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Abstract  

Purpose: To develop a deep learning-based algorithm that automatically and accurately classifies 

patients as either having pulmonary emboli or not in CT pulmonary angiography (CTPA) 

examinations. 

 

Materials and Methods: For model development, 700 CTPA examinations from 652 patients 

performed at a single institution were used, of which 149 examinations contained 1497 PE traced by 

radiologists. The nnU-Net deep learning-based segmentation framework was trained using 5-fold 

cross-validation. To enhance classification, we applied logical rules based on PE volume and 

probability thresholds. External model evaluation was performed in 770 and 34 CTPAs from two 

independent datasets. 

 

Results: A total of 1483 CTPA examinations were evaluated. In internal cross-validation and test set, 

the trained model correctly classified 123 of 128 examinations as positive for PE (sensitivity 96.1%; 

95% C.I. 91-98%; P < .05) and 521 of 551 as negative (specificity 94.6%; 95% C.I. 92-96%; P < .05). 

In the first external test dataset, the trained model correctly classified 31 of 32 examinations as 

positive (sensitivity 96.9%; 95% C.I. 84-99%; P < .05) and 2 of 2 as negative (specificity 100%; 95% 

C.I. 34-100%; P < .05). In the second external test dataset, the trained model correctly classified 379 

of 385 examinations as positive (sensitivity 98.4%; 95% C.I. 97-99%; P < .05) and 346 of 385 as 

negative (specificity 89.9%; 95% C.I. 86-93%; P < .05).  
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Conclusion: Our automatic pipeline achieved beyond state-of-the-art diagnostic performance of PE in 

CTPA using nnU-Net for segmentation and volume- and probability-based post-processing for 

classification.  
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Highlights:  

• An nnU-Net segmentation framework was applied to patient-level classification in CTPA 

examinations. 

• The proposed algorithm can enable prioritization of patients with PE for rapid review in 

emergency radiology. 

• The proposed algorithm showed outstanding performance on both internal and two publicly 

available external testing datasets (AUC, 98.3%; n=1355). 

 
Keywords 
Computed tomography pulmonary angiography, pulmonary embolism, nnU-Net, deep learning. 

 

Abbreviations: PE, pulmonary embolism; CTPA, computed tomography pulmonary angiography; 

nnU-Net, no-new-U-Net; DL, deep learning; CADe, computer-aided detection.  
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1. Introduction 

Pulmonary embolism (PE) is a potentially life-threatening occlusion of pulmonary arteries caused by 

blood clotting and is associated with significant morbidity and mortality [1]. PE affects >400,000 

patients in Europe [2] and between 300,000 and 600,000 patients in the US [3] causing an estimated 

>100,000 deaths annually [4]. PE is a significant cause of preventable hospital deaths in the world [5], 

demanding rapid clinical management [6]. The computed tomography pulmonary angiography 

(CTPA) imaging modality is the current gold standard for PE diagnosis [7]. The CTPA is a CT scan 

performed after intravenous injection of iodinated contrast medium. As the emboli do not absorb 

contrast medium they can be recognized as dark filling defects in the pulmonary arteries [8]. 

Thoroughly examining every CT slice and identification of PE in CTPA is time-consuming for the 

radiologist and requires considerable training and attentiveness, and the inter-observer variability is 

high for small, sub-segmental emboli [9]. An automated solution for detection of PE in CTPA has 

potential to assist the radiologist by reducing reading times and the risk of emboli being overlooked.  

 

Developing a general solution for automatic detection of PE has proven challenging because of 

anatomical variation, motion and breathing artifacts, inter-patient variability in contrast medium 

concentration, and concurrent pathologies. Over the past two decades, automated PE detection has 

been attempted using deterministic models, such as image processing and analysis techniques [10, 

11], or probabilistic/statistical models such as machine learning [12–14] and deep convolutional 

neural networks [15, 16]. Yet, the accuracies of these solutions have been insufficient for clinical use 

due to low sensitivity [10, 13, 15] and high false positive rate [10, 11, 13, 14], potentially caused by 

training on small datasets [10, 11, 13–15]. The state-of-the-art is a residual neural network (ResNet) 

classification architecture on 1465 CTPA examinations with sensitivity of 92.7% and specificity of 

95.5% [17]. To mitigate the limited dataset size challenges hampering the training of AI models for 

PE classification, an alternative approach is to employ a fine-tuned U-Net-like semantic segmentation 

model. The U-Net model has demonstrated its effectiveness in several medical image segmentation 

tasks. [18]. The no-new U-Net framework (nnU-Net) successfully addresses challenges of finding the 

best U-net model and fine-tuning its hyperparameters [19]. 

 

Here, we sought to take advantage of the segmentation performance of the nnU-Net framework in an 

algorithm that automatically classifies routine patient CTPA examinations as having PE or not with 

higher sensitivity and specificity than the current state-of-the-art performance.  
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2. Materials and Methods 

2.1. Internal dataset 

The single-institution (Nyköping Hospital, Sweden) retrospective dataset consisted of 700 non-ECG-

gated CTPA examinations performed between 2014 and 2018 (n=149 positive for PE); 383 CTPA 

examinations from 353 women (age range 16-97 years; median age 73 years; interquartile range 20 

years) and 317 from 299 men (age range 19-100 years; median age 71 years; interquartile range 15 

years) [20]. The CTPAs were clinical routine examinations exported in chronological order from a 

history list in the institution’s Picture Archiving and Communication System (PACS). The only 

disruption in the order were a few inserted time gaps, which allowed for a larger number of CT 

scanners to be included as new CT scanners were installed during the time period. The CTPAs were 

acquired on five different CT scanners (Somatom Definition Flash, Siemens Healthcare, Erlangen, 

Germany; LightSpeed VCT, General Electric (GE) Healthcare Systems, Waukesha, WI, USA; 

Brilliance 64, Ingenuity Core and Ingenuity CT, Philips Medical Systems, Eindhoven, the 

Netherlands). As contrast medium, Omnipaque 350 mg I/ml (GE Healthcare Systems, Waukesha, WI, 

USA) was used. Collection and analysis of CTPA examinations was approved by the Swedish Ethical 

Review Authority (EPN Uppsala Dnr 2015/023 and 2015/023/1). The CTPA data was anonymized 

and exported in Digital Imaging and Communications in Medicine (DICOM) format, using a 

hardware solution (Dicom2USB). The CTPAs were reviewed and annotated using the open-source 

software Medical Imaging Interaction Toolkit (MITK) [21] by two radiologists (DT and TF) with 6 

and 16 years of experience. Each CTPA was annotated by either DT or TF. All blood clots in 149 

CTPA examinations positive for PE were manually segmented in axial view, image by image, 

resulting in 36,471 segmentations.  
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2.2. External datasets 

Two publicly available datasets were used for external evaluation; the Ferdowsi University of 

Mashhad's PE dataset (FUMPE) [22] and the RSNA-STR Pulmonary Embolism CT (RSPECT) 

Dataset [23]. The FUMPE dataset contains 35 CTPAs with voxel-level PE annotation by radiologists. 

Of the 35 CTPAs, two were negative for PE, 32 were positive and one was excluded for lack of 

ground truth annotation (Supp. materials). The RSPECT dataset consisted of a training (n=7279) and 

a test (n=2167) set and image-level annotations were provided for the training set by several 

subspecialist thoracic radiologists. 385 CTPAs were selected from the RSPECT training dataset out of 

a total of 398 that had central PE, and 13 examinations were excluded due to errors during the 

DICOM to NIfTI format conversion process. Of the 4877 CTPAs without PE or other true filling 

defect, 385 examinations were randomly selected. An overview of our internal and external datasets is 

shown in Figure 1.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 11, 2024. ; https://doi.org/10.1101/2023.04.21.23288861doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.21.23288861


7 
 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted A

pril 11, 2024. 
; 

https://doi.org/10.1101/2023.04.21.23288861
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.04.21.23288861


8 
 

Figure 1. Internal and external datasets for training and evaluation of a segmentation-based 
classification model for pulmonary embolism detection. Positive examinations refer to the patient 
having pulmonary embolism (PE) and negative examinations are patients without PE. True filling 
defect refers to tumor invasion, stump thrombus, catheter, embolized wire, or other obvious non-PE 
condition as defined in the RSPECT dataset. 

 

2.3. nnU-Net Model training and validation 

For model training, the nnU-net DL open-source framework, implemented in a Docker container 

(Docker Inc., Palo Alto, California, USA), was used [19]. The nnU-Net is a semantic segmentation 

method, and when provided with a training dataset, it automatically configures an end-to-end 

experimental pipeline (Supp. materials). The PE positive examinations from the internal dataset 

(n=149) were randomly assigned to training (80%, n=119) and validation sets (20%, n=30) using 5-

fold cross-validation during model training (Supp. materials).  

 

2.4. Automated Classification Algorithm  

After model training and validation, the validated model was embedded in a classification algorithm 

consisting of three steps, pre-processing, image segmentation inference, and post-processing (Figure 

2). Notably, nnU-Net necessitates the utilization of the Neuroimaging Informatics Technology 

Initiative (NIfTI) file format for model inference. Thus, in the pre-processing step, all DICOM data 

were converted to the NIfTI format using an in-house Python script. Next, the nnU-Net model 

inference was performed. Since the nnU-Net model is a volumetric segmentation model, its inference 

yields a segmentation mask that predicts pulmonary emboli. The segmentation output was 

transformed into patient-level classification during the post-processing step by applying a threshold to 

the predicted segmentations, which was based on the total predicted emboli volume. Consequently, a 

patient-level classification distinguishing between PE and non-PE cases was achieved.  

 

The softmax activation function in the final layer of the U-Net-like architecture provides a probability 

distribution across predicted classes. By strategically selecting different softmax probability 

thresholds, it was possible to generate segmentation masks with varying volumes. As such, we 

established rules that incorporated different softmax probability thresholds (ranging from 0.75 to 0.95 

in 0.05 intervals) and volumetric thresholds (ranging from 0 mm³ to 200 mm³ in 10 mm³ intervals). 

This approach was instrumental in improving the model's performance and fine-tuning the 

differentiation between PE and non-PE voxel classes. Considering these rules, we formulated two 

distinct strategies. The strategy that offered the best trade-off between sensitivity and specificity was 

denoted as Strategy 1, while the one delivering the highest specificity was denoted as Strategy 2 

(Supp. materials). 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 11, 2024. ; https://doi.org/10.1101/2023.04.21.23288861doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.21.23288861


9 
 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted A

pril 11, 2024. 
; 

https://doi.org/10.1101/2023.04.21.23288861
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.04.21.23288861


10 
 

Figure 2. Training and evaluation of a segmentation-based classification model for pulmonary 
embolism detection. 700 CTPA examinations were collected and annotated by either of two 
radiologists. Of these, all 149 PE positive examinations were used for training and the PE negative 
were kept for later evaluation (a). The 3D U-Net deep learning model, which is generated by the nnU-
Net framework, was trained with the 149 PE-positive CTPAs using 5-fold cross-validation. The 
convolution layer used a 3×3×3 filter size by default, followed by an instance normalization (IN) layer 
and a leaky rectified Linear Unit (lRELU) layer (b). The softmax probabilities were obtained from the 
model inference for fine-tuning classification into PE or non-PE voxel classes and for calculating the 
predicted PE volume.  By thresholding the predicted volumes and applying a set of logical rules, 
accurate patient-level classification for PE was achieved (c). The final model was evaluated on 804 
external CTPA examinations from two publicly available datasets (d). 

 

2.5. Statistical Analysis 

Sensitivity and specificity of our trained model for binary classification for PE/non-PE were assessed 

on a per-patient basis. Matthew’s correlation coefficient (MCC) was used to find the optimal balance 

between sensitivity and specificity. The area under the receiver operating characteristic (AUROC) 

curve was used to determine classification performance during model training, validation, and 

evaluation. Statistical analysis was performed with Microsoft Office Excel (Microsoft Corporation, 

Washington, USA, Office Professional Plus 2016) and statsmodels package (version 0.13.5) in Python 

(version 3.8.10; Python Software Foundation). A p-value less than .05 was defined as statistically 

significant and for C.I., the Wilson score interval was used. 

 

3. Results 

3.1. Model training and performance evaluation on the internal dataset 

For model training, 2,439,000 voxels of 1497 PE were annotated by two radiologists in all 149 PE 

positive CTPAs of the internal dataset (Table 1). Acute as well as chronic PEs were annotated, and no 

distinction was made between them. Consequently, the model did not distinguish between the two 

types. An nnU-net model was trained with 5-fold cross-validation with 119 training and 30 validation 

CTPAs per set in 4 sets and 120 training and 29 validation CTPAs in the fifth set without data overlap 

between the validation sets.  To assess model performance, 21 PE positive exams with small PEs (M = 

22.9 mm³, SD = 11.6 mm³) with a total volume of less than 50 mm³ were excluded. The remaining 

128 PE positive CTPAs and 551 PE negative CTPAs constituted the internal cross-validation and test 

set. Training and validation was performed on a single Nvidia RTX 2080 TI GPU card which took ~1 

week in total for all cross-validation folds. The classification performance of the trained nnU-Net 

model on internal and external test datasets was explored over different threshold volumes, with and 

without post-processing strategies. Without the post-processing strategy and by setting the threshold 

volume to 20 mm³, a Matthews correlation coefficient score (MCC) of 63.9% was achieved, correctly 

classifying 128 out of 128 positive examinations as having PE and 433 out of 551 negative 

examinations as non-PE. With the post-processing strategy 1 (Supp. materials) and threshold volume 
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of 20 mm³, the best MCC (84.9%) was obtained with 123 of 128 positive examinations correctly 

classified as PE, and 521 of 551 negative examinations correctly classified as non-PE. Further, the 

model achieved an AUROC of 96.4% and 94.9% with and without post-processing respectively 

(Figure 3). The trained nnU-Net model thus achieved a sensitivity of 96.1% (95% C.I. 91-98%, P < 

.05) and 100% (95% C.I. 97-100%, P < .05), and a specificity of 94.6% (95% C.I. 92-96%, P < .05) 

and 78.6% (95% C.I. 75-82%, P < .05) in the internal dataset with and without the post-processing 

strategies, respectively (Table 2).  

 

Table 1. Ground truth annotation of 149 internal CTPAs with PE.  

Component 
Blood 
Clots 

Average Volume Min Volume Max Volume 

(mm3) (mm3) (mm3) 

3D 
(Volume) 

1497 682 0.21 36510 

2D (Area) 36471   16 0.21 830 
1D (Voxel) 2439400       
Note. — The total PE volume in all examinations was 744783 mm3. PE = Pulmonary embolism, 3D = 3-
dimensional, 2D = 2-dimensional, 1D = 1-dimensional. Min = minimum, Max = maximum. 3D components 
are composed of 2D components, and 2D components are made up of 1D components. A 1D component, in 
this context, corresponds to a single voxel. 
 

 

 

 

 

Figure 3. Classification performance of the trained nnU-Net model. Area Under the Curves 
(AUC) without (a) and with (b) post-processing.  Black, internal dataset (n = 679, 128 PE and 551 
non-PE); Blue, the FUMPE datasets (n = 34, 32 PE and 2 non-PE); Red, the RSNA PE dataset (n = 
770, 385 PE and 385 non-PE). TPR, true positive rate; FPR, false positive rate. AUC values are in 
percentages. 
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3.2. Model performance on external datasets 

For external evaluation, the trained model was applied to a total of 804 CTPAs from two publicly 

available datasets. First, 34 PE positive CTPAs and 2 PE negative CTPAs from the FUMPE dataset 

were analyzed. With post-processing strategy 1, an MCC score of 80.4% was obtained with 31 of 32 

positive examinations correctly classified as PE, and 2 of 2 negative examinations correctly classified 

as non-PE. The trained model achieved AUROC 98.5% (Figure 3) with sensitivity of 96.9% (95% 

C.I. 84-99%, P < .05) and specificity of 100% (95% C.I. 34-100%, P < .05) (Table 2, Supp. Table 5). 

Focusing on central PE, where the annotations can be assumed to be more consistent, we used 385 

CTPAs annotated as having at least one central PE and 385 PE negative CTPAs from the RSPECT 

pulmonary embolism CT dataset for model evaluation. With the post-processing strategy 1 (Supp. 

Materials), an MCC of 88.6% was obtained with 379 of 385 positive examinations correctly classified 

as PE, and 346 of 385 negative examinations correctly classified as non-PE. The trained model 

achieved an AUROC of 98.6% (Figure 3) with sensitivity of 98.4% (95% C.I. 97-99%, P < .05) and a 

specificity of 89.9% (95% C.I. 86-93%, P < .05) (Table 2, Supp. Table 6). Without the post-

processing strategy and by setting the threshold volume to 20 mm³, MCC of 100% and 73.3% were 

obtained with 32 (n=32) and 385 (n=385) positive examinations correctly classified as PE, and 2 

(n=2) and 269 (n= 385) negative examinations correctly classified as non-PE in the first and second 

external datasets, respectively (Table 2, Supp. Table 2 and 3). Moreover, the model achieved an 

AUROC of 100% and 94.2% (Figure 3) with a sensitivity of 100% (95% C.I. 89-100%, P < .05) and 

100% (95% C.I. 99-100%, P < .05), and a specificity of 100% (95% C.I. 34-100%, P < .05) and 

69.9% (95% C.I. 65-74%, P < .05) in the first and second datasets, respectively (Table 2, Supp. Table 

2 and 3).  
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Table 2. Diagnostic performance of the trained model 

 

  Without the Post-Processing   With the Post-Processing 

Parameter 
Internal 
Dataset 

FUMPE External 
Dataset 

RSNA External 
Dataset  

Internal 
Dataset 

FUMPE External 
Dataset 

RSNA External 
Dataset 

No. of CTPAs 679 34 770 
 

679 34 770 

No. of TN 433 2 269 
 

521 2 346 

No. of FP 118 0 116 
 

30 0 39 

No. of TP 128 32 385 
 

123 31 379 

No. of FN 0 0 0 
 

5 1 6 

MCC (%) 63.9 100 73.3 
 

84.9 80.4 88.6 

Sensitivity (%) 100 (97-100) 100 (89-100) 100 (99-100) 
 

96.1 (91-98) 96.9 (84-99) 98.4 (97-99) 

Specificity (%) 78.6 (75-82) 100 (34-100) 69.9 (65-74) 
 

94.6 (92-96) 100 (34-100) 89.9 (86-93) 

Accuracy (%) 82.6 100 84.9 
 

94.8 97.1 94.2 

Balanced Accuracy (%) 89.3 100 84.9 
 

95.4 98.4 94.2 

AUC (%) 94.9 100 94.2   96.4 98.5 98.6 

Note. — The threshold volume is set to 20 mm³. Data in parentheses are 95% CIs in percentages. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, 
TN = true-negative CTPAs, FP = false-positive CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient, AUC = area under the 
receiver operating characteristic curve. 
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The output of the automated classification algorithm is shown (Figure 4, Supp. Figures 1-3). 

Performing model inference within the nnU-Net framework for a single CTPA volume examination, 

utilizing a singular Nvidia RTX 4090 GPU card, required 240-300 s. Furthermore, disabling the test 

time augmentation (TTA) yielded a decrease in inference time to 60-70 s with an average accuracy 

decline of 1% (Supp. Tables 1-12). 

 

 

Figure 4. Representative segmentation results of the trained model. Axial, coronal, and sagittal 
planes from the same CTPA examinations from the external FUMPE dataset with the same window 
setting (width = 800 HU, level = 100 HU) are shown. Red, pulmonary embolism annotation; blue, 
model segmentation; purple, overlay of annotation and model segmentation. 

 

3.3. Benchmarking of model performance 

As mentioned above, post-processing strategy 1 was used to find out the best balance between 

sensitivity and specificity and 20 mm³ was determined as the optimal threshold volume. Aiming for 

the highest specificity and the lowest patient level false positive rate, we used post-processing strategy 

2 where 50 mm³ was determined as optimal threshold volume. For size comparison, 20 mm³, 50 mm³, 

and other threshold volumes (Figure 5a) are compared to a segmented reference pulmonary artery 

(Figure 5b). In the internal test dataset, the highest specificity (96.7%; 95% C.I. 95-98%, P < .05) was 

obtained with a sensitivity of 87.5% (95% C.I. 81-92%, P < .05) with post-processing strategy 2 

(Supp. materials, Supp. Table 7) and threshold volume of 50 mm³.  For the external datasets, the 

highest specificity 100% (95% C.I. 34-100%, P < .05) and 96.9% (95% C.I. 95-98%, P < .05) was 

obtained with a sensitivity of 90.6% (95% C.I. 76-97%, P < .05) and 96.6% (95% C.I. 94-98%, P < 
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.05) in the FUMPE and RSPECT datasets, respectively (Supp. Table 8 and 9). Moreover, we 

examined the source of false positives by implementing post-processing strategy 2, which led to a 

minimum number of FPs per dataset. The most frequent false positives were due to low contrast 

medium in pulmonary arteries (Table 3). Whereas 18% of FPs occurred on the outside of the thoracic 

cavity, in the upper abdomen, or in the superior vena cava, the remaining FPs occurred within or close 

to the pulmonary vessel network. Besides, most of the false negatives (FN) occurred in the RSPECT 

dataset, and the primary cause of these FNs is chronic PEs. We next compared model performance to 

those of previous studies (Table 4). With post-processing strategy 2, the proposed algorithm achieved 

a sensitivity of 96.2% (95% C.I. 94-98%, P < .05) and a specificity of 96.8% (95% C.I. 95-98%, P < 

.05) on the combined (internal and external) testing set (Supp. Table 12). While investigating the 

causes of false positives, we observed that 3 CTPAs from the RSPECT dataset that were annotated as 

PE negative were actually PE positive. Considering this correction, the proposed algorithm achieved a 

specificity of 97.1%. 

 

Table 3. Sources of false positives in PE negative CTPA examinations from internal and external 
datasets 

Source  
Internal Dataset 

(n=18) 
RSPECT External Dataset  

(n=12) 

Flow artifact 1 1 

Upper abdomen (in left colon)  1 0 

Outside the thoracic cavity 3 0 

Low contrast medium in PT 6 2 

Pulmonary vein 1 2 

Superior vena cava  1 0 

Intrafissural fluid / atelectasis 0 1 

Multiple metastasis 1 1 

Tumor 4 2 

True pulmonary emboli 0 3 

Note. —    CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, PE = pulmonary embolism, PT 
= pulmonary trunk, RSPECT = RSNA Pulmonary Embolism CT Dataset. The cause of false positives in a total of 30 CTPAs is 
shown, 18 in internal and 12 in external datasets.  
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Table 4. Model performance comparison for patient-level classification for PE in CTPA examinations. 

 
                Testing size 

Author Year Method 
Classification 

level 
PE location 

AUC 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

PE 
positive 
CTPAs 

PE 
negative 
CTPAs 

Total # of CTPAs 

PIOPED II [29] 2006 Radiologists patient-level M, L, S, s N/A 83 96 181 592 773 
Maizlin et al [30] 2007 IPAT patient-level M, L, S, s N/A 53.3 77.5 15 89 104 
Wittenberg et al [9] 2010 IPAT patient-level M, L, S, s N/A 94 21 68 210 278 
Wittenberg et al [28] 2012 IPAT patient-level M, L, S, s N/A 96 22 51 158 209 
Lahiji et al [31] 2014 IPAT patient-level L, S, s N/A 97.5 26.9 40 26 66 
Rajan et al [16] 2020 2D U-Net + LSTM patient-level M, L 85 N/A N/A 385 127 512 
Rajan et al [16] 2020 2D U-Net + LSTM patient-level S, s 70 N/A N/A 385 127 512 
Weikert et al [17] 2020 DCNN patient-level M, L, S, s N/A 92.7 95.5 232 1233 1465 
Weikert et al [17] 2020 DCNN patient-level M, L, (S, s) * N/A 95.7 95.5 232 1233 1465 
Weikert et al [17] 2020 DCNN patient-level S, (s)* N/A 93.3 95.5 232 1233 1465 
Weikert et al [17] 2020 DCNN patient-level s N/A 85.7 95.5 232 1233 1465 
Huang et al [27] 2020 3D CNN patient-level M, L, S 85 75 81 94 106 200 
Huhtanen et al [32] 2022 CNN patient-level M, L, S, s N/A 86.6 93.5 97 107 204 
Ma et al [33] 2022 TCN+Attention patient-level M, L, S, s 91 N/A N/A 313 687 1000 
Wiklund et al [34] 2023 Commercial patient-level M, L, S, s N/A 90.7 99.8 75 1817 1892 
Djahnine et al [35] 2024 Retina U-Net patient-level M, L, S, s 85 N/A N/A 179‡ 199‡ 378 

   Islam et al [36] 2024 CNN patient-level M, L, S, s 93 N/A N/A N/A N/A 1000 
Proposed pipeline  2023 nnU-Net + DPPS1 patient-level M, L, S, s 98.2 98.3 92.6 417 938 1355 
Proposed pipeline  2023 nnU-Net + DPPS2 patient-level M, L, S, s 98.3 96.2 96.8 417 938 1355 
Note. —  * can possibly have pulmonary emboli in these segments, PE = pulmonary embolism, CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, IPAT = 
image processing and analysis techniques, N/A =  not available,  M = left, right and main pulmonary arteries-level PE, L = lobar level PE, S = segmental level PE, s = sub-segmental level PE, 
LSTM = long short-term memory, CNN = convolutional neural network, DCNN = deep CNN, TCN=  temporal convolutional network, PIOPED = prospective investigation of pulmonary 

embolism diagnosis II, DPPS= deterministic  post-processing strategy. ‡ A total of 178 CTPAs were conducted, and the numbers of PE and Non-PE exams were estimated from the histogram 
plot [37]. 
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Figure 5. An illustration of a segmented reference pulmonary artery with reference threshold 
volumes. Patient orientation of 3D volumes with reference threshold volumes (20, 50, 200, 1000, and 
10000 mm³) (a). Manually segmented reference pulmonary artery (volume of 113 cm³) from a male 
patient without PE (b). All volumetric images are isotropic (1 mm × 1 mm × 1 mm). 
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4. Discussion 

 

Detection of PE in CTPA using deep convolutional neural networks (DCNN) was first demonstrated 

by Tajbakhsh et al. with a sensitivity of 83% and 34.6% at 2 FPs per examinations on 121 internal and 

20 external test examinations, respectively [26]. Rajan et al. proposed a two-stage solution where a 

2D U-Net model was used for PE candidate generation, followed by a convolutional long short-term 

memory (LSTM) network coupled with multiple instance learning to detect PE lesions, with AUROC 

of 70% for subsegmental and segmental PE and 0.85 for saddle and main pulmonary artery PE on a 

test dataset of 512 CTPA examinations [16]. In a study by Huang et al. [27], a 3D CNN model termed 

PENet was developed which achieved a sensitivity of 75% and specificity of 81% on an external test 

dataset of 200 CTPA examinations. However, all these studies have major limitations such as small 

testing dataset sizes or low specificity rates. The current state-of-the-art results were recently achieved 

using the Resnet architecture on 1465 CTPA examinations with a sensitivity of 92.7% and specificity 

of 95.5% at the patient level [18]. Taken together, the performance of AI systems for PE detection is 

now at a point where clinical utility can be expected, but further gains in sensitivity and specificity are 

still warranted.  

 

In this study, we developed an algorithm that classifies CTPA examinations for presence of PE 

consisting of two main stages, PE candidate selection and post-processing. For PE candidate 

selection, we trained and validated a semantic segmentation model, nnU-Net, on our internal dataset. 

The nnU-Net is a medical image segmentation framework based on the U-Net architecture and has 

outperformed state-of-the-art models by competing in 53 segmentation tasks from 11 international 

biomedical image segmentation challenges and taking first place in 33 of them [19]. To our 

knowledge, this is the first use of nnU-Net for classification for PE. To transform the segmentation 

model into a classification model, we developed rules based on probability and minimum volume 

thresholds as a post-processing stage. We defined two post-processing strategies, one for the best 

trade-off between sensitivity and specificity and one for achieving the highest specificity. At the best 

trade-off between sensitivity and specificity, the patient-level classification performance of the trained 

model achieved a sensitivity of 98.3% and specificity of 92.6% on the combined testing dataset using 

a threshold volume of 20 mm³, compared to specificity of 75.1% with sensitivity of 100% without 

post-processing. Thus, by sacrificing 1.7% of sensitivity, the model gained 17.4% in specificity using 

post-processing. The model outperformed the current state-of-the-art using the strategy of highest 

specificity, achieving 96.2% sensitivity and a specificity of 96.8% on the combined testing dataset of 

1355 CTPA examinations with a total emboli volume threshold of 50 mm³.  
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Treatment for small PEs is debated and controversial [24,25] and PE volumes in this context are 

rarely measured and reported in the literature and are subject to inter-observer variability. We decided 

to set a cut-off volume to exclude the very smallest and in some cases doubtful PEs in our internal 

dataset. Radiologists DT and TF segmented all 1497 PEs and found a total volume of 50 mm³ to be a 

reasonable cut-off for exclusion. In a scenario where the total PE volume of 50 mm³ was represented 

by a single, equidimensional embolus, the cut-off size would amount to a cylinder with a diameter and 

height of 4 mm. Many of the PEs in the 21 excluded exams were much smaller eccentric or tiny webs, 

likely chronic. 

 

Although the nnU-Net based model presented here is superior to the state-of-the-art, there are some 

limitations and opportunities for future enhancement. First, the model was trained on data from a 

single institution, although derived from five different CT scanners. Second, the training dataset, even 

though the proportion was not analyzed in detail, was predominantly comprised of acute PEs with a 

limited representation of chronic PEs. However, our observations suggest that chronic PEs within the 

RSPECT dataset are a significant factor contributing to false negatives. Third, the RSPECT validation 

dataset lacks voxel level annotation of PE by radiologists, which precludes final determination of 

sensitivity and specificity until a review has been completed. Finally, the activation of test time 

augmentation (TTA) extends the model inference duration to ~300 s per CTPA examination. 

Conversely, deactivating the TTA reduces the model inference time to a range of 60 to 70 seconds for 

a single CTPA examination. However, when TTA is disabled, sensitivity and specificity decrease by 

approximately 0.3% and 1.7%, respectively. 

 

In conclusion, nnU-Net deep learning based binary classification for PE holds potential to assist 

radiologists in the reading of CTPA examinations. Preferentially, such a system could prioritize PE 

positive cases in the work list, identifying high-priority cases for swift review [28], or provide a 

second opinion.  
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Supplementary Materials 

 

S.1. Dataset 

 S.1.1 Internal dataset CT Acquisition Protocols 
All 700 CTPAs were performed with bolus tracking technique with the region of interest (ROI) in the 

pulmonary trunk. Different Hounsfield unit thresholds and delays were used. Contrast medium doses 

were recorded for 191 (range 20 ml – 114 ml, mean 62 ml) and injection rates for 158 (range 2,4 ml/s 

– 6,1 ml/s, mean 3,6 ml/s) CTPAs, respectively. The most frequently used CT image acquisition 

parameters were slice thickness 0.625 mm (range 0.625 mm - 2.0 mm), pixel spacing 0.7 mm (range 

0.59 mm - 0.98 mm), tube voltage 100 kV (range 80 kV - 120 kV) and scanning direction caudal to 

cranial. The CTPAs acquired on the Siemens Somatom Definition Flash CT were in the majority of 

cases performed with dual-energy source acquisition with tube settings 80 kV / 140 kV and the 

images used in the dataset were post-processed blended images from a weighting factor 0.5. 

 

 S.1.2 Distribution of CT Pulmonary Angiography examinations from the same 

patient in internal datasets 

The internal dataset comprises 700 CT Pulmonary Angiography (CTPA) examinations involving 652 

patients. Among them, 41 patients underwent CTPA twice, 2 patients thrice, and 1 patient four times. 

Of the 149 pulmonary embolism (PE) -positive examinations, 142 patients were involved, and of the 

551 PE-negative examinations, 520 patients were included. Ten patients had both PE-negative and 

PE-positive CT examinations. Since the CT scans acquired from the same patient were performed at 

different occasions, several anatomical aspects depending on breath hold level, angle of spine and 

pulmonary disease status were different (Supp. Figures 4-5). This means that there were differences at 

the voxel level and also differences in the data label (positive/negative PE), depending on the scan 

session. The examinations were therefore used and analyzed as if they had been obtained from 

different patients. They were therefore randomly distributed to cross-validation dataset, regardless of 

whether they belonged to the same patient. In the external datasets, all CTPAs were obtained from 

different patients and thus truly statistically independent. 

 

 

S.1.3 Ferdowsi University of Mashhad's Pulmonary Embolism Dataset 

The Ferdowsi University of Mashhad's PE dataset (FUMPE) is a publicly available dataset consisting 

of 35 CTPA examinations with voxel-level PE annotations by radiologists. One PE-positive 

examination was excluded due to a lack of ground truth annotation. Out of the 34 CTPA 

examinations, 32 were PE-positive and 2 were PE-negative. When examining the ground truth, we 

noticed that the slice locations of PE annotations were incorrect in 8 CTPA examinations. 
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Specifically, in these cases, PE annotations that should have been located in slice 101 were mistakenly 

placed in slice 11. As a result, we relocated the PE annotations from slice 11 to slice 101. 

 

S.2. Environmental Settings and Versions 

 S.2.1 Model Training Environment 
The environmental settings employed for both model training and cross-validation in this study 

encompass specific software versions: Ubuntu 22.04.3 LTS as the operating system, Docker version 

24.0.7 for containerization, and CUDA Version 12.1, along with Nvidia driver version 530.30.02, are 

employed to facilitate seamless interactions with the NVIDIA GeForce RTX 2080 Ti GPUs. The 

programming language employed is Python, specifically version 3.8.10. The deep learning framework 

PyTorch is leveraged in version 2.0.0, and the semantic segmentation method nnU-Net is 

implemented in version 1.7.1. 

 

S.2.2 Model Inference Environment 

For model inference, another workstation was utilized, with specific environmental settings and 

software versions. These settings include Ubuntu 22.04.3 LTS as the operating system, Docker 

version 24.0.7 for containerization, CUDA Version 12.2, and Nvidia driver version 535.129.03, 

facilitating seamless interactions with the NVIDIA GeForce RTX 4090 GPU. The programming 

language employed is Python version 3.10.6. PyTorch, the deep learning framework, is utilized in 

version 2.1.0, and the semantic segmentation method nnU-Net is implemented in version 1.7.1. 

 

 

S.3. The nnU-Net Deep Learning Framework 

 S.3.1 Hyperparameters 
In the training of our deep learning model, the nnU-Net framework employed a specific set of 

hyperparameters to optimize the learning process. The chosen optimizer is Stochastic Gradient 

Descent (SGD) with Nesterov momentum, utilizing a momentum value of 0.99. Additionally, weight 

decay was incorporated with a coefficient of 3e-05 to regulate the model's complexity during training. 

The initial learning rate was set to 0.01, providing a starting point for the optimization process. To 

enhance the training procedure, a learning rate scheduler was implemented with a patience parameter 

of 30 epochs and a threshold of 1e-06. Lastly, the maximum number of training epochs was defined as 

1000. These carefully selected hyperparameters contribute to the fine-tuning of the model, optimizing 

its performance over the course of training. 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 11, 2024. ; https://doi.org/10.1101/2023.04.21.23288861doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.21.23288861


27 
 

S.3.2 Data Augmentation 

The nnU-Net framework employed a set of data augmentation techniques to generalize the models to 

prevent overfitting to the training data set. Elastic deformation, a spatial transformation technique, 

was introduced with an alpha range of (0.0, 200.0) and a sigma range of (9.0, 13.0), implemented with 

a probability of occurrence set at 0.2. Scaling transformations were applied within the range of (0.7, 

1.4). To introduce variability in the orientation of the input data, rotational transformations along the 

X, Y, and Z axes were implemented with specified ranges. Gamma correction, an intensity 

transformation, was applied with a probability of 0.3 and a gamma range of (0.7, 1.5). Mirroring along 

axes (0, 1, 2) were applied. Furthermore, a cascaded random binary transformations and additive 

brightness adjustments were employed with specified probabilities and parameters. 

 

S.3.3 3D U-Net Architecture 

The nnU-Net framework is configured to generate a 3D U-Net architecture for semantic segmentation 

tasks.  The 3D U-Net architecture is characterized by a symmetrical design with a decoder path that 

uses transposed convolutions for up sampling. The decoder path of the network consists of five 

transposed convolutional layers. Each layer employs 3D transposed convolutional operation with 

varying input and output channel sizes, effectively increasing spatial resolution. Starting with the first 

layer, it utilizes a transposed convolution operation with 320 input channels, 320 output channels, a 

2x2x2 kernel size, and a stride of 2 in all spatial dimensions. Subsequent other layers follow a similar 

structure, progressively decreasing the number of input channels while maintaining the up-sampling 

strategy. Additionally, the architecture includes an encoder path with five convolutional layers, where 

each 3D convolutional operation employs a 1x1x1 kernel with a stride of 1. These layers reduce the 

channel depth and capture hierarchical features. Each convolutional layer followed by 3D instance 

normalization and leaky rectified linear unit activation. 

 

S.4. Post-processing step 

The nn-Unet softmax activation function of the final layer of the U-Net architecture can be used to 

scale network output into probabilities. Hence, the probabilities could be gathered, and not only final 

pixel class values. We developed a set of logical rules based on different softmax probability 

thresholds (0.75 - 0.95) and threshold volumes per examinations (0 mm³ to 200 mm³ in 10 mm³ 

intervals) to reduce false positives (FPs) and convert nnU-Net inference segmentation output into a 

patient-level classification output. By setting different softmax probability thresholds, we obtained 

different predicted PE volumes. If the model is well-trained to distinguish between PE and non-PE 

classes, the number of predicted voxels (false positive voxels) that do not belong to the PE class will 

decrease when the softmax probabilities are set to higher thresholds. Therefore, we developed the 
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formulas below to decide whether the total predicted PE volume is sufficient to determine the patient 

as PE positive/negative.   

Proposition 1: 

 

� �  
���
��  �	  
��.�� �  ��.��
 ��.�� �  �   ,       ��� � �����������               ,        �� 

� 
 

where ��.�� is the volume of total PE predicted by the trained model at a softmax probability of 0.75, ��.�� is the volume of total PE predicted by the trained model at a softmax probability of 0.90, and � is 

the ratio factor, which was fixed at 15. The softmax probability value range and the ratio factor were 

optimized by systematic exploration. 

 

Proposition 2: 

� �  
���
�� � � �1, �	 
��  !
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where ��  is the volume of total PE predicted by the trained model at a softmax probability of i between 

0.75 to 0.95 with 0.05 intervals, v is the threshold volume between 0 and 200 mm³ at 10 mm³ intervals 

and  & is the condition factor (min value is 0, max value is 4) that refers to the total number of true 

conditions satisfying ��  ! equation. 

 

Then, the final decision is made as follows: 

 

 � ' � �  (�)����� �����*� ��, +�*� �)����� ���� ��,               ,)-�� 
� 

 

 

According to the propositions above, we defined two post-processing strategies. Strategy 1 (Rule-in 

classification for PE) aimed to find the exact threshold volume value and & value for the best trade-off 

between sensitivity and specificity by checking the Matthew’s correlation coefficient (MCC) value. 

And strategy 2 (Rule-out classification for PE) aimed to find the exact threshold volume and & values 

for the highest specificity alongside the highest MCC value. 
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Strategy 1: 

By systematic exploration, setting the threshold volume value to 20 mm³ and the k value to 1 gives 

the highest MCC value (84.9%, Supplementary Table 4). 

 

Strategy 2 

By systematic exploration, setting the threshold volume value to 50 mm³ and the k value to 0 gives 

the highest specificity alongside the highest MCC value (83.7%, Supplementary Table 7). 
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Supplemental Figure 1. Representative segmentation results from the FUMPE dataset (patient 03). Axial, coronal, and sagittal planes from the same 
CTPA examination from the external FUMPE dataset with the same window setting (width = 800 HU, level = 100 HU) are shown. Red, pulmonary embolism 
annotation; blue, model segmentation; purple, overlay of annotation and model segmentation. 
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Supplemental Figure 2. Representative segmentation results from the FUMPE dataset (patient 04). Axial, coronal, and sagittal planes from the same 
CTPA examination from the external FUMPE dataset with the same window setting (width = 800 HU, level = 100 HU) are shown. Red, pulmonary embolism 
annotation; blue, model segmentation; purple, overlay of annotation and model segmentation. 
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Supplemental Figure 3. Representative segmentation results from the FUMPE dataset (patient 05). Axial, coronal, and sagittal planes from the same 
CTPA examination from the external FUMPE dataset with the same window setting (width = 800 HU, level = 100 HU) are shown. Red, pulmonary embolism 
annotation; blue, model segmentation; purple, overlay of annotation and model segmentation. 
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Supplemental Figure 4. Representative examples from two CT Pulmonary Angiography (CTPA) examinations of the same patient, both having 
pulmonary embolism. Two CTPA examinations from the same patient within the internal dataset are presented, featuring identical window settings (width = 
1500 HU, level = -400 HU) and depicted at three distinct anatomical levels. The patient exhibited pulmonary embolism in both CTPA examinations. 
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Supplemental Figure 5. Representative examples of two CT Pulmonary Angiography (CTPA) examinations of the same patient with a pulmonary 
embolism in one examination but not in the other. Two CTPA examinations from the same patient within the internal dataset are presented, featuring 
identical window settings (width = 1500 HU, level = -400 HU) and depicted at three distinct anatomical levels. The patient exhibited pulmonary embolism in 
examination 2. 
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Supplementary Table 1. Diagnostic performance of the trained model without post-processing in the internal dataset 

  Internal Dataset (CTPAs = 679) 

  Test Time Augmentation Enabled 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 213 389 433 459 465 476 486 488 490 492 493 496 497 499 501 501 502 502 502 503 503 

No. of FP 338 162 118 92 86 75 65 63 61 59 58 55 54 52 50 50 49 49 49 48 48 

No. of TP 128 128 128 127 126 126 124 123 123 121 120 119 118 118 118 117 117 116 116 116 115 

No. of FN 0 0 0 1 2 2 4 5 5 7 8 9 10 10 10 11 11 12 12 12 13 

MCC (%) 32.6 55.8 63.9 69.0 69.9 72.7 74.2 74.2 74.8 74.3 74.0 74.3 74.1 74.7 75.3 74.8 75.1 74.5 74.5 74.9 74.3 

Sensitivity (%) 100 100 100 99 98.4 98.4 96.9 96.1 96.1 94.5 93.8 93.0 92.2 92.2 92.2 91.4 91.4 90.6 90.6 90.6 89.8 

Specificity (%) 38.7 70.6 78.6 83.3 84.4 86.4 88.2 88.6 88.9 89.3 89.5 90.0 90.2 90.6 90.9 90.9 91.1 91.1 91.1 91.3 91.3 

Accuracy (%) 50.2 76.1 82.6 86.3 87.0 88.7 89.8 90.0 90.3 90.3 90.3 90.6 90.6 90.9 91.2 91.0 91.2 91.0 91.0 91.2 91.0 

Balanced Accuracy (%) 69.4 85.3 89.3 91.2 91.4 92.4 92.6 92.4 92.5 91.9 91.6 91.5 91.2 91.4 91.6 91.2 91.2 90.9 90.9 91.0 90.6 

 
Test Time Augmentation Disabled 

No. of TN 189 378 417 440 450 462 473 478 480 487 490 490 492 492 493 494 496 499 500 502 502 

No. of FP 362 173 134 111 101 89 78 73 71 64 61 61 59 59 58 57 55 52 51 49 49 

No. of TP 128 128 128 128 127 126 125 123 122 121 119 119 118 118 118 118 117 116 116 115 115 

No. of FN 0 0 0 0 1 2 3 5 6 7 9 9 10 10 10 10 11 12 12 13 13 

MCC (%) 29.9 54.0 60.8 65.4 67.0 69.2 71.3 71.5 71.5 72.8 72.6 72.6 72.6 72.6 72.9 73.2 73.2 73.6 73.9 74.0 74.0 

Sensitivity (%) 100 100 100 100 99.2 98.4 97.7 96.1 95.3 94.5 93.0 93.0 92.2 92.2 92.2 92.2 91.4 90.6 90.6 89.8 89.8 

Specificity (%) 34.3 68.6 75.7 79.9 81.7 83.8 85.8 86.8 87.1 88.4 88.9 88.9 89.3 89.3 89.5 89.7 90.0 90.6 90.7 91.1 91.1 

Accuracy (%) 46.7 74.5 80.3 83.7 85.0 86.6 88.1 88.5 88.7 89.5 89.7 89.7 89.8 89.8 90.0 90.1 90.3 90.6 90.7 90.9 90.9 

Balanced Accuracy (%) 67.2 84.3 87.8 90.0 90.4 91.1 91.8 91.4 91.2 91.4 91.0 91.0 90.8 90.8 90.8 91.0 90.7 90.6 90.6 90.4 90.4 

Note. — The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive CTPAs,  
TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. 

 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted A

pril 11, 2024. 
; 

https://doi.org/10.1101/2023.04.21.23288861
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.04.21.23288861


41 
 

Supplementary Table 2. Diagnostic performance of the trained model without post-processing in the external FUMPE dataset 

  FUMPE External Dataset (CTPAs = 34) 

  Test Time Augmentation Enabled 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

No. of FP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

No. of TP 32 32 32 32 32 32 32 32 32 32 31 31 30 30 29 29 29 29 29 29 29 

No. of FN 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 3 3 3 3 3 

MCC (%) 100.0 100 100 100 100 100 100 100 100 100 80 80 69 69 60 60.2 60.2 60.2 60.2 60.2 60.2 

Sensitivity (%) 100 100 100 100 100 100 100 100 100 100 97 97 94 94 91 90.6 90.6 90.6 90.6 90.6 90.6 

Specificity (%) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Accuracy (%) 100 100 100 100 100 100 100 100 100 100 97 97 94 94 91 91.2 91.2 91.2 91.2 91.2 91.2 

Balanced Accuracy (%) 100 100 100 100 100 100 100 100 100 100 98 98 97 97 95 95.3 95.3 95.3 95.3 95.3 95.3 

 
Test Time Augmentation Disabled 

No. of TN 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

No. of FP 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

No. of TP 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 30 30 30 30 30 30 

No. of FN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 

MCC (%) 69.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 68.5 68.5 68.5 68.5 68.5 68.5 

Sensitivity (%) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 93.8 93.8 93.8 93.8 93.8 93.8 

Specificity (%) 50.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Accuracy (%) 97.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 94.1 94.1 94.1 94.1 94.1 94.1 

Balanced Accuracy (%) 75.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 96.9 96.9 96.9 96.9 96.9 96.9 

Note. — The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 
CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. FUMPE = Ferdowsi University of Mashhad's PE dataset. 
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Supplementary Table 3. Diagnostic performance of the trained model without post-processing in the external RSPECT Dataset 

  RSPECT External Dataset (CTPAs = 770) 

  Test Time Augmentation Enabled 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 131 249 269 287 297 303 308 312 314 318 321 326 328 330 333 333 335 337 338 341 343 

No. of FP 254 136 116 98 88 82 77 73 71 67 64 59 57 55 52 52 50 48 47 44 42 

No. of TP 385 385 385 385 385 385 384 383 382 382 382 382 382 380 376 376 376 375 374 374 374 

No. of FN 0 0 0 0 0 0 1 2 3 3 3 3 3 5 9 9 9 10 11 11 11 
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(%) 3 4 4 6 8 9 9 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 
CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. RSPECT = RSNA Pulmonary Embolism CT Dataset. 
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Supplementary Table 4. Diagnostic performance of the trained model with post-processing strategy 1 in the internal dataset 

  Internal Dataset (CTPAs = 679) 

  Test Time Augmentation Enabled 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 439 511 521 523 526 529 529 530 530 530 531 533 534 535 536 536 537 538 538 538 538 

No. of FP 112 40 30 28 25 22 22 21 21 21 20 18 17 16 15 15 14 13 13 13 13 

No. of TP 124 124 123 120 114 113 113 111 109 108 108 108 106 106 106 105 105 102 102 102 101 

No. of FN 4 4 5 8 14 15 15 17 19 20 20 20 22 22 22 23 23 26 26 26 27 
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(%) 4 4 9 0 8 4 6 9 1 8 0 2 5 6 7 3 3 7 8 4 4 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 
CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. 
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Supplementary Table 5. Diagnostic performance of the trained model with post-processing strategy 1 in the external FUMPE Dataset 

  FUMPE External Dataset (CTPAs = 34) 

  Test Time Augmentation Enabled 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

No. of FP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

No. of TP 31 31 31 31 30 29 29 29 29 28 28 28 28 28 28 28 28 28 28 27 27 

No. of FN 1 1 1 1 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 
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(%) 0 4 4 4 9 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 8 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 
CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. FUMPE = Ferdowsi University of Mashhad's PE dataset. 
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Supplementary Table 6. Diagnostic performance of the trained model with post-processing strategy 1 in the external RSPECT Dataset 

   RSPECT External Dataset (CTPAs = 770) 

  Test Time Augmentation Enabled 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 294 336 346 355 361 364 368 370 370 371 372 374 376 377 377 377 377 378 380 380 380 

No. of FP 91 49 39 30 24 21 17 15 15 14 13 11 9 8 8 8 8 7 5 5 5 

No. of TP 382 379 379 379 377 376 373 372 372 371 369 369 368 367 367 366 365 364 364 364 363 

No. of FN 3 6 6 6 8 9 12 13 13 14 16 16 17 18 18 19 20 21 21 21 22 
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(%) 4 3 2 8 9 9 0 4 3 3 4 8 7 7 8 6 7 9 2 1 1 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 
CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. RSPECT = RSNA Pulmonary Embolism CT Dataset. 
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Supplementary Table 7. Diagnostic performance of the trained model with post-processing strategy 2 in the internal Dataset 

  Internal Dataset (CTPAs = 679) 

  Test Time Augmentation Enabled 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 466 519 524 529 531 533 534 536 536 537 538 538 538 540 540 540 540 540 541 541 541 

No. of FP 85 32 27 22 20 18 17 15 15 14 13 13 13 11 11 11 11 11 10 10 10 

No. of TP 124 120 116 114 113 112 109 108 108 107 106 106 106 105 103 102 102 101 100 99 99 

No. of FN 4 8 12 14 15 16 19 20 20 21 22 22 22 23 25 26 26 27 28 29 29 
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(%) 8 9 3 4 6 6 6 5 6 2 5 8 8 8 0 8 9 5 1 1 1 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 
CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. 

 

  

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted A

pril 11, 2024. 
; 

https://doi.org/10.1101/2023.04.21.23288861
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.04.21.23288861


52 
 

Supplementary Table 8. Diagnostic performance of the trained model with post-processing strategy 2 in the eternal FUMPE Dataset 

   FUMPE External Dataset (CTPAs = 34) 

  Test Time Augmentation Enabled 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

No. of FP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

No. of TP 31 31 31 31 29 29 29 28 28 28 28 28 28 28 28 27 27 27 27 27 27 

No. of FN 1 1 1 1 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 
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Specificity (%) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Accuracy (%) 
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Test Time Augmentation Disabled 

No. of TN 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

No. of FP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

No. of TP 31 31 31 30 30 29 29 29 29 29 29 29 29 29 29 29 28 28 28 28 28 

No. of FN 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 
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Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 
CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. FUMPE = Ferdowsi University of Mashhad's PE dataset. 
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Supplementary Table 9. Diagnostic performance of the trained model with post-processing strategy 2 in the external RSPECT Dataset 

  RSPECT External Dataset (CTPAs = 770) 

  Test Time Augmentation Enabled 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 310 349 358 366 371 373 373 375 376 377 379 379 379 380 381 382 382 382 382 382 382 

No. of FP 75 36 27 19 14 12 12 10 9 8 6 6 6 5 4 3 3 3 3 3 3 

No. of TP 380 378 374 374 372 372 370 369 367 366 366 365 364 362 362 362 362 362 362 361 360 

No. of FN 5 7 11 11 13 13 15 16 18 19 19 20 21 23 23 23 23 23 23 24 25 
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Test Time Augmentation Disabled 

No. of TN 286 336 347 355 362 365 367 369 370 371 371 372 374 375 376 377 378 378 379 379 381 

No. of FP 99 49 38 30 23 20 18 16 15 14 14 13 11 10 9 8 7 7 6 6 4 

No. of TP 381 378 378 376 371 371 368 368 367 367 366 365 364 363 363 362 362 362 362 362 361 

No. of FN 4 7 7 9 14 14 17 17 18 18 19 20 21 22 22 23 23 23 23 23 24 
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(%) 6 8 2 0 2 6 4 7 7 8 8 7 8 8 0 9 1 1 2 2 4 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 
CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. RSPECT = RSNA Pulmonary Embolism CT Dataset. 
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Supplementary Table 10. Diagnostic performance of the trained model without post-processing strategy in the combined testing dataset 

  Testing Dataset (CTPAs = 1355) 

  Test Time Augmentation Enabled 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 346 640 704 748 764 781 796 802 806 812 816 824 827 831 836 836 839 841 842 846 848 

No. of FP 592 298 234 190 174 157 142 136 132 126 122 114 111 107 102 102 99 97 96 92 90 

No. of TP 417 417 417 417 417 417 416 415 414 414 413 413 412 410 405 405 405 404 403 403 403 

No. of FN 0 0 0 0 0 0 1 2 3 3 4 4 5 7 12 12 12 13 14 14 14 

MCC (%) 39.0 63.1 69.3 74.0 75.8 77.8 79.4 79.9 80.2 80.9 81.2 82.3 82.5 82.6 82.3 82.3 82.7 82.7 82.7 83.2 83.5 

Sensitivity (%) 100 100 100 100 100 100 99.8 99.5 99.3 99.3 99.0 99.0 98.8 98.3 97.1 97.1 97.1 96.9 96.6 96.6 96.6 

Specificity (%) 36.9 68.2 75.1 79.7 81.4 83.3 84.9 85.5 85.9 86.6 87.0 87.8 88.2 88.6 89.1 89.1 89.4 89.7 89.8 90.2 90.4 

Accuracy (%) 56.3 78.0 82.7 86.0 87.2 88.4 89.4 89.8 90.0 90.5 90.7 91.3 91.4 91.6 91.6 91.6 91.8 91.9 91.9 92.2 92.3 

Balanced Accuracy (%) 68.4 84.1 87.6 89.8 90.7 91.6 92.4 92.5 92.6 92.9 93.0 93.4 93.5 93.4 93.1 93.1 93.2 93.3 93.2 93.4 93.5 

 
Test Time Augmentation Disabled 

No. of TN 308 615 680 718 740 757 779 786 794 804 809 812 819 824 827 829 832 838 840 843 843 

No. of FP 630 323 258 220 198 181 159 152 144 134 129 126 119 114 111 109 106 100 98 95 95 

No. of TP 417 417 417 417 417 416 416 415 415 415 415 415 414 414 411 409 407 406 406 406 406 

No. of FN 0 0 0 0 0 1 1 2 2 2 2 2 3 3 6 8 10 11 11 11 11 

MCC (%) 36.2 60.8 66.9 70.8 73.1 74.8 77.3 78.0 78.9 80.1 80.8 81.1 81.8 82.5 82.3 82.1 82.1 82.7 83.0 83.4 83.4 

Sensitivity (%) 100.0 100.0 100.0 100.0 100.0 99.8 99.8 99.5 99.5 99.5 99.5 99.5 99.3 99.3 98.6 98.1 97.6 97.4 97.4 97.4 97.4 

Specificity (%) 32.8 65.6 72.5 76.5 78.9 80.7 83.0 83.8 84.6 85.7 86.2 86.6 87.3 87.8 88.2 88.4 88.7 89.3 89.6 89.9 89.9 

Accuracy (%) 53.5 76.2 81.0 83.8 85.4 86.6 88.2 88.6 89.2 90.0 90.3 90.6 91.0 91.4 91.4 91.4 91.4 91.8 92.0 92.2 92.2 

Balanced Accuracy (%) 66.4 82.8 86.2 88.2 89.4 90.2 91.4 91.6 92.0 92.6 92.8 93.0 93.3 93.6 93.4 93.2 93.2 93.4 93.5 93.6 93.6 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive CTPAs, 
TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. RSPECT = RSNA Pulmonary Embolism CT Dataset, FUMPE = Ferdowsi 
University of Mashhad's PE dataset, Testing Dataset = 551 PE negative CTPAs from internal testing set + 32 PE positive and 2 PE negative from FUMPE + 385 PE positive and 385 
PE negative CTPAs from RSPECT.  
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Supplementary Table 11. Diagnostic performance of the trained model with post-processing strategy 1 in the combined testing dataset 

  Testing Dataset (CTPAs = 1355) 

  Test Time Augmentation Enabled 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 735 849 869 880 889 895 899 902 902 903 905 909 912 914 915 915 916 918 920 920 920 

No. of FP 203 89 69 58 49 43 39 36 36 35 33 29 26 24 23 23 22 20 18 18 18 

No. of TP 413 410 410 410 407 405 402 401 401 399 397 397 396 395 395 394 393 392 392 391 390 

No. of FN 4 7 7 7 10 12 15 16 16 18 20 20 21 22 22 23 24 25 25 26 27 

MCC (%) 71.7 85.0 87.8 89.4 90.2 90.8 90.9 91.2 91.2 91.0 90.9 91.6 91.9 92.0 92.2 92.0 92.0 92.2 92.5 92.3 92.2 

Sensitivity (%) 99.0 98.3 98.3 98.3 97.6 97.1 96.4 96.2 96.2 95.7 95.2 95.2 95.0 94.7 94.7 94.5 94.2 94.0 94.0 93.8 93.5 

Specificity (%) 78.4 90.5 92.6 93.8 94.8 95.4 95.8 96.2 96.2 96.3 96.5 96.9 97.2 97.4 97.5 97.5 97.7 97.9 98.1 98.1 98.1 

Accuracy (%) 84.7 92.9 94.4 95.2 95.6 95.9 96.0 96.2 96.2 96.1 96.1 96.4 96.5 96.6 96.7 96.6 96.6 96.7 96.8 96.8 96.7 

Balanced Accuracy (%) 88.7 94.4 95.4 96.0 96.2 96.2 96.1 96.2 96.2 96.0 95.8 96.0 96.1 96.0 96.1 96.0 95.9 95.9 96.0 95.9 95.8 

 
Test Time Augmentation Disabled 

No. of TN 665 829 853 861 868 882 886 891 892 894 897 901 902 903 905 906 907 911 914 914 914 

No. of FP 273 109 85 77 70 56 52 47 46 44 41 37 36 35 33 32 31 27 24 24 24 

No. of TP 413 409 409 409 406 405 402 401 399 398 397 397 396 396 395 393 393 393 393 392 391 

No. of FN 4 8 8 8 11 12 15 16 18 19 20 20 21 21 22 24 24 24 24 25 26 

MCC (%) 64.6 82.1 85.4 86.5 86.9 88.8 88.8 89.4 89.2 89.3 89.6 90.3 90.3 90.4 90.6 90.4 90.5 91.2 91.7 91.5 91.3 

Sensitivity (%) 99.0 98.1 98.1 98.1 97.4 97.1 96.4 96.2 95.7 95.4 95.2 95.2 95.0 95.0 94.7 94.2 94.2 94.2 94.2 94.0 93.8 

Specificity (%) 70.9 88.4 90.9 91.8 92.5 94.0 94.5 95.0 95.1 95.3 95.6 96.1 96.2 96.3 96.5 96.6 96.7 97.1 97.4 97.4 97.4 

Accuracy (%) 79.6 91.4 93.1 93.7 94.0 95.0 95.1 95.4 95.3 95.4 95.5 95.8 95.8 95.9 95.9 95.9 95.9 96.2 96.5 96.4 96.3 

Balanced Accuracy (%) 84.9 93.2 94.5 94.9 94.9 95.6 95.4 95.6 95.4 95.4 95.4 95.6 95.6 95.6 95.6 95.4 95.4 95.6 95.8 95.7 95.6 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 
CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. RSPECT = RSNA Pulmonary Embolism CT Dataset, FUMPE = 
Ferdowsi University of Mashhad's PE dataset, Testing Dataset = 551 PE negative CTPAs from internal testing set + 32 PE positive and 2 PE negative from FUMPE + 385 PE 
positive and 385 PE negative CTPAs from RSPECT.  
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Supplementary Table 12. Diagnostic performance of the trained model with post-processing strategy 2 in the combined testing dataset 

  Testing Dataset (CTPAs = 1355) 

  Test Time Augmentation Enabled 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 778 870 884 897 904 908 909 913 914 916 919 919 919 922 923 924 924 924 925 925 925 

No. of FP 160 68 54 41 34 30 29 25 24 22 19 19 19 16 15 14 14 14 13 13 13 

No. of TP 411 409 405 405 401 401 399 397 395 394 394 393 392 390 390 389 389 389 389 388 387 

No. of FN 6 8 12 12 16 16 18 20 22 23 23 24 25 27 27 28 28 28 28 29 30 

MCC (%) 76.2 87.8 89.1 91.1 91.5 92.1 91.9 92.2 92.0 92.2 92.7 92.5 92.4 92.5 92.7 92.7 92.7 92.7 92.9 92.7 92.5 

Sensitivity (%) 98.6 98.1 97.1 97.1 96.2 96.2 95.7 95.2 94.7 94.5 94.5 94.2 94.0 93.5 93.5 93.3 93.3 93.3 93.3 93.0 92.8 

Specificity (%) 82.9 92.8 94.2 95.6 96.4 96.8 96.9 97.3 97.4 97.7 98.0 98.0 98.0 98.3 98.4 98.5 98.5 98.5 98.6 98.6 98.6 

Accuracy (%) 87.7 94.4 95.1 96.1 96.3 96.6 96.5 96.7 96.6 96.7 96.9 96.8 96.8 96.8 96.9 96.9 96.9 96.9 97.0 96.9 96.8 

Balanced Accuracy (%) 90.8 95.4 95.6 96.4 96.3 96.5 96.3 96.2 96.0 96.1 96.2 96.1 96.0 95.9 96.0 95.9 95.9 95.9 96.0 95.8 95.7 

 
Test Time Augmentation Disabled 

No. of TN 707 844 865 878 889 892 896 899 901 902 903 907 909 910 912 914 916 916 917 917 919 

No. of FP 231 94 73 60 49 46 42 39 37 36 35 31 29 28 26 24 22 22 21 21 19 

No. of TP 412 409 409 406 401 400 397 397 396 396 395 394 393 392 392 391 390 390 390 390 389 

No. of FN 5 8 8 11 16 17 20 20 21 21 22 23 24 25 25 26 27 27 27 27 28 

MCC (%) 68.6 84.1 87.1 88.4 89.1 89.4 89.5 90.0 90.1 90.3 90.2 90.7 90.9 90.8 91.2 91.3 91.5 91.5 91.7 91.7 91.8 

Sensitivity (%) 98.8 98.1 98.1 97.4 96.2 95.9 95.2 95.2 95.0 95.0 94.7 94.5 94.2 94.0 94.0 93.8 93.5 93.5 93.5 93.5 93.3 

Specificity (%) 75.4 90.0 92.2 93.6 94.8 95.1 95.5 95.8 96.1 96.2 96.3 96.7 96.9 97.0 97.2 97.4 97.7 97.7 97.8 97.8 98.0 

Accuracy (%) 82.6 92.5 94.0 94.8 95.2 95.4 95.4 95.6 95.7 95.8 95.8 96.0 96.1 96.1 96.2 96.3 96.4 96.4 96.5 96.5 96.5 

Balanced Accuracy (%) 87.1 94.0 95.2 95.5 95.5 95.5 95.4 95.5 95.6 95.6 95.5 95.6 95.5 95.5 95.6 95.6 95.6 95.6 95.6 95.6 95.6 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 
CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. RSPECT = RSNA Pulmonary Embolism CT Dataset, FUMPE = 
Ferdowsi University of Mashhad's PE dataset, Testing Dataset = 551 PE negative CTPAs from internal testing set + 32 PE positive and 2 PE negative from FUMPE + 385 PE 
positive and 385 PE negative CTPAs from RSPECT.  
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