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Abstract: A deeper understanding of HIV-1 transmission and drug resistance mechanisms can lead 1

to improvement in current treatment policies. However, the rates at which HIV-1 drug resistance 2

mutations (DRMs) are acquired and at which transmitted DRMs persist are multi-factorial and vary 3

considerably between different mutations. We develop a method for estimation of drug resistance 4

acquisition and transmission patterns, which refines the method we described in Mourad et al. 5

AIDS 2015. The method uses maximum likelihood ancestral character reconstruction informed by 6

treatment roll-out dates and allows for analysis of very large data sets. We apply our method to 7

transmission trees reconstructed on the data obtained from the UK HIV drug resistance database 8

to make predictions for known DRMs. Our results show important differences between DRMs, in 9

particular between polymorphic and non-polymorphic DRMs, and between the B and C subtypes. 10

Our estimates of reversion times, based on a very large number of sequences, are compatible but 11

more accurate than those already available in the litterature, with narrower confidence intervals. We 12

consistently find that large resistance clusters are associated with polymorphic DRMs and DRMs 13

with long loss time, which require special surveillance. As in other high-income countries (e.g. 14

Switzerland), the prevalence of sequences with DRMs is decreasing, but among these, the fraction of 15

transmitted resistance is clearly increasing compared to the fraction of acquired resistance mutations. 16

All this indicates that efforts to monitor these mutations and the emergence of resistance clusters in 17

the population must be maintained in the long term. 18

Keywords: HIV-1; drug resistance mutations; ancestral character reconstruction 19

1. Introduction 20

Drug resistance is an increasing health problem. Drug resistance mutations (DRMs) 21

emerge in HIV viruses through selective pressure during antiretroviral therapy (ART) and 22

make the current ART drug combination ineffective both for sustaining the patient’s well- 23

being and for prevention of virus transmission [1,2]. Drug resistant viruses can therefore 24

be transmitted to treatment-naive patients, who in turn can transmit them further [3,4], 25

endangering the efficacy of treatment for the whole population. The rates at which DRMs 26

are acquired and transmitted drug resistance (TDR) mutations persist are likely to be multi- 27

factorial and have been shown to vary considerably depending on duration and type of 28

treatment, and mutations [5]. Hence, having a deeper understanding of HIV transmission 29

and drug resistance mechanisms is important as it can lead to improvement in current 30

treatment policies [6]. 31

Phylodynamics uses phylogenetic trees (i.e. genealogies of the pathogen population) 32

inferred from the pathogen sequence data to estimate the epidemiological parameters. 33

Several phylodynamic models of pathogen transmission were developed [7–10]. 34

An important trade-off in phylodynamic modeling is between the complexity of the 35

biological questions that a model can address and its computational speed. On one side 36
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of the spectrum there are computationally-light statistical approaches, such as the study 37

by Mourad et al. [4] of persistence times of drug-resistance in the HIV-1-infected untreated 38

population in the UK. The analysis used a a parsimony-based approach [11] to extract 39

“phylotypes” of sequences, the most recent common ancestor of which was bearing a 40

resistant mutation that is still shared by the majority of the sequences in the phylotype. 41

Once dated and combined with the treatment-naive/experienced status, these phylotypes 42

were used to zoom on the most readable parts of the phylogeny and compute simple 43

statistics which are immediately accessible from the annotated tree. The simplicity of the 44

method makes it computationally very efficient. It was applied to a large set of ≈ 25, 000 45

HIV-1 subtype B sequences from the UK, where it showed that around 70% of transmitted 46

drug-resistance had a treatment-naive source. 47

However to address more refined questions such as estimation of rates of different 48

events (transmission, drug resistance acquisition, etc.), more complex methods are needed, 49

such as modeling of the viral dynamics with ordinary differential equations (ODEs). Kühn- 50

ert et al. [9] proposed a piecewise-constant two-type (resistant and sensitive) birth–death 51

model to estimate the fitness cost of DRMs. The fitness was measured as a ratio between 52

transmission rates of hosts infected by drug resistant strains and transmission rates of hosts 53

infected by sensitive strains. They applied this model to the data from the Swiss HIV cohort 54

study. They reconstructed a maximum likelihood tree for 5 638 pol-gene sequences from 55

the Swiss HIV cohort study and 4 284 closely related sequences from the Los Alamos HIV 56

database. On this tree, for each of 15 major DRMs present in the Swiss cohort sequences, 57

they identified its transmission clusters of up to 250 sequences each, containing > 80% of 58

Swiss sequences and at least one sequence with the mutation. Kühnert et al. [9] estimated 59

the model parameters on all the clusters for each mutation separately, in a Bayesian setting. 60

To account for the fact that DRMs appear under aniretroviral (ARV) selective pressure, 61

they put the rates of state change (from sensitive to resistant and vice versa) to zero before 62

significant usage of the related drug(s) in Switzerland. The study showed that some of the 63

mutations (RT:D67N, RT:K70R, RT:M184V, RT:K219Q) decreased the fitness, one (PR:L90M) 64

seemed to increase the fitness, while the others did not have a significant effect. 65

The models above, and more generally the family of multi-type birth-death models [7] 66

with a Bayesian birth-death skyline plot (allowing the parameters to change in a piece-wise 67

constant manner) [12] it belongs to, define ODEs for fine-tuned parameter estimation. 68

However, their complexity prevents resolving them analytically. Numerical solution of the 69

ODEs, on the other hand, takes long computational time and prevents the application of 70

these models to larger datasets (dozens of thousands of sequences), while larger data sets 71

are desirable for more accurate parameter estimation. 72

A compromise between the model complexity and computational speed when applied 73

to large datasets needs to be found. In this study we propose such a compromise that 74

improves the approach by Mourad et al. [4] by using maximum likelihood and combining 75

it with the skyline ideas of Stadler et al. [8], for analysis of DRM transmission patterns. 76

Our approach uses ancestral character reconstruction (ACR) on a partially sampled 77

transmission tree. Using ancestral scenario reconstruction tool PastML [13], we study 78

ancestral states for presence/absence of common surveillance DRMs. In a tree annotated 79

with PastML, we can discriminate between two types of resistant nodes: (1) those whose 80

parent node does not have the DRM, which correspond to acquired drug resistance (ADR), 81

and (2) those whose parent node is also resistant, such nodes form TDR clusters. We also 82

identify the scenarios of DRM loss (when the parent node has the mutation, while the child 83

does not). Moreover, we account for the changes in treatment policies by allowing for 84

separate ACR for different time intervals (e.g. before and after the first DRM-provoking 85

ARV introduction). Once the reconstruction is performed we visualize the results with 86

PastML and calculate various statistics for transmission patterns. 87

We apply our approach to analyze the patterns of DRM emergence, transmission and 88

loss in HIV-1-infected individuals in the UK, using sequences and metadata from the UK 89

HIV Drug Resistance Database [14]. 90
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2. Materials and Methods 91

The UK HIV Drug Resistance Database provides HIV protease (PR) and reverse 92

transcriptase (RT) sequences extracted during the resistance tests and the corresponding 93

metadata (e.g., treatment status of the patient before the test: treatment-experienced, -naive, 94

or unknown; and date of the test). 95

In response to our request for data from the database we obtained 88 009 sequences 96

for 60 846 different patients, sampled between 1996 and 2016. 97

2.0.1. Sequence subtyping and alignment 98

We subtyped (pure subtypes and recombination positions) and aligned the sequences 99

against the Los Alamos 2010 subtype reference pol-gene alignment [15] using jpHMM [16] 100

(for detailed options see Appendix A). 101

All together, we obtained a large alignment of 88 009 sequences, from which we 102

extracted the alignments for the B and C subtypes. We filtered them to contain only the 103

first sequence (in terms of sampling date) when several sequences were present for the 104

same patient. We hence obtained a 40 055-sequence alignment for the B subtype, and a 105

19 139-sequence alignment for the C subtype. To each of them we added five randomly 106

selected HIV-1 group M sequences of other pure subtypes to be used as an outgroup for 107

tree rooting. 108

2.0.2. Transmission tree reconstruction 109

We reconstructed phylogenetic trees for B and C sequences separately, using RAxML- 110

NG (v0.9.0, evolutionary model GTR+G4+FO+IO, for detailed options see Appendix A) [17] 111

and rooted them with the outgroup sequences, which we then removed. For tree recon- 112

struction, the positions of surveillance DRMs were removed from the alignment, as they 113

are influenced by treatment-selection forces unlike the other positions, and could bias the 114

reconstruction by grouping together the sequences that share the same DRMs. 115

We then dated each tree with LSD2 [18] (v2.3: github.com/tothuhien/lsd2/tree/v1.4.2.2, 116

under strict molecular clock with outlier removal, for detailed options see Appendix A) 117

using tip sampling dates. 118

2.0.3. Ancestral character reconstruction 119

For each DRM (surveillance or accessory) listed in the Stanford HIV Drug Resistance 120

Database [19] we extracted its presence/absence in the sequences of our data sets and the 121

ARVs that can provoke it with Sierra, the Stanford Algorithm [20] web service. We then 122

analyzed the DRMs that were found in at least 0.5% of sequences (after filtering by patient 123

and temporal outlier removal) of our dataset (either B or C, analyzed separately). 124

Each DRM name (e.g. RT:T215D) contain 2 pieces of information: the DRM position 125

(e.g. RT:T215, which in turn contains the protein name: RT (reverse transcriptase) or PR 126

(protease), the reference position of the amino acid, e.g. 215, and its wildtype amino acid, 127

e.g. T), and its mutated amino acid, associated with resistance (e.g. D). 128

We analyzed each DRM position independently by reconstructing its states in the 129

ancestral nodes, based on the tip states. The DRMs with prevalence > 0.5% found in this 130

position in the dataset of interest (e.g. B) were analyzed together. For the majority of the 131

DRM positions, only one DRM with prevalence > 0.5% was found (e.g. PR:L90M for the 132

position PR:L90), however for the positions RT:T215 and RT:K219 in the B data set and 133

for the position RT:V179 in the C data set, several DRMs were found (RT:T215D/F/S/Y, 134

RT:K219E/N/Q, and RT:V179D/E). 135

Possible states for ancestral character reconstruction (ACR) corresponded to DRM 136

presence (i.e. the resistant state) or absence (sensitive state) for DRM positions with only 137

one DRM. For instance, for PR:L90M the resistant state corresponds to the amino acid M, 138

and the sensitive state to any other amino acid; in practice, the sensitive state is almost 139

uniquely L. In the B data set, 97.79% of sequences have L at the position PR:90; 1.93% have 140

M; less than 0.01% have W or F, and 0.23% have an ambiguity at this position (so their 141
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initial state for ACR is unresolved between sensitive and resistant). For positions with 142

several DRMs, the resistant state was split into all the possibilities (e.g., D, F, S or Y for 143

RT:T215). 144

For polymorphic mutations (e.g. RT:S68G), ACR was performed on the corresponding 145

(B or C) time-scaled tree with PastML (v1.9.40, MAP (maximum a posteriori) decision rule) 146

without taking into account the year of ARV acceptance, as the these mutations could be 147

present independently of ARVs. 148

To reconstruct the ancestral character states for non-polymorphic DRMs, we used 149

the procedure visualised in Figure 1a (which we first proposed and applied to study HIV 150

resistance patterns in Cuba in [21]). For each ARV we extracted the dates of their acceptance 151

with Wikipedia python package (https://github.com/goldsmith/Wikipedia). We cut the 152

time-scaled tree at the earliest of the dates of acceptance of ARVs that can provoke the 153

DRM (e.g. for PR:L90M, saquinavir (SQV) was accepted in 1995). We hence obtained 154

the pre-treatment-introduction tree and a forest of post-treatment-introduction subtrees. 155

For the trees in the forest we added additional one-child root nodes (as parents of the 156

corresponding tree roots, at distances that corresponded to the differences between the root 157

dates and the ARV acceptance date), which we marked as sensitive in the PastML input 158

annotation file. We performed ACR with PastML on the forest, and then combined it with 159

the all-sensitive annotation for the pre-treatment-introduction tree nodes. 160

For two of the multiple-DRM positions (RT:T215 and RT:K219) all the corresponding 161

DRMs were non-polymorphic and provoked by the same ARVs (the earliest accepted being 162

zidovudine (AZT, accepted in 1987) for all of them). We therefore cut the tree as explained 163

above, and reconstructed the ACR for D, F, S, Y or sensitive (for RT:T215), and for E, N, Q 164

or sensitive (for RT:K219) on the after-1987 forest. 165

Finally, for RT:V179, the mutation RT:V179D was polymorphic, while RT:V179E was 166

non-polymorphic (provoked by nevirapine, NVP, accepted in 1996). To reconstruct ancestral 167

characters for RT:V179, we followed the procedure visualised in Figure 1b: First, we cut 168

the tree at 1996, and reconstructed the ancestral characters (E, D or sensitive) on the after- 169

1996 forest (the input states for the forest roots were sensitive or D). We then extended 170

this reconstruction on the before-1996 tree only for RT:V179D (i.e., possible states: D or 171

sensitive). 172

Once ACR was performed for all the DRM positions, we combined the predictions into 173

a common table mapping node names to their states. A node state was sensitive if no DRM 174

was reconstructed for this node at any position, otherwise the state was a combination of 175

DRMs reconstructed for this node in separate DRM analyses (e.g. RT:K103N+RT:V106I if 176

those DRMs were reconstructed as present for the node of interest while the others were 177

reconstructed as absent). We visualized this combined result using the COPY method of 178

PastML. 179
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Figure 1. ACR for DRMs.
a) To reconstruct the ancestral character states, resistant (violet, e.g. M) or sensitive (gray), for a
non-polymorphic DRM (e.g. PR:L90M), we cut the time-scaled tree at the date of acceptance of the
first ARV that can provoke this DRM (for PR:L90M, SQV accepted in 1995), as shown in the left
panel. We hence obtain the pre-treatment-introduction tree (upper part of the tree) and a forest of
post-treatment-introduction subtrees (bottom part). For the trees in the forest we then mark their
roots as sensitive (middle left panel). We perform the ACR with PastML on the forest (middle right
panel) and combine the results with the the all-sensitive annotation for the pre-treatment-introduction
tree nodes (right panel).
b) To reconstruct the ancestral character states for the DRM position RT:V179, corresponding to a
polymorphic DRM RT:V179D (violet), but also to a non-polymorphic DRM RT:V179E (orange), we
cut the time-scaled tree at the date of acceptance of the first ARV that can provoke RT:V179E (NVP,
accepted in 1996), as shown in the left panel. For the trees in the after-1996 forest we then mark their
roots as either sensitive (gray) or D (violet, middle left panel) and perform the ACR with PastML
(middle right panel). We then extended this reconstruction to the before-1996 tree only for RT:V179D
(right panel).

Transmitted versus acquired drug resistance 180

On a tree whose nodes are annotated with their DRM status, present (resistant) or 181

absent (sensitive), we defined three configurations: transmitted drug resistance (TDR), 182

acquired drug resistance (ADR), and DRM loss (see Figure 2). 183

We defined ADR cases as parent-child node pairs, where the parent DRM status is 184

sensitive, while the child DRM status is resistant. 185

We defined TDR cases inferred from the tree as either: 186

1. an internal node whose state was estimated as resistant (i.e. containing the DRM of 187

interest, see Figure 2c,d). As the internal nodes of the tree roughly correspond to 188

transmissions, such a node indicates a transmission of a resistant virus. 189

2. (for non-polymorphic mutations only) a hidden internal node between a node whose 190

DRM status is resistant and its parent node whose DRM status is sensitive, if all the 191

tips in the node’s subtree are treatment-naive. According to the treatment status 192

and the fact that the mutation is non-polymorphic, the initial resistance could not be 193

acquired through treatment pressure, and hence must have been transmitted from a 194

patient who was not sampled (and does not appear in the tree, see Figure 2b,d). 195
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Connected parts of the tree corresponding to TDR cases form TDR clusters (see Figure 2). 196

We calculated their sizes as the numbers of resistant tips connected to each cluster. Note 197

that if a TDR cluster subtree contains only treatment-naive patients, it implies that its root 198

ADR event corresponds to an unsampled treated patient (see Figure 2b,d). 199

We define DRM loss cases as parent-child node pairs, where the parent DRM status is 200

resistant, while the child DRM status is sensitive. 201

Using these configurations, we calculate the source of the DRM status of each tip in 202

the tree as follows. 203

For non-polymorphic DRMs: 204

1. For treatment-naive tips, the source of their DRM status is: 205

• TDR if the tip is resistant (see Figure 2a,d); 206

• TDR+DRM loss if the tip is sensitive and is involved in a DRM loss configuration 207

(see Figure 2c,d); 208

• transmission of a virus without the DRM if the above two cases do not apply. 209

2. For treatment-experienced tips, the source of their DRM status is: 210

• ADR (+DRM loss if the tip is sensitive) for one of the treatment-experienced tips 211

connected to a TDR cluster (see Figure 2c). The patient corresponding to this tip 212

is assumed to be the source of the TDR cluster. The later DRM loss is possible if 213

the treatment was changed to drugs that do not provoke the DRM in question. 214

For other treated tips connected to this cluster, we assume that they received 215

a resistant virus via TDR. Assuming their treatment was such that it could not 216

provoke the DRM in question, they could later lose it (hence +DRM loss if they 217

are sensitive); 218

• ADR for a resistant tip not connected to a TDR cluster (Figure 2a); 219

• transmission of a virus without the DRM if the above cases do not apply. 220

3. For the tips whose treatment status is unknown, we consider both cases (naive or 221

resistant) with equal probabilities (0.5). 222

For polymorphic DRMs we do not consider the treatment status (as such DRMs 223

could appear independently of treatment) and calculate the source of each tip’s DRM status 224

as follows: 225

• ADR for a resistant tip not connected to a TDR cluster (as in Figure 2a, independently 226

of the treatment status); 227

• ADR (+DRM loss if the tip is sensitive) for one of the tips connected to a TDR cluster 228

(as in Figure 2c, independently of the treatment status). The individual corresponding 229

to this tip is assumed to be the source of the TDR cluster. For other tips connected to 230

this cluster, we assume that they received a resistant virus via TDR. They could later 231

lose it (hence +DRM loss if they are sensitive); 232

• transmission of a virus without the DRM if the above cases do not apply. 233

We count the numbers of tip DRM status sources of each type (ADR: NADR, TDR: 234

NTDR, or loss: Nloss (see Appendix B for details) and report the results in Tables 2 and 3. 235

We count all the identified DRM loss events, all the identified (observed and hidden) TDR 236

events, and only those of the ADR events that are not at the root of naive-only TDR clusters, 237

as the latter happened in unsampled treatment-experienced patients (see Figure 2b,d). 238

Note that Nresistant tips = NADR + NTDR−Nloss. For example, in Figure 2c, all the events 239

correspond to observed tips, so we count one ADR, three TDR, and one DRM loss events: 240

Nresistant tips = 3 = 1 + 3− 1. Figure 2d represents a more complex case: We count one 241

hidden TDR event (as it led to the resistance status of one of the observed tips) and three 242

observed TDR events (leading to resistance statuses of other observed tips). We do not 243

count the ADR event (as it corresponds to an unobserved patient, whose virus is not in 244
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our data set). We also count one DRM loss event, which led to one of the tips regaining its 245

sensitive state. Hence Nresistant tips = 3; NADR = 0; NTDR = 4; Nloss = 1; 3 = 0 + 4− 1. 246

Figure 2. ADR and TDR scenarios. Each panel represents (left) a configuration observed in a
tree whose nodes are annotated with their non-polymorphic DRM status (resistant nodes are violet,
sensitive are gray), and (right) the most parsimonious transmission scenario (i.e. with the least number
of events) leading to this configuration. The TDR clusters corresponding to the inferred scenarios are
shown with violet background. a) The observed tree (left) contains a tip, corresponding to a sample
of a resistant virus from a treatment-experienced individual, while its parent node (corresponding to
a transmission) is sensitive. In the simplest scenario (right) the treatment-experienced individual’s
virus acquired the DRM after the last observed transmission. b) The observed tree (left) contains a
tip, corresponding to a sample of a resistant virus from a treatment-naive individual, while its parent
node (corresponding to a transmission) is sensitive. The simplest scenario (right) includes a hidden
transmission of a resistant virus from an unsampled treatment-experienced individual (dashed node
and branch), whose virus previously acquired the DRM. c) The observed tree (left) contains one or
several (here three) connected internal resistant nodes (corresponding to transmissions), leading to
some treatment-naive tips (here three) and at least one treatment-experienced tip. Some of the tips
might be sensitive (here one), while the others (here three) are resistant. In the simplest scenario (right)
the treatment-experienced individual’s virus first acquired the DRM, then transmitted it to one (or
several, here two) treatment-naive individuals, who might have further transmitted the resistant virus
between them (here the transmission on the right). Some of the viruses might have eventually lost the
DRM in the absence of drug-selective pressure (here the treatment-naive sensitive tip in the bottom).
d) The observed tree (left) contains one or several (here three) connected internal resistant nodes
(corresponding to transmissions), leading to only treatment-naive tips (here four). In the simplest
scenario (right) an unsampled (and hence unobserved) treatment-experienced individual’s virus first
acquired the DRM (before the oldest resistant internal node), then its host (dashed line) transmitted it
(dashed node) to one (or several, here one) treatment-naive individuals of the observed cluster, who
might have further transmitted the resistant virus between them (here all the three transmissions).
Some of the viruses might have eventually lost the DRM in the absence of drug-selective pressure
(here the treatment-naive sensitive tip in the bottom).
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Times of DRM loss 247

We estimated the loss times for non-polymorphic DRMs, using survival analysis with 248

an exponential (constant hazard) model (Weibull model with β = 1), implemented in 249

Python3 package SurPyval (github.com/derrynknife/SurPyval, v0.10.10). This model 250

takes as input observations about event durations and estimates the rate at which the 251

event occurs. The input data might be left-, right- or interval-censored. Left-censored data 252

represent times that are longer than the event occurrences, e.g. if the DRM loss occurred 253

in exactly 2 years, but the observation was only made after 3 years, the 3-year duration 254

represents a left-censored data point. Right-censored data represent times that are shorter 255

than the event occurrences, e.g. if for the same DRM loss the only observation was made 256

after 1 year (and observed no DRM loss yet), the 1-year duration represents a right-censored 257

data point. Interval-censored data represents cases when both a left- and a right-censored 258

data point are available, e.g. for the same DRM loss an interval-censored data might state 259

that it occurred sometime between 1 and 3 years. 260

For each individual represented in our data set we extracted at most one data point 261

for the loss survival analysis, as described below. 262

A right-censored data point represents the maximal observed duration during which a 263

mutation loss did not occur. We extracted such points for the individuals who had several 264

consecutive treatment-naive samples with the DRM of interest (and of the subtype of 265

interest) in our metadata: we took the difference in sampling times of the last such sample 266

and the first one. 267

A left-censored data point represents a duration that is longer than the mutation loss 268

time. To estimate such a duration we needed to know not only (1) the time by which 269

the individual’s virus lost the DRM, but also (2) the earliest time by which it could have 270

acquired it (the difference making an upper limit on the loss duration). For (1) we used 271

the time of the earliest sample without the DRM, provided it was preceded by samples 272

with the DRM. For (2) we used either (2a) the time of the latest sample without the DRM 273

preceding the aforementioned samples (where the DRM was present and then lost), if such 274

sample existed in the metadata, or (2b) if the earliest metadata sample already had the 275

DRM (which implies it corresponded to a resistant tip in the tree), the time of the tip’s most 276

recent ancestral node whose status was sensitive (with marginal probability > 0.95). 277

For individuals for whom both a left- and a right-censored data point was present, we 278

converted them to an interval-censored one. 279

We reported the resulting DRM loss time estimates (i.e. inverse of the loss rates) for 280

non-polymorphic DRMs with at least 5 left-censored and 5 right-censored data points 281

(interval-censored data points counted as both). We estimated confidence intervals (CIs) as 282

the 2.5- and 97.5-percentiles of the loss times estimated on bootstrapped data points of the 283

same size (with 1 000 repetitions). 284

3. Results 285

3.1. HIV in the UK 286

Antiretroviral therapy (ART) was introduced in the UK more than 30 years ago and 287

transformed HIV from a fatal infection into a chronic, manageable condition [22–24]. It is 288

accepted that successful ART results in an “undetectable” viral load which is protective 289

from passing on the virus to others [25,26]. 290

In the UK, a patient’s viral load is regularly monitored by the clinicians: Patients 291

attend bi-annual or quarterly clinical visits, depending on how well they do on treatment. 292

Moreover, the increase in viral load comes with symptoms (generally opportunistic infec- 293

tions that persist longer than they should). A suspicious increase from undetectable to 294

detectable viral load (i.e. viral rebound) is the first sign of treatment failure. 295

In case of a viral rebound, the virus is sequenced to discriminate between resistance 296

(presence of a known DRM) and poor adherence (failure without DRM, if a patient does 297

not take the drugs regularly according to prescription). If resistance is the reason for a 298

treatment failure, the treatment is changed. 299
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Therefore, in the case of treatment failure, there is a window of opportunity for the 300

virus to be transmitted: between the time the viral load increases to transmittable levels 301

and the time when the clinician realizes it and changes treatment. The probability of 302

transmission varies across patients, and depends on various factors [5]. 303

The information collected from the HIV drug resistance tests carried out in the UK since 304

1996 is available in the UK HIV Drug Resistance Database. The database stores protease 305

(PR) and reverse transcriptase (RT) sequences for about 50% of infected individuals in the 306

UK. 307

3.2. UK HIV data set 308

We used the data from the UK HIV Drug Resistance Database containing samples 309

from 1996 to 2016 to estimate transmission mechanisms for different common DRMs. 310

Out of 88 009 initial sequences obtained from the database, the majority were of 311

subtypes B (58 569 sequences, 66.5%) and C (27 151 sequences, 30.1%), we also detected 8 312

D, 1 F, 2 G, and 3 K (< 0.0001%) sequences, and 2 276 potentially recombinant sequences 313

(2.6%, in particular 494 A,B,G and 446 B,K-recombinants (0.5%)). We report these and other 314

data set statistics in Table 1. 315

Table 1. Statistics on the B and C data sets. The "with DRM(s)" statistics count samples with at
least one unambiguous resistant amino acid at any DRM position. Samples that contained either
non-resistant or ambiguous amino acids at all DRM positions were considered as "without DRMs".
"p DRM(s)" stands for polymorphic DRMs, while "np DRMs" stands for non-polymorphic ones. Note
that the same sequence might contain both p and np DRMs (at different positions).

B C

total 58 569 27 151
filtered by patient (first only, % of total) 40 055 (68%) 19 139 (70%)

– without temporal outliers (% of filtered) 39 159 (99%) 18 809 (98%)
– with DRM(s) (% of w/o outliers) 12 300 (31%) 5 148 (27%)

– w. 1 DRM (% of w/o outliers) 7 257 (19%) 3 174 (17%)
– w. ≥ 2 DRMs (% of w/o outliers) 5 043 (13%) 1 974 (10%)

– with np DRM(s) (% of w/o outliers) 7 641 (20%) 3 014 (16%)
– w. 1 np DRM (% of w/o outliers) 3 852 (10%) 1 496 (8%)
– w. ≥ 2 np DRMs (% of w/o outliers) 3 789 (10%) 1 518 (8%)

– with p DRM(s) (% of w/o outliers) 5 740 (15%) 2 673 (14%)
– w. 1 p DRM(s) (% of w/o outliers) 5 416 (14%) 2 538 (13%)
– w. ≥ 2 p DRM(s) (% of w/o outliers) 324 (1%) 135 (1%)

Number treatment-naive (% of w/o outliers) 28 175 (72%) 12 286 (65%)
of – with DRM(s) (% of tr.-naive) 7 091 (25%) 2 361 (19%)
sequences – with np DRM(s) (% of tr.-naive) 3 364 (12%) 829 (7%)

– with p DRM(s) (% of tr.-naive) 4 260 (15%) 1 656 (13%)
treatment-experienced (% of w/o outliers) 7 732 (20%) 4 503 (24%)

– with DRM(s) (% of tr.-experienced) 4 141 (54%) 2 112 (47%)
– with np DRM(s) (% of tr.-experienced) 3 618 (47%) 1 730 (38%)
– with p DRM(s) (% of tr.-experienced) 971 (13%) 665 (15%)

treatment-unknown (% of w/o outliers) 3 252 (8%) 2 020 (11%)

Root date (95% CI) 1965 (’59-’65) 1944 (’29-’49)
Mutation rate (95% CI) ·10−3[mutations

site·year ] 1.9 (1.8-1.9) 1.4 (1.3-1.4)

Phylogenetic diversity = tree length
number of branches [

mutations
site·branch ] 0.014 0.019

We focused our analysis on subtypes B and C, keeping the first sampled sequence for 316

patients for whom multiple sequences were available. We hence obtained a 40 055-sequence 317

data set for B, and a 19 139-sequence data set for C. We further filtered these data sets 318

by removing temporal outliers (< 2% of sequences), as they could correspond to poorly 319
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sequenced samples or erroneous dates. The final data sets contained 39 159 sequences for B, 320

and 18 809 for C. 321

We detected 161 DRMs found in at least one sequence of the B data set, and 146 DRMs 322

for C. 31.4% of B and 27.4% of C sequences had at least one of these DRMs present, 18.5% of 323

B and 16.9 % of C sequences had only one mutation, while the others had multiple DRMs 324

present. While the subtypes B and C are different, as well as are the locations where these 325

subtypes are most prevalent (African countries for C versus the UK and other European 326

countries for B), we did not detect major differences in DRM distribution in the B and C data 327

sets. Hence, while more C than B sequences correspond to imported cases, the UK health 328

policies must play an important role on their DRM patterns, independently of the subtype. 329

In a recent study Blassel et al. [27] compared DRMs in a UK and an African data sets. 330

They reported that the median number of DRMs in resistant sequences differed between 331

the two datasets (3 in the African sequences versus 1 in the UK sequences). In our case, 332

there was no difference between B and C data sets if all DRMs were considered (median 333

number of 1 DRM for both B and C data sets in resistant sequences); if we considered only 334

non-polymorphic DRMs, a slight difference appeared (1 for B vs 2 for C). Detailed statistics 335

on DRM number distributions are shown in Table A1. There was however a significant 336

difference in the TDR distribution: more TDR could be suspected among the B samples 337

(12% of treatment-naive sequences had non-polymorphic DRMs present, while in the C 338

samples there were only 7% of such sequences). 339

3.3. Drug resistance analyses 340

We reconstructed time-scaled phylogenetic trees for B and C data sets and performed 341

ancestral character reconstruction for each of the selected DRMs and positions to look at 342

their transmission patterns. Consistently with what was previously reported in HIV-1 343

group M studies (of the pol gene [28] and of the full-genome [29]), we estimated a faster 344

mutation rate (1.9 · 10−3 [mutations per site per year]) and a more recent root date (1965) 345

for subtype B than for subtype C (1.4 · 10−3; 1944). More details on B and C datasets can be 346

found in Table 1. 347

On the time-scaled trees we analyzed the transmission patterns of the DRMs found 348

in at least 0.5% of sequences: 31 DRMs (on 26 different positions) for B and 21 (on 20 349

different positions) for C. The major drug resistance patterns found in B and C data sets are 350

visualized in Figures 3 and 4. The statistics on these DRMs and their loss times are shown 351

in Tables 2-4. 352
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Figure 3. Major resistance patterns found in B data set. States of tree nodes are shown as labels,
e.g.“PR_L90M” corresponds to the presence of DRM PR:L90M and absence of the other DRMs.
The nodes are coloured by DRM found in them (if several DRMs are present, the colour of the
(lexicographically) first DRM is used). The nodes with no DRM are coloured gray and labelled
“sensitive”. The parts of the tree where no state change happens are clustered together into metan-
odes, their size corresponds to the number of samples (tips) they contain (shown in labels), e.g.
“RT_K103N+RT_S68G+RT_T215S 36” (violet, on the bottom) corresponds to a transmitted resistance
cluster containing 36 samples in the B data set, having three mutations. Configurations present
several times are shown once and the number of occurrences is shown on the corresponding branch,
e.g. a branch of size 247 leading to the metanode “RT_V179D 1-8” (salad green, on the top right)
represents 247 cases of acquiring the mutation RT:V179D leading to small transmission clusters of
sizes between 1 and 8. Configurations representing less than 34 samples are not shown to increase
readability.
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Figure 4. Major resistance patterns found in C data set. States of tree nodes are shown as labels,
e.g. “RT_E138A” (salad green nodes in the middle) correspond to the presence of DRM RT:E138A
and absence of the other DRMs. The nodes are coloured by DRM found in them (if several DRMs
are present, the colour of the (lexicographically) first DRM is used). The nodes with no DRM found
are coloured gray and labelled “sensitive”. The parts of the tree where no state change happens
are clustered together into metanodes, their size corresponds to the number of samples (tips) they
contain (shown in labels). Configurations present several times are shown once and the number
of occurrences is shown on the corresponding branch, e.g. a branch of size 23 leading to the blue
metanode “PR_L90M 1-3” (top left) represents 23 cases of acquiring the mutation PR:L90M leading to
small resistance clusters of sizes 1–3. Configurations representing less than 11 samples are not shown
to increase readability.
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Table 2. DRMs in B data set with prevalence > 0.5%. Polym. stands for polymorphic DRMs, for
non-polymorphic DRMs the first ARV that could provoke it and its acceptance date are shown.
Nresistant cases = NTDR + NADR − Nloss.

DRM class 1st ARV resistant cases TDR ADR loss
and (% of all) treatment- cases cluster cases cases

its date experienced naive (% of num. sizes (% of (% of

(% of resistant) resistant) resistant) resistant)

RT:S68G NRTI polym. 3178 (8.1%) 436 (13.7%) 2482 (78.1%) 2436.00 (76.7%) 249 1-759 803.00 (25.3%) 61 (1.9%)

RT:K103N NNRTI NVP’96 2025 (5.2%) 1104 (54.5%) 745 (36.8%) 1071.51 (52.9%) 516.5 1-78 1088.49 (53.8%) 135 (6.7%)

RT:M184V NRTI AZT’87 1899 (4.8%) 1642 (86.5%) 110 (5.8%) 343.62 (18.1%) 278.5 1-4 1667.38 (87.8%) 112 (5.9%)

RT:M41L NRTI AZT’87 1513 (3.9%) 982 (64.9%) 428 (28.3%) 618.50 (40.9%) 305.5 1-55 968.50 (64.0%) 74 (4.9%)

RT:V106I NNRTI polym. 1051 (2.7%) 217 (20.6%) 715 (68.0%) 540.00 (51.4%) 150 1-74 647.00 (61.6%) 136 (12.9%)

RT:D67N NRTI AZT’87 1035 (2.6%) 806 (77.9%) 150 (14.5%) 273.00 (26.4%) 170.5 1-21 794.00 (76.7%) 32 (3.1%)

RT:T215Y NRTI AZT’87 883 (2.3%) 790 (89.5%) 37 (4.2%) 119.50 (13.5%) 102.5 1-5 785.50 (89.0%) 22 (2.5%)

RT:E138A NNRTI polym. 862 (2.2%) 163 (18.9%) 637 (73.9%) 523.00 (60.7%) 117 1-158 393.00 (45.6%) 54 (6.3%)

PR:L90M PI SQV’95 849 (2.2%) 480 (56.5%) 289 (34.0%) 460.77 (54.3%) 128 1-114 450.23 (53.0%) 62 (7.3%)

RT:V179D NNRTI polym. 790 (2.0%) 151 (19.1%) 559 (70.8%) 415.00 (52.5%) 93 1-45 438.00 (55.4%) 63 (8.0%)

RT:K70R NRTI AZT’87 711 (1.8%) 610 (85.8%) 54 (7.6%) 143.75 (20.2%) 98.5 1-7 615.25 (86.5%) 48 (6.8%)

RT:L210W NRTI AZT’87 705 (1.8%) 520 (73.8%) 140 (19.9%) 205.00 (29.1%) 147 1-9 524.00 (74.3%) 24 (3.4%)

RT:Y181C NNRTI NVP’96 694 (1.8%) 495 (71.3%) 115 (16.6%) 208.00 (30.0%) 148 1-12 509.00 (73.3%) 23 (3.3%)

RT:K219Q NRTI AZT’87 563 (1.4%) 322 (57.2%) 194 (34.5%) 307.25 (54.6%) 99 1-92 303.75 (54.0%) 48 (8.5%)

RT:H221Y NNRTI NVP’96 475 (1.2%) 269 (56.6%) 162 (34.1%) 220.00 (46.3%) 87 1-64 267.00 (56.2%) 12 (2.5%)

RT:T215D NRTI AZT’87 462 (1.2%) 86 (18.6%) 334 (72.3%) 459.25 (99.4%) 103 1-99 71.75 (15.5%) 69 (14.9%)

RT:G190A NNRTI NVP’96 447 (1.1%) 342 (76.5%) 68 (15.2%) 117.25 (26.2%) 97 1-6 350.75 (78.5%) 21 (4.7%)

RT:V108I NNRTI NVP’96 429 (1.1%) 219 (51.0%) 167 (38.9%) 230.00 (53.6%) 166 1-8 232.00 (54.1%) 33 (7.7%)

PR:M46I PI SQV’95 378 (1.0%) 246 (65.1%) 97 (25.7%) 140.39 (37.1%) 108.5 1-6 250.61 (66.3%) 13 (3.4%)

RT:T215S NRTI AZT’87 378 (1.0%) 59 (15.6%) 293 (77.5%) 364.25 (96.4%) 115 1-45 51.75 (13.7%) 38 (10.1%)

PR:V82A PI SQV’95 295 (0.8%) 216 (73.2%) 51 (17.3%) 88.02 (29.8%) 53 1-11 218.98 (74.2%) 12 (4.1%)

RT:E44D NRTI AZT’87 294 (0.8%) 180 (61.2%) 93 (31.6%) 129.62 (44.1%) 77 1-29 183.38 (62.4%) 19 (6.5%)

RT:K101E NNRTI NVP’96 276 (0.7%) 189 (68.5%) 64 (23.2%) 94.50 (34.2%) 71.5 1-9 190.50 (69.0%) 9 (3.3%)

RT:K219E NRTI AZT’87 262 (0.7%) 192 (73.3%) 43 (16.4%) 74.75 (28.5%) 51.5 1-9 192.25 (73.4%) 5 (1.9%)

RT:T215F NRTI AZT’87 257 (0.7%) 215 (83.7%) 19 (7.4%) 41.25 (16.1%) 37 1-4 222.75 (86.7%) 7 (2.7%)

RT:A62V NRTI AZT’87 251 (0.6%) 147 (58.6%) 81 (32.3%) 114.50 (45.6%) 58.5 1-27 147.50 (58.8%) 11 (4.4%)

PR:I54V PI SQV’95 243 (0.6%) 182 (74.9%) 33 (13.6%) 62.52 (25.7%) 43 1-6 191.48 (78.8%) 11 (4.5%)

RT:L74V NRTI DDI’91 242 (0.6%) 200 (82.6%) 17 (7.0%) 38.25 (15.8%) 36 1-3 207.75 (85.8%) 4 (1.7%)

RT:K219N NRTI AZT’87 238 (0.6%) 92 (38.7%) 127 (53.4%) 161.00 (67.6%) 23 1-113 81.00 (34.0%) 4 (1.7%)

PR:L33F PI SQV’95 230 (0.6%) 117 (50.9%) 92 (40.0%) 126.12 (54.8%) 70 1-10 114.88 (49.9%) 11 (4.8%)

RT:K65R NRTI AZT’87 225 (0.6%) 170 (75.6%) 19 (8.4%) 50.88 (22.6%) 42 1-2 187.12 (83.2%) 13 (5.8%)
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Table 3. DRMs in C data set with prevalence > 0.5%. Polym. stands for polymorphic DRMs,
for non-polymorphic DRMs the first ARV that could provoke it and its acceptance date are shown.
Nresistant cases = NTDR + NADR − Nloss.

DRM class 1st ARV resistant cases TDR ADR loss
and (% of all) treatment- cases cluster cases cases

its date experienced naive (% of num. sizes (% of (% of

(% of resistant) resistant) resistant) resistant)

RT:E138A NNRTI polym. 2176 (11.6%) 512 (23.5%) 1381 (63.5%) 1802.00 (82.8%) 136 2-1178 531.00 (24.4%) 157 (7.2%)

RT:M184V NRTI AZT’87 1009 (5.4%) 789 (78.2%) 79 (7.8%) 213.88 (21.2%) 197 1-4 833.12 (82.6%) 38 (3.8%)

RT:K103N NNRTI NVP’96 882 (4.7%) 605 (68.6%) 182 (20.6%) 317.12 (36.0%) 267 1-5 615.88 (69.8%) 51 (5.8%)

RT:Y181C NNRTI NVP’96 419 (2.2%) 299 (71.4%) 56 (13.4%) 108.38 (25.9%) 98 1-4 321.62 (76.8%) 11 (2.6%)

RT:V106M NNRTI NVP’96 381 (2.0%) 301 (79.0%) 36 (9.4%) 71.25 (18.7%) 66 1-4 319.75 (83.9%) 10 (2.6%)

RT:V179D NNRTI polym. 294 (1.6%) 99 (33.7%) 159 (54.1%) 105.00 (35.7%) 39 1-19 212.00 (72.1%) 23 (7.8%)

RT:D67N NRTI AZT’87 289 (1.5%) 215 (74.4%) 25 (8.7%) 65.25 (22.6%) 56.5 1-4 228.75 (79.2%) 5 (1.7%)

RT:G190A NNRTI NVP’96 287 (1.5%) 213 (74.2%) 34 (11.8%) 71.25 (24.8%) 65.5 1-4 224.75 (78.3%) 9 (3.1%)

RT:K65R NRTI AZT’87 244 (1.3%) 199 (81.6%) 15 (6.1%) 38.50 (15.8%) 36.5 1-2 211.50 (86.7%) 6 (2.5%)

RT:K101E NNRTI NVP’96 244 (1.3%) 164 (67.2%) 54 (22.1%) 82.75 (33.9%) 73.5 1-4 168.25 (69.0%) 7 (2.9%)

RT:A98G NNRTI NVP’96 239 (1.3%) 115 (48.1%) 78 (32.6%) 112.12 (46.9%) 99 1-4 126.88 (53.1%)

RT:K70R NRTI AZT’87 196 (1.0%) 152 (77.6%) 19 (9.7%) 38.62 (19.7%) 35.5 1-4 161.38 (82.3%) 4 (2.0%)

RT:V108I NNRTI NVP’96 194 (1.0%) 114 (58.8%) 55 (28.4%) 77.75 (40.1%) 72 1-3 123.25 (63.5%) 7 (3.6%)

RT:H221Y NNRTI NVP’96 173 (0.9%) 123 (71.1%) 27 (15.6%) 45.75 (26.4%) 42.5 1-2 133.25 (77.0%) 6 (3.5%)

RT:M41L NRTI AZT’87 171 (0.9%) 117 (68.4%) 25 (14.6%) 51.72 (30.2%) 43.5 1-5 120.28 (70.3%) 1 (0.6%)

RT:S68G NRTI polym. 160 (0.9%) 51 (31.9%) 87 (54.4%) 37.00 (23.1%) 18 2-12 124.00 (77.5%) 1 (0.6%)

PR:Q58E PI polym. 153 (0.8%) 31 (20.3%) 97 (63.4%) 49.00 (32.0%) 24 2-12 106.00 (69.3%) 2 (1.3%)

RT:T215Y NRTI AZT’87 137 (0.7%) 97 (70.8%) 13 (9.5%) 37.97 (27.7%) 31.5 1-5 105.03 (76.7%) 6 (4.4%)

RT:V179E NNRTI NVP’96 120 (0.6%) 11 (9.2%) 34 (28.3%) 108.25 (90.2%) 24 1-80 12.75 (10.6%) 1 (0.8%)

RT:K219E NRTI AZT’87 109 (0.6%) 80 (73.4%) 15 (13.8%) 25.50 (23.4%) 24.5 1-3 83.50 (76.6%)

PR:L90M PI SQV’95 108 (0.6%) 62 (57.4%) 22 (20.4%) 43.00 (39.8%) 35.5 1-4 67.00 (62.0%) 2 (1.9%)

While some of the DRMs (e.g. RT:M184V) are comparably prevalent in B and C 353

(4.8% of resistant cases vs 5.4%), others are very subtype-specific. For instance, the non- 354

polymorphic mutation PR:L90M is present in 2.2% of B resistant cases and only in 0.6% of 355

C. Another example is the mutations in position RT:106. In the B dataset the polymorphic 356

DRM RT:V106I is present in 3.9% of resistant cases and is 30 times more prevalent than 357

the non-polymorphic DRM RT:V106M, which was not selected for our analysis due to its 358

low prevalence; while for the C data set we have the opposite distribution: RT:V106M is 359

present in 2% of resistant cases and is 16 times more prevalent than RT:V106I, which was 360

non selected for our analyses. More examples are given in Tables 2 and 3. 361

Using the metadata only, we can already see that there is a clear difference between 362

polymorphic and non-polymorphic mutations. While the presence of most of the latter ones 363

correlated with the treatment status (e.g. 86.5% of B sequences with the non-polymorphic 364

mutation RT:M184V are from treatment-experienced patients), it is the opposite for the 365

former, which are more prevalent in treatment-naive sequences (e.g. 78.1% of B sequences 366

with RT:S68G are treatment-naive, see Table 2). Indeed, while the polymorphic DRMs can 367

appear spontaneously, the non-polymorphic ones are selected by treatment, and carrying 368

them often implies a fitness cost [9]. However, a few non-polymorphic DRM do not follow 369

this pattern and are more prevalent in treatment-naive individuals: RT:T215D, RT:T215S, 370

RT:K219N in B, and RT:V179E in C. RT:T215D/S area form of reversion and are are often 371

developed in patients primarily infected with strains with RT:T215Y/F, and hence have 372

a higher fitness [30]. It is further confirmed by our estimation of the loss times: the loss 373

times of RT:T215D/S are long (9.3 and 6.8 years versus 1.1 and 1.8 years for RT:T215Y/F, 374

see Table 4), which may explain their prevalence in treatment-naive patients. Similarly, 375

we estimated a rather long loss time for RT:K219N (3.7 years). We did not have enough 376

data to estimate the loss time of RT:V179E. While this mutation is generally considered as 377

non-polymorphic [31], its natural presence in treatment-naive patients has been reported 378

for the HIV-1 common recombinant form CRF55_01B [32]. 379
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Using the information from the tree, we refined the mutation statistics further, classi- 380

fying resistant mutations sources into TDR vs ADR, and detecting DRM loss events (see 381

Tables 2 and 3). C data set featured smaller TDR clusters (apart from the polymorphic 382

mutation RT:E138A) than B. This could be explained by multiple introductions of subtype 383

C into different regions of the UK and different risk groups, particularly from Africa via 384

immigration, which is consistent with the higher diversity of the C strains observed in our 385

data (C: 0.019 vs B: 0.014 [mutations per site per branch], Table 1) and with the dates of 386

origin of the two UK sub-epidemics (C: 1944 vs B: 1965, Table 1). 387

A large size (e.g. 78 individuals in the B data set for RT:K103N) of some of the TDR 388

clusters and a rather high proportion of TDR cases among the resistant ones (see Tables 2 389

and 3) is clinically problematic, as it means a high level of resistant strain transmission, 390

leading to decrease of treatment choice on the population level. 391

We further analyzed each mutation position over time (see Supplementary Tables 392

S1-S46) and found a common pattern: The proportion of resistant cases with respect to all 393

cases decreases over time, however the proportion of resistant cases in treatment-naive 394

individuals and, consistently, the proportion of TDR with respect to ADR, increases. This 395

pattern is well illustrated by the mutations in position RT:215 (see Figure 5 and Table A2). 396

However, there are exceptions with respect to the decrease in the proportion of resistant 397

cases over time, especially among the polymorphic DRMs, consistent with the fact that 398

they have little or no fitness cost associated with them. For the polymorphic mutation 399

RT:E138A this proportions has been increasing from 2001 to mid-March 2016 (the last 400

sampling time in our data): from 1.9% to 2.2% in the B data set, and from 8.3% to 11.6% in 401

the C data set (Tables S8, S31). Similarly the proportion of resistant cases with polymorphic 402

RT:S68G has been increasing from 4.6% in 2001 to 8.1% in 2016 in B, and from 0.3% to 403

0.9% in C (Tables S21, S41). The proportion of resistant cases with polymorphic RT:V106I 404

has been increasing in B: from 2% in 2001 to 2.7% in 2016, while the proportion of non- 405

polymorphic RT:V106M (similar to RT:V106I) in C seems to have stabilized at 2% over the 406

last five sampling years (2011-2016, Tables S23, S43). The proportion of resistant cases with 407

polymorphic RT:V179D has been increasing in B: from 1.3% in 2001 to 2% in 2016, so did 408

the proportion of non-polymorphic RT:V179E (similar to RT:V179D) in C: from 0.1% in 2006 409

to 0.6% in 2016, while the proportion of RT:V179D has stayed stable (∼ 1.5%) over the last 410

10 sampling years (2006-2016, Tables S25, S45). Finally, the proportion of resistant cases 411

with polymorphic PR:Q58E has been increasing in subtype C: from 0.6% in 2006 to 0.8% 412

in 2016 (Table S28, we did not analyze it for B due to its low prevalence). These results 413

clearly indicate that the spread of polymorphic DRMs should become a subject of particular 414

surveillance. 415

3.3.1. DRM loss times 416

We estimated the times of DRM loss for non-polymorphic DRMs in our data sets and 417

compared them to the estimates previously reported by Castro et al. [5]. Castro et al. [5] 418

analyzed 313 patients from the UK Drug Resistance database, who were treatment-naive 419

and had a DRM present in their first resistance test (performed between 1997 and 2009), 420

mixing all the subtypes and using survival analysis. We also used survival analysis, but 421

had a larger data set, included the information not only from the metadata, but also from 422

the tree, and analyzed the subtypes separately. Out results and the comparison are shown 423

in Table 4. Overall, out estimates are compatible with those by Castro et al. [5]: the CIs of 424

the two studies intersect for all the DRMs but RT:K103N in the C dataset. The difference for 425

RT:K103N could be explained by the fact that Castro et al. [5] analyzed different subtypes 426

together (though the majority of samples used were from B), while we performed a subtype- 427

specific analysis: our estimate for RT:K103N on the B data set (2.0-2.6 years) is compatible 428

with the one by Castro et al. [5] (2.0-6.8 years). Our CIs are systematically narrower than 429

those of Castro et al. [5]. 430

The visualization using ACR for the DRMs at the position RT:T215 (Figure 5) is 431

consistent with the estimated loss patterns. For two of the mutations found in this position 432
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(RT:T215D and RT:T215S) the loss times are long (9.3 and 6.8 years respectively), which 433

allows them to form large TDR clusters (up to 99 and 45 sampled respectively, left and 434

bottom part of Figure 5). For the other two mutations found in this position (RT:T215F and 435

RT:T215Y) the loss times (including potential reversions to D or S) are rather short (1.8 and 436

1.1 years), which prevents them from forming significant TDR clusters. 437

Table 4. Loss times (with 95% CIs) for non-polymorphic DRMs found in B and C data sets with
prevalence > 0.5% and at least 5 left- and 5 right-censored data points (the exact numbers of data
points are shown in Table A3).

DRM class loss duration + CI (years)
our estimate B our estimate C Castro et al.’13 [5]

PR:L33F PI 3.1 (2.2–4.8)
PR:M46I PI 1.1 (0.7–1.9)
PR:I54V PI 2.2 (1.6–3.6) 3.3 (1.4–7.8)
PR:V82A PI 3.3 (2.4–4.9) 5.1 (1.8–14.8)
PR:L90M PI 2.7 (2.1–3.7) 5.8 (2.2–15.3)
RT:M41L NRTI 4.3 (3.6–5.2) 8.6 (4.6–16.0)
RT:E44D NRTI 3.0 (2.0–5.6)
RT:A62V NRTI 2.4 (1.8–3.6)
RT:D67N NRTI 2.1 (1.7–2.8) 6.0 (2.1–16.9)
RT:K70R NRTI 1.3 (1.1–2.1) 1.8 (0.8–4.0)
RT:K103N NNRTI 2.2 (2.0–2.6) 1.1 (0.9–1.6) 3.7 (2.0–6.8)
RT:V108I NNRTI 1.3 (1.0–1.9)
RT:Y181C NNRTI 1.3 (1.0–2.1) 3.7 (2.0–6.8)
RT:M184V NRTI 0.6 (0.5–0.8) 0.6 (0.5–0.8) 1.0 (0.5–2.0)
RT:G190A NNRTI 1.8 (1.5–2.5) 3.6 (1.2–15.5)
RT:L210W NRTI 2.9 (2.3–4.1) 4.8 (2.1–11.2)
RT:T215D NRTI 9.3 (6.4–12.2)
RT:T215F NRTI 1.8 (1.6–3.1) 1.2 (0.3–4.6)
RT:T215S NRTI 6.8 (4.7–9.6)
RT:T215Y NRTI 1.1 (1.0–1.8) 1.7 (0.8–3.4)
RT:K219Q NRTI 4.9 (3.8–6.4) 15.8 (3.6–70.0)
RT:K219N NRTI 3.7 (2.6–5.7) 4.6 (1.0–22.4)
RT:K219E NRTI 1.7 (1.3–3.0)
RT:H221Y NNRTI 1.7 (1.4–2.5)
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Figure 5. DRMs with prevalence > 0.5% in position RT:215 in the B data set (wildtype amino acid
is T, non-polymorphic AZT-resistant mutations are D, F, S, and Y). ACR was performed for the RT
position 215 with five possible states: D (lilac), F (salad green), S (light blue), Y (violet), and other
(sensitive, gray). The parts of the tree where no state change happens are clustered together into
metanodes, their size corresponds to the number of samples (tips) they contain (shown in labels), e.g.
“RT_T215D 99” (lilac, top left) corresponds to a transmitted RT:T215D resistance cluster containing
99 samples in the B data set. Configurations present several times are shown once and the number
of occurrences is shown on the corresponding branch, e.g. the branch of size 804 leading to the
metanode “RT_T215Y 1-5” (violet, right) represents 804 cases of acquired RT:T215Y mutation leading
to small transmission clusters of sizes between 1 and 5. Configurations representing less than 2
samples are not shown to increase readability.

4. Discussion 438

We proposed fast maximum-likelihood ACR methods for investigation of drug resis- 439

tance patterns in large sequence data sets. Their application to ∼ 40 000 subtype B and 440

∼ 20 000 subtype C sequences from the UK HIV Drug resistance database allowed us to 441

investigate the trends in drug resistance patterns between 1996 and 2016 and to estimate 442

the loss times for 25 common non-polymorphic DRMs. 443

An important advantage of our methods is their applicability to very large data 444

sets (dozens of thousands of sequences). Previous studies had to face an uncomfortable 445

choice between using more complex models on filtered data [9] or using less accurate 446

(e.g. parsimony) approaches on full data sets [4]. Our approach uses a robust maximum 447

likelihood framework, and permits the extraction of global drug resistant patterns from all 448

the available data. 449

While the proportion of resistant cases in the UK seems to decrease with time, the 450

proportion of resistant cases in treatment-naive individuals (hence acquired via TDR) is 451

increasing. In addition, our results show that polymorphic DRMs obey to a different 452

scheme, with an increase of both the proportion of resistant cases and TDR, and large 453

resistance clusters. The TDR cases form resistance clusters, which are clearly identifiable 454

on phylogenetic trees. Locating these clusters within the UK regions and cities, and 455

among risk groups would be an important step in stopping drug resistance spread. The 456

global trend that we observe in the UK is visible in other high-income countries (e.g. 457

Switzerland [33], Italy [34] and Portugal [35]), but differs from, for example, West Africa, 458

where the prevalence of multiple resistance in the population is a major concern [36]. 459

Furthermore, detailed analyses in high-income countries indicate that a high level of ADR 460
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is more frequently observed in certain risk groups (e.g. African origin, unemployment, 461

mental illness, among others, in Switzerland [37]) that require special surveillance to 462

prevent treatment failure and HIV-1 transmission. 463
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Abbreviations 477

The following abbreviations are used in this manuscript: 478

479

ADR acquired drug resistance
ART antiretroviral therapy
ARV antiretroviral
AZT zidovudine
CI confidence interval
DDI didanosine
DRM drug resistance mutation
ETR etravirine
MAP maximum a posteriori
NFV nelfinavir
NNRTI non-nucleoside reverse transcriptase inhibitor
NRTI nucleoside reverse transcriptase inhibitor
NVP nevirapine
np DRM non-polymorphic drug resistance mutation
PI protease inhibitor
p DRM polymorphic drug resistance mutation
PR protease
RT reverse transcriptase
SQV saquinavir
TDF tenofovir
TDR transmitted drug resistance

480

Appendix A Analysis pipelines 481

Snakemake [38] pipelines and ad hoc Python3 scripts used for the analyses described 482

above are available on github.com/evolbioinfo/HIV1-UK. Along with the subtyping, tree 483

reconstruction, dating and ACR tools mentioned above, we used goalign (v0.3.6) and gotree 484

(v0.3.0b) [39] for basic sequence alignment and tree manipulations, as well as ETE3 frame- 485

work [40] for basic tree manipulations (format conversion, pruning, etc.). Survival analy- 486

sis was performed with Python3 package SurPyval (github.com/derrynknife/SurPyval). 487

Sierra web service [20] for ARV and DRM detection was used via Python3 package sierrapy 488

(github.com/hivdb/sierra-client). 489
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Appendix B Algorithm for counting NADR, NTDR, Nloss in a tree T 490

Data: tree T, annotated with tip treatment-status and node and tip DRM-status
Result: ADR, TDR, and DRM loss counts: NADR, NTDR, Nloss
NADR, NTDR, Nloss ← 0, 0, 0
for node ∈ T do

if “resistant′′ == DRM_status(node) then
/* “Sensitive” to “resistant” state change between the node’s parent

and the node. We will decide whether this change is due to an
ADR event in an observed treated patient’s virus, or a hidden TDR
leading to resistance in an observed individual’s virus. */

if root(node) ∨ “sensitive′′ == DRM_status(parent(node)) then
/* 1.Count treatment-experienced & -unknown subtree tips */
Nexperienced, Nunknown ← 0, 0
for t ∈ tips(node) do

if treatment_status(t) == “experienced′′ then
Nexperienced += 1

end
if treatment_status(t) == “unknown′′ then

Nunknown += 1
end

end
/* 2.Calculate the probability Pnaive that the subtree is

naive-only. If it contains treatment-experienced patients,
Pnaive is 0. If there are only treatment-naive individuals,
Pnaive is 1. Each treatment-unknown individual is considered
as naive with a probability 1

2, and Pnaive is 1
2

Nunknown . */
if Nexperienced > 0 then

Pnaive ← 0
else

Pnaive ← 1
2

Nunknown

end
/* 3. Decide which type of the event we have at the source of

this subtree. If the subtree includes a treated patient
(Pnaive = 0), then it is an ADR event (see Figure 2a,c): hence
we will increase NADR by 1. If the subtree is naive-only
(Pnaive = 1), then it is a hidden TDR (see Figure 2b,d): hence
we will increase NTDR by 1. When the subtree contains only
treatment-unknown and -naive individuals, we will increase
both counts according to Pnaive. */

NTDR += Pnaive ; /* hidden TDR */
NADR += 1− Pnaive ; /* ADR in an observed treated patient */

end
/* An internal node whose state is resistant, i.e. TDR. */
if ¬tip(node) then

NTDR += 1 ; /* observed TDR */
end

else
/* “Resistant” to “sensitive” state change, i.e. a DRM loss. */
if ¬root(node) ∧ “resistant′′ == DRM_status(parent(node)) then

Nloss += 1
end

end
end
return NADR, NTDR, Nloss

491
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Appendix C Additional Tables 492

Table A1. Resistant sequence counts in B and C data sets (after filtering by patient and temporal
outlier removal).

Number Number of cases (% of all)
of B C

DRMs all non-polymorphic all non-polymorphic

0 26859 (68.59%) 31518 (80.49%) 13661 (72.63%) 15795 (83.98%)
1 7257 (18.53%) 3852 (9.84%) 3174 (16.87%) 1496 (7.95%)
2 2128 (5.43%) 1243 (3.17%) 785 (4.17%) 466 (2.48%)
3 852 (2.18%) 688 (1.76%) 397 (2.11%) 362 (1.92%)
4 537 (1.37%) 471 (1.20%) 258 (1.37%) 244 (1.30%)
5 386 (0.99%) 350 (0.89%) 201 (1.07%) 174 (0.93%)
6 308 (0.79%) 288 (0.74%) 128 (0.68%) 113 (0.60%)
7 183 (0.47%) 178 (0.45%) 80 (0.43%) 57 (0.30%)
8 174 (0.44%) 163 (0.42%) 44 (0.23%) 36 (0.19%)
9 121 (0.31%) 109 (0.28%) 24 (0.13%) 21 (0.11%)
10 95 (0.24%) 70 (0.18%) 19 (0.10%) 16 (0.09%)
11 65 (0.17%) 70 (0.18%) 12 (0.06%) 10 (0.05%)
12 50 (0.13%) 41 (0.10%) 8 (0.04%) 5 (0.03%)
13 43 (0.11%) 36 (0.09%) 6 (0.03%) 5 (0.03%)
14 23 (0.06%) 25 (0.06%) 6 (0.03%) 3 (0.02%)
15 23 (0.06%) 22 (0.06%) 2 (0.01%) 2 (0.01%)
16 18 (0.05%) 11 (0.03%) 0 (0.00%) 0 (0.00%)
17 12 (0.03%) 14 (0.04%) 1 (0.01%) 1 (0.01%)
18 10 (0.03%) 5 (0.01%) 0 (0.00%) 0 (0.00%)
19 4 (0.01%) 2 (0.01%) 0 (0.00%) 1 (0.01%)
20 5 (0.01%) 2 (0.01%) 2 (0.01%) 1 (0.01%)
21 5 (0.01%) 1 (0.00%) 1 (0.01%) 1 (0.01%)
22 1 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
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Table A2. DRMs with prevalence > 0.5% found in position RT:T215 in B data set, and the evolution
of their presence over time.

date total DRM resistant cases TDR ADR loss
samples (% of all) treatment- cases cluster cases cases

experienced naive (% of num. sizes (% of (% of

(% of resistant) resistant) resistant) resistant)

14-03-16 39159

D 462 (1.2%) 86 (18.6%) 334 (72.3%) 459.25 (99.4%) 103 1-99 71.75 (15.5%) 69 (14.9%)

F 257 (0.7%) 215 (83.7%) 19 (7.4%) 41.25 (16.1%) 37 1-4 222.75 (86.7%) 7 (2.7%)

S 378 (1.0%) 59 (15.6%) 293 (77.5%) 364.25 (96.4%) 115 1-45 51.75 (13.7%) 38 (10.1%)

Y 883 (2.3%) 790 (89.5%) 37 (4.2%) 119.50 (13.5%) 102.5 1-5 785.50 (89.0%) 22 (2.5%)

17-12-14 36258

D 441 (1.2%) 83 (18.8%) 322 (73.0%) 437.25 (99.1%) 102 1-88 70.75 (16.0%) 67 (15.2%)

F 256 (0.7%) 214 (83.6%) 19 (7.4%) 41.25 (16.1%) 37 1-4 221.75 (86.6%) 7 (2.7%)

S 358 (1.0%) 53 (14.8%) 284 (79.3%) 348.75 (97.4%) 109 1-44 47.25 (13.2%) 38 (10.6%)

Y 880 (2.4%) 788 (89.5%) 37 (4.2%) 118.00 (13.4%) 102 1-5 783.00 (89.0%) 21 (2.4%)

17-12-09 22540

D 314 (1.4%) 61 (19.4%) 234 (74.5%) 309.50 (98.6%) 83 1-47 60.50 (19.3%) 56 (17.8%)

F 241 (1.1%) 204 (84.6%) 17 (7.1%) 36.50 (15.1%) 33.5 1-4 209.50 (86.9%) 5 (2.1%)

S 226 (1.0%) 34 (15.0%) 178 (78.8%) 222.00 (98.2%) 75 1-21 35.00 (15.5%) 31 (13.7%)

Y 837 (3.7%) 752 (89.8%) 34 (4.1%) 99.00 (11.8%) 87 1-5 751.00 (89.7%) 13 (1.6%)

17-12-04 7511

D 123 (1.6%) 31 (25.2%) 85 (69.1%) 109.50 (89.0%) 45.5 1-21 37.50 (30.5%) 24 (19.5%)

F 185 (2.5%) 160 (86.5%) 14 (7.6%) 24.00 (13.0%) 24 1-2 163.00 (88.1%) 2 (1.1%)

S 70 (0.9%) 17 (24.3%) 43 (61.4%) 63.75 (91.1%) 34 1-8 22.25 (31.8%) 16 (22.9%)

Y 655 (8.7%) 597 (91.1%) 24 (3.7%) 54.25 (8.3%) 51 1-4 602.75 (92.0%) 2 (0.3%)

17-12-99 1576

D 28 (1.8%) 9 (32.1%) 17 (60.7%) 20.00 (71.4%) 14.5 1-2 10.00 (35.7%) 2 (7.1%)

F 42 (2.7%) 41 (97.6%) 1 (2.4%) 2.00 (4.8%) 2 1-2 40.00 (95.2%)

S 9 (0.6%) 3 (33.3%) 4 (44.4%) 5.00 (55.6%) 4.5 1-2 4.00 (44.4%)

Y 205 (13.0%) 187 (91.2%) 6 (2.9%) 12.25 (6.0%) 12 1-2 192.75 (94.0%)

14-11-96 7

D 1 (14.3%) 1 (100.0%) 1.00 (100.0%)

F 1 (14.3%) 1 (100.0%) 1.00 (100.0%)

S
Y 2 (28.6%) 2 (100.0%) 2.00 (100.0%)
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Table A3. Numbers of data points available for loss time calculation for non-polymorphic DRMs
found in B and C data sets (see Table 4).

DRM class num. data points B num. data points C
left- right- interval- left- right- interval-

censored censored

PR:L33F PI 36 17 0
PR:M46I PI 95 8 1
PR:I54V PI 77 7 4
PR:V82A PI 80 17 1
PR:L90M PI 153 35 0
RT:M41L NRTI 238 68 4
RT:E44D NRTI 50 9 1
RT:A62V NRTI 68 14 0
RT:D67N NRTI 231 25 4
RT:K70R NRTI 216 4 2
RT:K103N NNRTI 612 90 8 310 11 5
RT:V108I NNRTI 148 9 2
RT:Y181C NNRTI 264 9 5
RT:M184V NRTI 825 7 3 408 4 7
RT:G190A NNRTI 185 14 4
RT:L210W NRTI 140 19 0
RT:T215D NRTI 24 43 2
RT:T215F NRTI 69 3 2
RT:T215S NRTI 30 35 3
RT:T215Y NRTI 223 5 1
RT:K219E NRTI 72 8 1
RT:K219Q NRTI 79 32 3
RT:K219N NRTI 38 18 1
RT:H221Y NNRTI 153 17 1
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