) 
no 57 (68.7%) 112 (76.2%) 

missing 0 (0%) 0 (0%) 

rheumatoid arthritis collagen vascular diseases 
yes 8 (9.6%) 10 (6.8%) 
no 75 (90.4%) 137 (93.2%) 

missing 0 (0%) 0 (0%) 

solid tumor without metastasis 
yes 26 (31.3%) 28 (19%) 
no 57 (68.7%) 119 (81%) 

missing 0 (0%) 0 (0%) 

valvular disease 
yes 8 (9.6%) 33 (22.4%) 
no 75 (90.4%) 114 (77.6%) 

missing 0 (0%) 0 (0%) 

weight loss 
yes 45 (54.2%) 49 (33.3%) 
no 38 (45.8%) 98 (66.7%) 

missing 0 (0%) 0 (0%) 

urinary catheter 
yes 63 (75.9%) 88 (59.9%) 
no 20 (24.1%) 59 (40.1%) 

missing 0 (0%) 0 (0%) 

feeding tube 
yes 43 (51.8%) 50 (34%) 
no 40 (48.2%) 97 (66%) 

missing 0 (0%) 0 (0%) 

ventilator 
yes 38 (45.8%) 67 (45.6%) 
no 45 (54.2%) 80 (54.4%) 

missing 0 (0%) 0 (0%) 

central line 
yes 54 (65.1%) 89 (60.5%) 
no 29 (34.9%) 58 (39.5%) 

missing 0 (0%) 0 (0%) 

diabetes 
yes 30 (36.1%) 41 (27.9%) 
no 53 (63.9%) 106 (72.1%) 

missing 0 (0%) 0 (0%) 

hypertension 
yes 51 (61.4%) 100 (68%) 
no 32 (38.6%) 47 (32%) 

missing 0 (0%) 0 (0%) 

prior immunosuppressor 
yes 6 (7.2%) 10 (6.8%) 
no 77 (92.8%) 137 (93.2%) 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.23288742doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288742


missing 0 (0%) 0 (0%) 

prior insulin 
yes 24 (28.9%) 33 (22.4%) 
no 59 (71.1%) 114 (77.6%) 

missing 0 (0%) 0 (0%) 

prior hypoglycemics 
yes 0 (0%) 2 (1.4%) 
no 83 (100%) 145 (98.6%) 

missing 0 (0%) 0 (0%) 

prior proton pump inhibitors 
yes 29 (34.9%) 40 (27.2%) 
no 54 (65.1%) 107 (72.8%) 

missing 0 (0%) 0 (0%) 

prior immunoglobulin 
yes 2 (2.4%) 1 (0.7%) 
no 81 (97.6%) 146 (99.3%) 

missing 0 (0%) 0 (0%) 

prior dialysis 
yes 1 (1.2%) 0 (0%) 
no 82 (98.8%) 147 (100%) 

missing 0 (0%) 0 (0%) 

prior nicotine 
yes 1 (1.2%) 6 (4.1%) 
no 82 (98.8%) 141 (95.9%) 

missing 0 (0%) 0 (0%) 

prior angiotensin blocker 
yes 0 (0%) 8 (5.4%) 
no 83 (100%) 139 (94.6%) 

missing 0 (0%) 0 (0%) 

prior antidepressant antipsychotic 
yes 22 (26.5%) 30 (20.4%) 
no 61 (73.5%) 117 (79.6%) 

missing 0 (0%) 0 (0%) 

prior histamine antagonists 
yes 16 (19.3%) 29 (19.7%) 
no 67 (80.7%) 118 (80.3%) 

missing 0 (0%) 0 (0%) 

prior antituberculars 
yes 1 (1.2%) 1 (0.7%) 
no 82 (98.8%) 146 (99.3%) 

missing 0 (0%) 0 (0%) 

prior clindamycin 
yes 3 (3.6%) 1 (0.7%) 
no 80 (96.4%) 146 (99.3%) 

missing 0 (0%) 0 (0%) 

prior cephalosporin 
yes 17 (20.5%) 20 (13.6%) 
no 66 (79.5%) 127 (86.4%) 

missing 0 (0%) 0 (0%) 

prior penicillin 
yes 24 (28.9%) 26 (17.7%) 
no 59 (71.1%) 121 (82.3%) 

missing 0 (0%) 0 (0%) 

prior quinolone 
yes 5 (6%) 5 (3.4%) 
no 78 (94%) 142 (96.6%) 

missing 0 (0%) 0 (0%) 
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prior carbapenem 
yes 9 (10.8%) 3 (2%) 
no 74 (89.2%) 144 (98%) 

missing 0 (0%) 0 (0%) 

prior monobactam 
yes 3 (3.6%) 1 (0.7%) 
no 80 (96.4%) 146 (99.3%) 

missing 0 (0%) 0 (0%) 

prior aminoglycoside 
yes 14 (16.9%) 6 (4.1%) 
no 69 (83.1%) 141 (95.9%) 

missing 0 (0%) 0 (0%) 

prior macrolide 
yes 6 (7.2%) 4 (2.7%) 
no 77 (92.8%) 143 (97.3%) 

missing 0 (0%) 0 (0%) 

prior tetracycline 
yes 2 (2.4%) 3 (2%) 
no 81 (97.6%) 144 (98%) 

missing 0 (0%) 0 (0%) 

prior daptomycin 
yes 0 (0%) 0 (0%) 
no 83 (100%) 147 (100%) 

missing 0 (0%) 0 (0%) 

prior rifamycin 
yes 3 (3.6%) 5 (3.4%) 
no 80 (96.4%) 142 (96.6%) 

missing 0 (0%) 0 (0%) 

prior polymyxin 
yes 0 (0%) 0 (0%) 
no 83 (100%) 147 (100%) 

missing 0 (0%) 0 (0%) 

prior fosfomycin 
yes 1 (1.2%) 0 (0%) 
no 82 (98.8%) 147 (100%) 

missing 0 (0%) 0 (0%) 

prior nitrofurantoin 
yes 1 (1.2%) 2 (1.4%) 
no 82 (98.8%) 145 (98.6%) 

missing 0 (0%) 0 (0%) 

prior methotrexate 
yes 0 (0%) 2 (1.4%) 
no 83 (100%) 145 (98.6%) 

missing 0 (0%) 0 (0%) 

prior sulfonamide 
yes 4 (4.8%) 1 (0.7%) 
no 79 (95.2%) 146 (99.3%) 

missing 0 (0%) 0 (0%) 

prior 3rd or 4th generation cephalosporin 
yes 13 (15.7%) 10 (6.8%) 
no 70 (84.3%) 137 (93.2%) 

missing 0 (0%) 0 (0%) 

prior combo betalactam 
yes 24 (28.9%) 23 (15.6%) 
no 59 (71.1%) 124 (84.4%) 

missing 0 (0%) 0 (0%) 
prior linezolid yes 4 (4.8%) 1 (0.7%) 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.23288742doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288742


no 79 (95.2%) 146 (99.3%) 
missing 0 (0%) 0 (0%) 

hemoglobin g/dL mean ± 
SD 7.4 ± 1.8 8.0 ± 2.1 

creatinine mg/dL mean ± 
SD 0.75 ± 0.48 0.78 ± 0.50 

albumin g/dL mean ± 
SD 2.5 ± 0.71 2.8 ± 0.72 

protein g/dL mean ± 
SD 4.8 ± 0.95 5.0 ± 0.93 

new ventilator 
yes 35 (42.2%) 66 (44.9%) 
no 48 (57.8%) 81 (55.1%) 

missing 0 (0%) 0 (0%) 

new urinary catheter 
yes 60 (72.3%) 84 (57.1%) 
no 23 (27.7%) 63 (42.9%) 

missing 0 (0%) 0 (0%) 

new feed tube 
yes 7 (8.4%) 2 (1.4%) 
no 76 (91.6%) 145 (98.6%) 

missing 0 (0%) 0 (0%) 

new central line 
yes 34 (41%) 69 (46.9%) 
no 49 (59%) 78 (53.1%) 

missing 0 (0%) 0 (0%) 
*Non-missing data in Table 1 were also included in machine learning models 
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