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Abstract 

Acute and chronic coronary syndromes (ACS and CCS) are leading causes of mortality. 

Inflammation is considered to be a key pathogenic driver, but immune states in humans and 

their clinical implications remain poorly understood. We hypothesized that Multi-Omic blood 

analysis combined with Multi-Omic Factor Analysis (MOFA) might uncover hidden sources of 

variance providing pathophysiological insights linked to clinical needs. Here, we compile a 

single cell longitudinal dataset of the circulating immune states in ACS & CCS (13x103 clinical 

& Multi-Omic variables, n=117 subjects, n=838 analyzed samples) from two independent 

cohorts. Using MOFA, we identify multilayered factors, characterized by distinct classical 

monocyte and CD4+ & CD8+ T cell states that explain a large proportion of inter-patient 

variance. Three factors either reflect disease course or predict outcome in coronary 

syndromes. The diagnostic performance of these factors reaches beyond established 

biomarkers highlighting the potential use of MOFA as a novel tool for multilayered patient risk 

stratification. 
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Introduction 

Myocardial ischemia is a major driver of mortality and morbidity worldwide1. This is caused by 

atherosclerosis in coronary arteries, which is clinically subdivided into stable chronic coronary 

syndromes (CCS) and acute coronary syndromes (ACS). Myocardial infarction (MI), the most 

severe form of ACS, is initiated by an acute disruption of blood flow to the myocardium due to 

plaque rupture in preexisting CCS2. Local and systemic immune responses are a main driver 

of atherosclerosis and contribute to thrombosis as well as myocardial remodeling after acute 

myocardial ischemia3,4. However, despite extensive basic and translational research in the 

past decades, the immunological signatures in these disease entities in humans remain 

incompletely understood.  

Single cell sequencing allows for characterizing immune signatures in an unbiased way with 

unprecedented resolution. In basic research it has been used to profile immune cells in 

atherosclerotic plaques5 and at sites of MI6. In addition, single cell genomics is increasingly 

taken up in clinical applications7. Its potential for diagnostics has been shown for systemic 

lupus8, while the prediction of survival9 and of treatment response have been demonstrated 

for immuno-therapy of different cancers10-12. 

Systems biology and systems medicine approaches assessing different types of biomolecules 

simultaneously in multiple disease relevant tissues and cell types hold the potential to capture 

disease processes in their entirety13. Multi-Omics approaches are increasingly taken up in 

cardiovascular research14 and have led to the identification of predictive biomarkers for the 

stability of atherosclerotic plaques5,15. Analysis of such Multi-Omics data is challenging due to 

the heterogeneity of data types and the large number of variables measured in relatively small 

numbers of samples. Multi-Omics factor analysis (MOFA) is an unsupervised approach for 

exploratory data analysis across multiple data types that enables the identification of the major 

axes of variation composed of multiple molecular features and to link these with the underlying 

molecular processes16. In contrast to analyzing the predictive potential of single variables, this 

data driven dimensionality reduction allows for testing single, integrative factors for their 
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potential in diagnosis and prognosis, while retaining the wealth of information contained in the 

Multi-Omic dataset. 

 

Together single cell and Multi-Omics systems-biological approaches have the potential to 

reveal the circulating immune response to ACS and CCS, which has not yet been 

characterized comprehensively in humans. This could provide mechanistic insights as a basis 

to develop new treatment strategies and provide non-invasive blood-based integrative 

biomarker signatures for the prediction of treatment outcome of ACS and for the non-invasive 

diagnosis of CCS.  

We hypothesized that the concept of applying MOFA on patient blood samples might allow us 

to connect the immune signature of CCS and ACS to the diagnosis of coronary artery disease 

and to prediction of myocardial function after MI. Utilizing a multi-center, prospective, Multi-

Omics strategy, we here characterize the circulating immune signatures and their time course 

in human coronary syndromes using single cell transcriptomics and patient level Multi-Omics 

in a clinically well-defined patient cohort with minimal co-morbidities. Most importantly, using 

the MOFA approach, we distil concise immune signatures with clinical and mechanistic 

implications. These immune signatures describe the disease course and are predictive for 

treatment outcome. Downstream analysis of the contributions of individual molecular features 

to each immune signature identified underlying molecular and cell-cell communication 

pathways.  In summary, by linking our Multi-Omics study with MOFA, we unravel the clinical 

potential of immune signatures for diagnosis of coronary artery disease in CCS and prediction 

of the functional outcome after ACS in two independent, prospective cohorts.  
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Results 

Multi-Omic characterization of the immune profile in acute coronary syndrome 

We analyzed the human immune response to myocardial ischemia in a cohort of patients who 

presented at the cardiology department of the University Hospital, Ludwig-Maximilians-

University (LMU) Munich (Munich cohort).  

ACS patients all had a ST-elevation myocardial infarction (STEMI) and were only included in 

the absence of major comorbidities, cardiogenic shock or signs of infection at the time of 

inclusion (see inclusion and exclusion criteria in methods (Suppl. Table 1)). This cohort was 

sampled longitudinally to allow a high-resolution characterization of the systemic immune 

response to STEMI. We aimed to capture all major phases of the immune response during 

myocardial infarction3,4 at four sampling timepoints in the Munich cohort (TPM): TP1M was the 

periinterventional timepoint, where sampling was performed during acute presentation at the 

catheter laboratory for immediate revascularization. TP2M was chosen to pick up the 

reperfusion injury, and sampling was performed 14 (± 8) h after re-opening of the culprit 

vessel. Samples at TP3M were collected 60 (± 12) h after the acute event as an intermediate 

timepoint. TP4M represented the normalization of creatine kinase (CK) values and the 

beginning of inflammation resolution and healing (prior to discharge, about 6.5 (±1.5) d after 

the acute event).  

The Munich control cohort, without acute coronary ischemia, further allowed comparison 

between diagnostically secured CCS and CCS rule-out (non-CCS) patients. Samples from 

patients who presented with suspected coronary artery disease (CAD) were collected at 

timepoint TP0M before they underwent invasive or computed-tomography based coronary 

angiography and were subsequently classified as CCS or non-CCS (i.e., no evidence of CAD) 

(Suppl. Table 1). 

Additionally, we validated the key immune signatures of our analysis in a second dataset from 

a cohort of ACS patients presenting at the University Medical Center Groningen (UMCG) 

(Groningen cohort). In the second independent dataset, the Groningen cohort17, sampling 

timepoints (TPG) for ACS were chosen in a similar manner: first admission to the catheter unit 
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(TP1G), 24h after catheterization (TP2G), the last timepoint again represented the time when 

cardiac biomarkers had normalized, and the myocardial repair had been initiated (TP3G). In 

the Groningen cohort samples from this timepoint were collected 6-8 weeks after first 

admission.  

In the Groningen control cohort healthy samples from the LifeLines DEEP17 cohort were 

included at a single timepoint TP0G. The detailed analysis and cohort description of the 

Groningen cohort are further described in the corresponding manuscript17 (Suppl. Table 2). 

Overall, we enrolled a combined total of 117 individual subjects and n=838 samples from 

clinical blood tests (n=125), scRNA Sequencing (scRNA-seq) (total: n=224 samples, derived 

from M: n=121; G: n=103), flow cytometry (n=122), cytokine multiplex-assay (n=127 samples), 

plasma proteomics (n=119), and neutrophil prime-Sequencing (prime-seq18) (n=121)  (Fig. 

1a,b, Suppl. Table 3,4). 

 

We first focused on patients with ACS and a classical acute symptom onset, instant 

recanalization and no infectious complications during their disease course within the hospital 

(sterile ACS) and compared them to CCS patients (see Methods: Ethics & patient cohort). 

The analysis of laboratory values (CK, CK-MB isoenzyme, and Troponin T) confirmed the 

classical course of acute myocardial ischemia. In addition, transient elevations in C-Reactive 

Protein (CRP) and increased circulating leukocyte counts characterized a systemic immune 

response in MI (Fig.1c, Suppl. Fig. 1a). Flow cytometry-based phenotyping (n=122 samples) 

revealed no major quantitative changes in classical circulating leukocyte subsets in ACS 

compared to the CCS cohort (Suppl. Fig. 1b,c). To allow for a more refined resolution of 

leukocyte subsets, we made use of scRNA Sequencing (scRNA-seq). 

Single-cell RNA sequencing revealed all major peripheral blood mononuclear immune cells 

(PBMCs) and rare populations such as plasma blasts, progenitor cells and circulating 

megakaryocytes19 (Fig. 1d, Suppl. Fig. 2a,b). We identified multiple previously described20 

activated, resting and regulatory CD4+ T cell clusters. Compared to flow cytometry, the higher 

resolution of scRNA-seq-defined immune cell subsets revealed shifts in the composition of 
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immune cell subsets across the disease course of MI (Fig. 1d-e, Suppl. Fig. 2a-c). Longitudinal 

analysis of centered log ratio (CLR) transformed cell type abundance identified marked shifts 

in the monocyte and T cell compartment during MI. CD14high FCGR3Alow VCANhigh IL1Bhigh 

classical monocyte clusters 4 and 6 abundances increased early during acute infarction. 

Simultaneously, cluster 0 CD4+ act 1 (CCR7low SOCS1high) T cell as well as cluster 2 CD4+ act 

2 (CCR7high SOCS1high) T cell abundance dropped during the disease course. In line, CD8+ T 

cell cluster 1 showed altered abundance across the immune response to ACS (Fig. 1e, Suppl. 

Fig. 2c). Overall, ACS is characterized by major, distinct changes in classical monocyte and 

T cell subsets compared to CCS. 

 

Multi-variate integration and factor analysis extract comprehensive immune signatures 

that explain inter-patient variance 

To unlock the full potential and to identify overarching immune signatures of our Multi-Omic 

dataset from the Munich cohort, we integrated and harmonized data across the different types 

of data. We applied data type specific pre-processing (pseudo-bulk aggregation, library size 

normalization, log transformation, sample quantile normalization, filtering) and overall feature-

quantile normalization (see methods). This resulted in 13,282 variable Multi-Omics and clinical 

features in the integrated dataset (Suppl. Fig. 3a). The complexity of the data, comprising 

different omics datasets, clinical variables and disease entities, made the analysis of the 

dataset with standard methods challenging and impractical. Therefore, we hypothesized that 

integrative factor analysis could exploit inter-patient variability to discover distinct immune 

signatures (i.e. multicellular programmes21) potentially allowing deduction of mechanistic and 

clinically relevant insights. Multi-Omic Factor analysis (MOFA) enables the identification of 

major axes of variance in a complex dataset and hence we used it to identify functionally 

relevant, coordinated immune responses16 that are not necessarily captured by individual 

features alone. MOFA moreover allows data integration across multiple data types (views). 

Here, views represent: (1) cell-type specific gene expression profiles in each of the circulating 

immune cell-type clusters identified in the single-cell RNA sequencing of PBMCs and (2) 
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prime-seq18 data of neutrophils, (3) circulating proteins as determined by plasma proteomics 

or (4) cytokine analysis as well as (5) clinical laboratory markers. The cell type-specific gene 

expression profiles for the cell-type clusters in scRNA-seq data were defined by calculating 

the mean expression across all cells per individual and cell-type cluster. Hence, MOFA 

extracts shared as well as view-specific combinations of features that describe variation of the 

circulating immune response from single-cell and -patient level data (Fig. 1a).  

We trained MOFA with 20 factors balancing the tradeoff between a high fraction of explained 

variance and interpretable factors. The analysis of the percentage of variance explained by 

each factor in each view showed that the inferred factors capture patterns that are shared 

across different views (Fig. 1f). Further, we analyzed the factor values at sample-level to 

identify whether MOFA factors capture patterns that distinguish the different disease entities 

and timepoints (Suppl. Fig. 3b). MOFA revealed several factors with diagnostic and 

mechanistic implications as further described in the subsequent paragraphs.  

 

A distinct integrative Factor represents the superordinate immune signature during 

myocardial infarction 

MOFA identified factors that capture clinically relevant patterns: Factor 2 captured a large 

extent of inter-patient variance across the different views and explained most inter-patient 

variance in the clinical view (Fig. 2a, Suppl. Table 5). We first focused on patients with ACS 

and a classical acute symptom onset, instant recanalization and no infectious complications 

during their disease course within the hospital in comparison to stable CCS patients without 

an acute event. Factor 2 correlated with the development and resolution of myocardial 

ischemia reflected in the time course of clinical markers of myocardial damage and accurately 

discriminated chronic from acute coronary syndromes (Fig.1c, 2b). We therefore termed 

Factor 2 Integrative ACS. Next, we sought to replicate the temporal pattern of the immune 

response captured by Integrative ACS in the scRNA-seq data of the independent Groningen 

cohort, which was measured at comparable timepoints (Fig. 1a). After matching the cell type 

annotations of the two cohorts (Suppl. Fig. 4) and applying the same pre-processing and 
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normalization approach in the Groningen cohort we computed Integrative ACS by applying 

the feature factor weights identified in the Munich cohort on cell type specific expression data 

in the Groningen cohort (see methods, Suppl. Fig. 5,6). Integrative ACS in the Groningen 

cohort indeed showed the same pattern across time (Fig. 2c) as Integrative ACS from the 

Munich cohort (Fig. 2b).  

Furthermore, we asked which specific views and single variables show strongest associations 

with Integrative ACS. Indeed, clinical markers of myocardial damage (Troponin T, CK and CK-

MB) had high factor weights on Integrative ACS (Suppl. Table 6). However, the factor weight 

of the clinical variables was lower than that of many other Multi-Omics variables. Clinical 

markers were also not within the top 1% of variables with highest weights on Factor 2 (Fig. 

2a, Suppl. Fig. 7).  In addition, the temporal pattern of Integrative ACS could be reproduced 

after re-running MOFA factor analysis without any clinical variables (Suppl. Fig. 8, 9a,b), 

confirming that even though the factor captures a high amount of variance within the clinical 

markers and resembles the pattern of those, other Multi-Omic views are important to define 

Integrative ACS. We next asked what defines Integrative ACS to gain more profound insights 

into the nature of the immune response to myocardial ischemia.   

We therefore focused on the molecular features contributing the highest factor weights to 

Integrative ACS. CD4+ act 1 (CCR7low SOCS1high) cluster 0 T cell and CD4+ act 2 

(CCR7high SOCS1high) T cell cluster 2, as well as CD8+ T-cell cluster 1 and IL1Bhigh FCN1high 

CD14high monocyte cluster 4 had the largest relative amount of highly weighted features across 

views (Fig. 2a). Expression of EIF3E and HINT1 in CD4+ act 1 (CCR7low SOCS1high) T-cells 

(Cluster 0) were among the highest-ranking features (Fig. 2d, Suppl. Table 6). In line, EIF3E 

is required for robust T-cell activation. Depending on CD28 coreceptor signaling, EIF3E 

regulates a burst in T-cell receptor signaling22. HINT1 complexed with HSP70 has been shown 

to hold strong immunomodulatory functions in NK cells23. HMGB1 across CD4+ and CD8+ T-

cells similarly held a high factor weight in Integrative ACS (Fig. 2d, Suppl. Fig. 7a). HMGB1 

promotes expansion and activation of T-cells and is a central alarmin for lymphoid cell fate 

and function24. As indicated by the strong association with the factor, the normalized 
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expression of these genes showed a comparable development as Integrative ACS across the 

disease course (Fig. 2d,e). 

Interestingly, T cell and monocyte clusters 0, 1 and 4, which contribute most features that 

constitute Integrative ACS, also showed significant alterations in circulating frequencies 

across disease evolution (Fig. 1e). CD4+ act 1 (CCR7low SOCS1high) T cells (cluster 0) were 

defined as activated CD4+ T cells as described before20. Monocyte cluster 4 showed an IL1β⁠high 

CD14 high classical, pro-inflammatory phenotype (Fig. 1d, Suppl. Fig. 2a-b). 

Hence, Integrative ACS forms a novel multilayered marker which largely explains inter-patient 

variance and defines the coordinative immune response to myocardial ischemia. Integrative 

ACS reflects the longitudinal pattern of myocardial ischemia and integrates clinical markers of 

myocardial damage with comprehensive Multi-Omic information. 

 

Distinct Interleukin signatures in monocytes and T cells characterize Integrative ACS 

To allow for a more systematic understanding of characteristic immune signatures in 

Integrative ACS beyond the weight of individual features, we next sought to aggregate factor 

weights on the level of pathways. Across all our data views several immune system pathways 

of the REACTOME25 and KEGG26 database were enriched (Suppl. Table 7,8), including the 

Interleukin-6, -10, -12 & -27 signaling pathways which were mostly driven by high positive 

factor weights of genes of the CD4+ T cell and monocyte clusters as well as by some of the 

measured circulating cytokines (IL6, IL10, CXCL8) (Fig. 3a,b, Suppl. Fig. 9c,10). The 

enrichment of the IL6 cytokine signaling pathway was driven by high factor weights of IL6ST, 

STAT3 and JAK1 and SOCS3 in cluster 2 and 5 CD4+ T cells and cluster 4 monocytes (Fig. 

3b-d, Suppl. Fig. 11). In line, the circulating plasma cytokine IL6 itself also showed a 

considerable factor weight (Fig. 3c, Suppl. Table 6). Hence, the systemic immune response 

in ACS is dominated by a complex immune signature, characterized by an altered interleukin 

signaling in distinct monocyte and T cell clusters.  
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Analysis of intercellular cross-talk unravels T cell-driven monocyte changes in ACS 

Broad changes in cytokine profiles across different cell types in ACS may be coordinated by 

cell-cell communication. We therefore focused on identifying the underlying ligand-receptor 

pairs between immune cells and the downstream targets of cell surface receptors. For this we 

made use of the prior knowledge about potential ligand-receptor-target interactions provided 

by the NicheNet model27. To unravel cell-cell communication specific to Integrative ACS, we 

selected only features with the highest factor weights to define candidate target genes in the 

respective cell-types. We investigated ligands from other cell types, cytokines and proteins 

that show at the same time a high regulatory potential (given by the NicheNet model) and 

correlation of expression levels across samples with those target genes. Among the circulating 

cytokine features, this ligand-target analysis identified levels of circulating IL6, which also had 

a high factor weight on Integrative ACS, to associate with expression levels of Proto-oncogene 

serine/threonine-protein kinase Pim-1 in CD14high cluster 4 monocytes (Fig. 4a-e). High IL6 

levels correlated negatively with monocyte CD74 expression, involved in antigen 

presentation28, but were accompanied by increased VCAN expression in CD14high cluster 7 

monocytes (Fig. 4b-e). Summarized on a cellular level, most of the ligands whose expression 

showed high correlations with target genes with top factor weights of Integrative ACS were 

expressed in T-cell clusters. Vice versa, monocytes but also CD4+ and CD8+ T cells were the 

key receiver cells with expression levels of the largest number of targets correlating with T 

cell-derived ligands (Fig. 4a,b). The damage associated molecular pattern (DAMP) HMGB1, 

which also showed a high weight on Integrative ACS, was involved in a plethora of correlated 

ligand-target pairs. In detail, expression levels of the ligand HMGB1 in resting as well as 

activated CD4+ T cell clusters 0, 2, 5 CD4+ and cluster 1 CD8+ T cells resulted in high 

correlations with expression levels of the largest number of top-ranking target genes on 

Integrative ACS (Fig. 4a-c, Fig. 2d). HMGB1 was related to the reduction of proteasome 

activity within the receiver cell: expression of HMGB1 in Cluster 1 CD8+ T cells and cluster 0 
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CD4+ T cells showed a negative correlation with expression of UBC in cluster 0, 1 and 2 CD4+ 

T cells, suggesting a reduced ubiquitination potential29 (Fig. 4c-e, Fig. 2d). Ubiquitination in T 

cells is strongly linked to fine-tuning many immune responses, particularly positive or negative 

regulation of T cell activation30. Similarly, expression of HMGB1 in activated cluster 0 and 

cluster 2 CD4+ T cells correlated negatively with expression of Proteasome activator complex 

subunit 2 (PSME2) in cluster 4, 6, 7 CD14high monocytes, emphasizing HMGB1-mediated 

inhibitory influences on proteasome activity (Fig. 4c-e, Fig. 2d). Besides that, TGFB1 

expression in cluster 1 CD8+ T cells positively correlated with expression of ODC1 in cluster 

4 CD14high monocytes, known to inhibit inflammatory macrophage programs and macrophage 

apoptosis31, and therewith possible explaining the increased numbers of circulating cluster 4 

monocytes during the disease course of ACS. ODC1 in these monocytes was downregulated 

early during ACS – however increased over time, suggesting an unleashed inflammatory 

monocyte state in early ACS and a gradual reduction of monocytic activation at later timepoints 

(Fig. 4 b-d). Hence, the communication between T cells and monocytes dominates the 

inflammatory response in ACS and is driven by the cytokine IL-6 and the alarmin HMGB1.  

 

Factor analysis distinguishes clinical ACS outcomes and predicts post-event 

development of cardiac dysfunction 

We next hypothesized that differences in the time from symptom onset to presentation (i.e., 

time of myocardial ischemia) as well as different clinical courses of myocardial infarction (i.e., 

extent of myocardial damage) might be reflected in and influenced by variable immune 

responses in ACS. Therefore, we focused on ACS patients with different disease course: 

either with a symptom onset more than 24h ago (ACS with delayed recanalization after vessel 

occlusion), or patients who had experienced infectious complications (ACS acquiring hospital 

infection) and compared these to patients with uncomplicated ACS disease course with recent 

symptom onset (sterile ACS). Indeed, patients with an ACS with delayed recanalization after 

vessel occlusion and therefore a longer ischemia time showed a much stronger Integrative 

ACS response after recanalization than patients with direct presentation (Fig. 5a). In contrast, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 3, 2023. ; https://doi.org/10.1101/2023.05.02.23289392doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.02.23289392


   
 

   
 

lower levels of cardiac biomarkers were observed in TP1M and TP2M in delayed coronary 

recanalization due to late patient presentation (Fig. 5b). Patients with an ACS that developed 

an infective complication during hospitalization showed increased Integrative ACS Factor 

values compared to patients without infective complications (Fig. 5a,c). Also, classical 

differential multiplex cytokine analyses revealed distinct differences in different clinical courses 

of ACS with Platelet-derived growth factor AB/BB levels being particularly elevated in patients 

with delayed recanalization and eminently low levels of circulating Interleukin-5 in patients with 

delayed recanalization or in ACS patients acquiring hospital infections (Suppl. Fig. 12,13a). 

Mechanistic and translational studies during the last decades suggested a possible impact of 

different immune states on a favorable or detrimental development of myocardial healing and 

myocardial function3,32,33. We therefore asked whether integrative MOFA factors might allow 

prediction of the extent of myocardial recovery at early sampling time points. This could serve 

to identify patients at risk for the development of ischemic heart failure and possibly trigger 

early initiation of heart failure treatment, more extensive revascularization, or prolonged 

monitoring on the ICU. To define patients with favorable or adverse developments of cardiac 

function, we measured baseline left ventricular ejection fraction (EF) during the acute phase 

of myocardial infarction in the intensive care unit and again before discharge by 

echocardiography and divided patients into two groups. Patients who showed a drop in left 

ventricular ejection fraction across the disease course were considered to have an adverse 

development of cardiac function (poor outcome) in contrast to a favorable development (good 

outcome) (Fig. 5d). We hypothesized that these variable disease courses might be associated 

and/or influenced by different immune signatures, either supporting cardiac healing or leading 

to detrimental inflammation causing adverse cardiac remodeling. We asked whether the 

MOFA factors could predict an adverse development of cardiac function. Therefore, we 

enrolled patients with ACS with acute symptom onset and compared a favorable outcome 

(improved or stable ejection fraction across the hospitalized disease course) with a non-

favorable outcome (worsened ejection fraction across the hospitalized disease course). Factor 
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4 had particularly low levels already at the time of hospital admission in patients with a poor 

outcome compared to patients with improved cardiac function (Fig. 5e). In contrast, clinical 

laboratory markers of myocardial damage showed a non-significant trend towards increased 

CK levels across the disease course. However, no difference was observable at early 

timepoints, where predictive markers are needed (Fig. 5f,g). This stresses the utility of novel 

integrative factors for outcome prediction and emphasizes the relevance of the altered immune 

signature in early myocardial damage for the functional cardiac outcome. We evaluated the 

potential of Factor 4 values estimated at TP1M to predict good vs. poor outcome using the 

area under the curve (AUC) of the receiver operating characteristic curve (ROC). Prediction 

with Factor 4 outperformed the prediction based on established clinical markers at TP1M (Fig. 

5g) even when taking into account the complete time course of those markers (Suppl. Fig. 

13b, Suppl. Table 9). Due to the unsupervised training of the model, Factor 4 was estimated 

independently of outcome. Additionally, no information about the trajectory of specific patients 

(coupling of timepoints) was used during model estimation. Thus, these results are indicative 

of the potential translational value of Factor 4. We termed this Factor 4 Integrative ACS 

Outcome. 

To corroborate the predictive value of the top-ranking features included in Integrative ACS 

Outcome already at the earliest timepoint, independent of their subsequent changes in 

expression at later timepoints, we trained a penalized logistic regression model that predicts 

outcome from these features at TP1M on the Munich cohort. We then applied this model to 

predict the outcome for the patients of the Groningen replication cohort at TP1G with available 

outcome data (see methods). Comparison of the predicted and observed outcomes resulted 

in ROC AUC of 0.83 on the replication cohort (Fig. 5h, Suppl. Table 9), thus demonstrating 

the ability of the model to generalize beyond the Munich cohort and differentiating good and 

poor outcome patients already at an early stage. 

Next, we investigated which features mainly define this protective integrative factor. We 

assumed, that features with high positive factor weights on Integrative ACS Outcome define 

rather protective immune features, whereas features with high negative factor weights define 
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rather detrimental immune features (Suppl. Fig.14). Interestingly, a high number of features 

indicating a distinct NK cell phenotype showed high negative weights on Factor 4 (Fig. 5i,j). 

This signature correlating with a negative development of cardiac function at later timepoints 

was characterized by NK cell activation and cytotoxicity as shown by high factor weights of 

TXNIP34, PRF135, LITAF36, GZMB35, FYN37, CST738 and CD5339 expression (Fig. 5j, Suppl. 

Fig. 14a). Also, anti-angiogenic mediators such as CXCL9 and CXCL1040 or TNFS10 

(TRAIL)41 derived from the multiplex cytokine view had high negative factor weights on 

Integrative ACS Outcome (Fig. 5j, Suppl. Fig. 14-16). On the other hand, the plasma 

proteomics view revealed that circulating anti-trypsin enzymes of the SERPIN family 

(SERPINA1, SERPINA2, SERPINA3), known to protect cells from granzyme-mediated 

cytotoxicity42, showed high positive factor weights on Integrative ACS Outcome and hence 

associate with a more protective immune state. Interestingly, the degree of inflammation per 

se was not necessarily associated with an adverse outcome since circulating proinflammatory 

proteins such as CRP, SAA1, SAA2 and C9 showed high positive weights on the protective 

factor Integrative ACS Outcome (Fig. 5j).  

Besides the analysis of high-ranking features characterizing Integrative ACS Outcome, we 

investigated their normalized expression values at TP1M and subsequent timepoints 

distinguishing good and poor outcome samples (Suppl. Fig. 17) focusing on their potential to 

differentiate outcome already at an early stage (TP1M). We observed differential expression 

of CD53, GZMB and TXNIP in NK cells between good and poor outcome groups at TP1M 

(Fig. 5k). We further evaluated whether these selected features at TP1M predict the outcome 

of those patients. A logistic regression model including only these features yielded a ROC 

AUC value of 0.79 (Fig. 5l, Suppl. Table 9) on the Munich cohort as training dataset. To 

evaluate its generalizability to other datasets, we applied it to the Groningen validation cohort, 

yielding a ROC AUC of 0.91 (Fig. 5l, Suppl. Table 9). In line with that we also find differential 

expression of those features between good and poor outcome at TP1G within the Groningen 

cohort (Fig. 5k). This highlights the potential of identifying a small subset of predictive features 
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among top-ranking Integrative Outcome features that might serve as targeted clinical markers 

for outcome prediction without the need of collecting a Multi-Omics dataset. 

 

 

Integrative CCS robustly identifies the presence of coronary artery disease  

Next, we tested whether MOFA factors can identify CCS patients with established CAD from 

patients with a CAD rule-out (non-CCS), which would provide a non-invasive diagnostic 

approach. The samples of patients with suspected coronary artery disease were sampled in 

a prospective manner without prior information on coronary artery status. The different groups 

(CCS, non-CCS) showed comparable cardiovascular risk factors and baseline characteristics 

(compare Suppl. Table 1). Factor 1 showed high positive values in patients with chronic 

coronary syndromes (Fig. 6a). In contrast, patients with healthy coronaries but also patients 

with acute coronary syndromes showed lower and mainly negative values of Factor 1 (Fig. 

6a). We hence termed this factor Integrative CCS. In detail, 94% of patients with CAD showed 

an Integrative CCS value above 0, whereas 91% of patients with exclusion of CAD showed 

an Integrative CCS value below 0. Patients with coronary artery sclerosis (evidence of 

atherosclerosis with vessel narrowing <50%) showed intermediate values of Integrative CCS 

(Fig. 6a). We evaluated the potential of the Integrative CCS value to predict CCS patients 

against patients without CCS. When also including patients with non-occlusive coronary 

sclerosis in the non-CCS group, Integrative CCS outperformed the established “SCORE2”43 

CVD risk score (ROC AUC 0.84 vs 0.63). Considering only patients without CCS or patients 

with established CCS (hence excluding coronary sclerosis), Integrative CCS again 

outperformed “SCORE2” (ROC AUC 0.99 vs 0.80, Fig. 6b, Suppl. Table 10)43.  

As the factor was identified in an unsupervised setting, without explicitly modeling the coronary 

artery status, this result indicates that integrative omics-based factors like Integrative CCS 

might potentially be clinically useful. The concept of MOFA analyses might provide a valuable 

tool to identify non-invasive diagnostic biomarkers for prospective validation in a large-scale 

independent clinical cohort of CCS patients. 
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Furthermore, we again analyzed which features dominate Integrative CCS. The factor was 

defined by many features of CD4+ and CD8+ T cells and captured mainly variance of those 

views (Fig. 6c). Expression of modulators of T cell antigen recognition, signal transduction and 

T cell activation such as CD3E, ICAM3 and TRAC51,52 in activated cluster 0 CD4+ T cells had 

a high positive weight on Integrative CCS. In line, expression of PRDX2, known to be 

upregulated upon T cell receptor stimulation53, and CORO1A, JUNB as well as CD37, 

regulating T cell survival and homeostasis54-56, showed strong positive associations with 

Integrative CCS (Fig. 6d, Suppl. Fig. 18a,19a). In summary Integrative CCS was defined by a 

dysregulated activation pattern of the monocyte and T cell compartment (described in detail 

in the supplementary notes). 

 

 

Discussion 

The systemic immune signatures associated with acute and chronic coronary syndromes 

remain incompletely understood, but are highly relevant for atherosclerosis, thrombosis, and 

myocardial remodeling. In particular, insights from Multi-Omics studies in patients might 

provide leads for developing new strategies for accessible biomarker signatures for diagnosis 

and prognosis in ACS and CCS.  

Indeed, simultaneous Multi-Omics and single cell profiling in combination with unsupervised 

MOFA allowed us to obtain an unbiased description of the systemic immune signatures of 

coronary syndromes. Integrative ACS captured the time course of the immune response to 

ACS robustly across two independent cohorts. It was mainly defined by CD4+, CD8+ T cell and 

monocyte derived features, emphasizing the importance of these immune cells for the 

response to ischemic myocardial damage. EIF3E, pivotal for CD4+ T cell signaling22, as well 

as T cell HMGB1 were strongly associated with Integrative ACS. Multiple T cell derived ligands 

correlated with expression of downstream targets in monocytes. In line, several previous 

approaches focusing on whole blood or distinct immune cell subsets have provided essential 
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insights into systemic mechanisms that possibly drive atheroprogression or plaque rupture in 

coronary syndromes, unravelling a particular importance of CD4+ T cells phenotypes44-47. 

Moreover, in the OPTICO-ACS study, flow-cytometric analysis of local blood taken from the 

coronary arteries from patients with ACS by either plaque erosion or plaque rupture 

emphasized an important role for T cell-derived cytotoxic effector molecules in plaque-erosion 

ACS46.  

Although all MOFA factors were estimated in an unsupervised manner, without using explicit 

information on outcome nor on the trajectories of specific patients, Integrative ACS Outcome 

predicted a favorable or poor treatment outcome of STEMI patients already at the time of 

hospital admission. This finding enabled the training of a supervised model that could then be 

applied in a second independent cohort, demonstrating the robustness and generalizability of 

the diagnostic performance of the identified integrative, multilayered biomarkers. Comparison 

to classical clinical laboratory markers (CK, CK-MB, Troponin T) showed that Integrative ACS 

Outcome outperformed established markers at early timepoints. Integrative ACS Outcome 

was defined by high-ranking features in NK cells such as TXNIP34, GZMB35 and CD5339. This 

could indicate NK cell cytotoxicity as a possible predictive marker of adverse outcome after 

myocardial infarction. Indeed, previous studies on lymphocyte-mediated cytotoxicity showed 

a deleterious role on post-ischemic cardiac remodeling48. Moreover, NK cells directly affect 

atherosclerosis and the regulation of pulmonary vascular permeability after myocardial 

infarction in experimental models49,50. 

Integrative CCS, again estimated in an unsupervised way, differentiated patients with CCS 

from patients without CAD, outperforming the established “SCORE2”43 CVD risk score. 

Integrative CCS should be considered a promising candidate integrative biomarker requiring 

independent replication in the future, as performed with Integrative ACS or Integrative ACS 

Outcome. High ranking features contributing to Integrative CCS indicated a dysfunctional T 

cell phenotype, possibly induced by a disrupted CD16high monocyte-NAMPT-T cell signaling 

axis. NAMPT signaling has been associated with inflammatory monocyte/macrophage states 

and higher circulating NAMPT levels have been identified in ACS patients51,52. 
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Our study holds multiple important implications for clinical, basic and translational 

cardiovascular research. First, we provide proof-of-concept that single cell Multi-Omic profiling 

of the circulating immune signature, paired with MOFA analyses allow prediction of disease 

state, phenotype, and outcome of remote, non-accessible injury sites. By reducing the very 

large number of potential predictors, in our case >13,000 variables of diverse datasets, 

including proteomics, single-cell transcriptomics and clinical data points to few factors, we 

identify overarching signatures of clinical significance. This implies that (1) integration and 

factor-based analysis of complex datasets can add crucial understanding of (cardiovascular) 

disease, and (2) Multi-Omic liquid biopsies without access to the tissue site of injury – in this 

case the infarcted cardiac muscle – with subsequent MOFA analysis offer a strategy for non-

invasive diagnostics as well as disease course prediction also for non-accessible tissues.  

In patients with chronic lymphatic leukemia, bulk RNA-seq with MOFA analysis identified a 

molecular signature predictive for treatment outcome that was mechanistically linked to the 

proliferation of tumor cells53. In this case, the blood-based data directly assessed the diseased 

tissue itself. Here, we demonstrate that this approach can be transferred to identify circulating 

biomarker signatures for risk stratification in solid organ disease by using routine blood 

drawings, and therefore elucidates novel tools for the concept of ‘liquid biopsies’ from 

circulating blood. 

From a pathophysiological perspective, our data highlight that distinct, systemic immune 

states associate with coronary syndromes. In acute MI, these states follow distinct trajectories 

over the disease course from ischemia to reperfusion and healing/scar formation. Crucially, a 

specific signature also associates with favorable outcome – i.e. improvement of cardiac 

function. This underscores the possible importance of the identified axes to drive myocardial 

healing as well as targeting of pathological scar formation and supports the concept of 

therapeutic immune modulation to limit cardiac damage.  

However, this study has limitations: The study is hypothesis generating but the power was not 

comparable to a clinical trial aiming to probe the predictive value of novel diagnostic markers 

for clinical use. An adequately powered, large-scale clinical trial is indispensable to evaluate 
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the ultimate diagnostic performance of Multi-Omics factor analysis and to probe translation 

into standardized clinical settings. The methods used in this manuscript are highly cost-

intensive, but selected candidate biomarkers such as expression of few genes in NK cells that 

are highly predictive of treatment outcome, could be assayed in a targeted way for such larger 

clinical cohorts. Finally, the hypotheses about the molecular underpinnings generated in these 

analyses require further mechanistic follow up studies. 

In summary, this Multi-Omics study of coronary syndromes identifies systemic immune 

signatures representing multicellular gene programs that capture the time course of the 

immune response to ACS and enables early prediction of treatment outcome, which is of high 

clinical importance. Analysis of the components of the immune signatures reveal the 

underlying molecular and cell-cell communication pathways. These novel integrative analysis 

strategies set the stage for the identification of circulating multilayered immune-cell signatures 

that can be utilized as highly predictive stratification tools for diseased, but non-accessible 

tissues, using blood samples and subsequent MOFA analysis to outperform single-molecule 

biomarker approaches and clinically established laboratory tests.  
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Supplementary notes 

T cell function is the key driver of inter-patient variance in Integrative CCS 

Integrative CCS was defined by many features of CD4+ and CD8+ T cells and captured mainly 

variance of those views (Fig. 6c). Expression of modulators of T cell antigen recognition, signal 

transduction and T cell activation such as CD3E, ICAM3 and TRAC54,55 in activated cluster 0 

CD4+ T cells had a high positive weight on Integrative CCS. In line, expression of PRDX2, 

known to be upregulated upon T cell receptor stimulation56, and CORO1A, JUNB as well as 

CD37, regulating T cell survival and homeostasis57-59, showed strong positive associations 

with Integrative CCS (Fig. 6d, Suppl. Fig. 18a, 19a). FOSB expression in activated cluster 0 

CD4+ T cells, cluster 1 CD8+ T cells and cluster 3 NK cells had a negative weight on Integrative 

CCS (Fig. 6d, Suppl. Fig. 18a,19a, Suppl. Table 6). We further explored ligand-target 

correlations within Integrative CCS by again exploiting the ‘NicheNet’ database27 with ligands 

showing the highest weights on Integrative CCS (Suppl. Fig. 19b-e). Interestingly, ICAM3 

expression in cluster 0 CD4+ T cells, cluster 1 CD8+ T cells and cluster 4 CD14high monocytes 

was among the top 10 ligands with the highest weights on the factor (Suppl. Fig. 19b,c). 

Simultaneously, expression of the ligands CALM1 and CALM2 in similar clusters, involved in 

intracellular calcium homeostasis, showed high negative factor weights on Integrative CCS 

(Fig. Suppl. Fig. 19b,c)).  PTMA (encoding Thymosin alpha-1) is highly expressed by T cells 

and has been shown to hold broad disease-protective effects60-62. ICAM3 or CALM1 from 

cluster 11 and 0 CD4+ T cells negatively correlated with PTMA expression in cluster 1 CD8+ T 

cells ( Suppl. Fig. 19d,f,g). Moreover, CALM1 in multiple CD4+ T cell as well as B cell and 

monocyte clusters was accompanied with increased PTMA expression in cluster 1 CD8+ T 

cells (Suppl. Fig. 19d,f,g. In summary Integrative CCS can be characterized by a negative 

regulation of PTMA in CD8+ T cells by multiple cell types. 

However, what sustains CD4+ T cell phenotype in Integrative CCS? NAMPT (encoding 

Nicotinamide phosphoribosyltransferase) in cluster 9 and 12 CD16high monocytes showed a 
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strong negative correlation with JUNB expression in CD4+ T cell clusters (Suppl. Fig. 19g). 

Expression of NAMPT in Cluster 9 and 12 also showed strong negative associations with 

Integrative CCS (Suppl. Fig. 19b, Suppl. Table 6). This ascribes unleashed CD4+ T cell JUNB 

levels in Integrative CCS to a reduced NAMPT expression in CD16high monocytes (Suppl. Fig. 

19e-g, Suppl. Fig. ). NAMPT has been described to be a key regulator of monocyte 

differentiation63 particularly during inflammatory states64 and has been described to be 

increased in patients with ACS as well as in M1 inflammatory macrophages52. Ultimately, lower 

levels of NAMPT signaling trigger a dysfunctional T cell phenotype65. Multiplex cytokine 

analyses also revealed distinct differences between CCS and non-CCS patients, including 

GM-CSF, EGF, LIF, CCL4, IL-10 and IL-25 (Suppl. Fig. 20,21). In summary, integrative factor 

analysis suggests a dysregulated monocyte and T cell activation pattern in patients with CAD 

to define the disease compared to patients without CAD.  
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Methods 

Munich Cohort: Ethics & patient cohort 
 

Informed consent was obtained from the patients in accordance with the Declaration of 

Helsinki and with the approval of the Ethics Committee of the Ludwig Maximilian University of 

Munich (No.: 19-274). We collected blood from n=62 patients employing repetitive serial 

sampling and separately analysed the different immune cell constituents. For blood collection 

we used heparin-anticoagulated blood (i.e. Sarstedt AG & Co. KG, cat# 02.1065.001). A total 

of n=125 whole blood test, n=122 PBMC samples, n=246 plasma samples and n=121 PMNs 

samples were used for analyses.  

In the acute coronary syndrome (ACS) group, patients with ST segment elevation myocardial 

infarction (STEMI) were included and blood was analysed longitudinally. Blood sampling was 

done periinterventionally (TPM1) – during catheterization to avoid time loss, 14 (± 8) h after 

intervention (TPM2), 60 (± 12) h after acute event (TPM3) and before discharge, about 5-8 d 

after acute event (TPM4). A further subdivision was made into patients without direct 

reperfusion within 24h after symptom onset (delayed myocardial reperfusion, n=4) and 

patients with direct reperfusion within 24h due to coronary intervention (acute myocardial 

infarction, n=24). A subgroup of patients with evidence of infection in laboratory testing who 

were treated with antibiotics in the clinical setting defined a subgroup with hospital acquired 

infection (n=5) which was differentiated from the sterile group with STEMI without hospital 

acquired infections (n=19). The latter was used for comparison with the chronic coronary 

syndrome group (CCS).  Patients were also subdivided based on clinical outcome. For this 

purpose, the ejection fraction (EF) measurement was determined according to Simpson's 

method in echocardiography.  A comparison was made between the findings on admission 

and during the hospital stay or before discharge (ΔEF). Based on these, a classification was 

made according to positive (good outcome) and negative (poor outcome) ΔEF in acute setting. 

The chronic cardiac event group included patients with an initial diagnosis of chronic coronary 

syndrome based on a cardiac catheterisation (lumen reduction of >50%) or coronary CT scan 
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(>75 percentile) (CCS, TP0M n=16). Coronary healthy patients, with a catheter or CT based 

rule out of CAD, were included as a comparison group for the chronic coronary syndrome 

group (non-CCS, TP0M n=18). Coronary sclerosis was defined as coronary irregularities 

without significant lumen obstruction (<50%). The cardiovascular risk of CCS and non-CCS 

patients was calculated by using SCORE266. The following parameters were used: Age, total 

cholesterol, HDL, systolic blood pressure, smoking history and gender. 

Exclusion criteria for the Munich cohort were cardiogenic shock, age >85 and <30 years, 

severe systemic diseases (chronic liver disease, active haemato-oncologic diseases, active 

cancer, autoimmune diseases, acute inflammatory event with a CRP >2 mg/dl or fever at 

admission) and the use of immunosuppressants at inclusion. For the CCS cohort, patients 

with significant elevation of Troponin T levels were also excluded.  

 

Clinical blood tests 

 

The clinical blood tests were performed as part of the treatment during hospitalisation. We 

involved the following clinical biomarkers and blood cells: CK, CK-MB, Troponin T, CRP, 

Leukocytes and Neutrophils. The statistical analysis and the graphical illustration were 

performed with Prism 9.  

 

Cytokine und Chemokine assays 

 

For the isolation of plasma, 2x 1 ml whole blood was centrifuged at 2000 x g (rcf) for 20 min 

at 4°C (Centrifuge 5424 R, Eppendorf AG). Afterwards, the supernatant was carefully removed 

and pooled in a common Eppendorf reaction vessel for cryoasservation at -80°C. 

For detection and quantitation of cytokines and chemokines, samples were sent on dry ice to 

EveTechnologies® to perform a Human Cytokine/Chemokine 71-Plex Discovery Assay® 
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Array (HD71). Within the assay the following biomarkers were determined: 6CKine, BCA-1, 

CTACK, EGF, ENA-78, Eotaxin, Eotaxin-2, Eotaxin-3, FGF-2, Flt3L, Fractalkine, G-CSF, GM-

CSF, GROα, I-309, IFNα2, IFNγ, IL-1α, IL-1β, IL-1RA, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-

9, IL-10, IL-12p40, IL-12p70, IL-13, IL-15, IL-16, IL-17A, IL-17E/IL-25, IL-17F, IL-18, IL-20, IL-

21, IL-22, IL-23, IL-27, IL-28, IL-33, IP-10, LIF, MCP-1, MCP-2, MCP-3, MCP-4, M-CSF, MDC, 

MIG, MIP-1α, MIP-1β, MIP-1δ, PDGF-AA, PDGF-AB/BB, RANTES, sCD40L, SCF, SDF-

1α+β, TARC, TGFα, TNFα, TNFβ, TPO, TRAIL, TSLP, VEGF-A. 

The statistical analysis and the graphical illustration were performed with Prism 9. 

 

Plasma proteome analysis 

 

The isolation and storage of the plasma was mentioned above. The plasma vials were slowly 

thawed at +4°C and mixed at a ratio of 1:5 with a proteomic buffer (2% SDS (Thermo Scientific, 

cat#J22638.AE), 2.5 mM DTT (Invitrogen, cat#P2325) in 50 mM Tris (Invitrogen, 

cat#AM9820)). Afterwards the samples were immediately boiled at 95°C for 10 minutes and 

cryoconserved at -80°C. 

Plasma samples were prepared by SDS-lysis, automated SP3 cleanup and tryptic digest 

essentially as described67,68. Samples were measured on an orbitrap Exploris 480 instrument 

(Thermo Fisher Scientific) in label-free data-independent acquisition (DIA) mode whilst 

separating peptides on a 44 min gradient on a nanoEASY 1200 system (Thermo Fisher 

Scientific) coupled to the mass spectrometer. Raw files were analysed in Spectronaut 14 

(Biognosys69) against a spectral library that was generated from 52 fractions measured in the 

same manner as described67. An FDR cutoff of 0.01 was applied and spectra were searched 

against a human Uniprot database from 2018 including isoforms. For data filtering, the option 

Qvalue percentile with a fraction of 0.2 was used and global normalisation by median was 

applied. Further downstream analysis was performed in R. Normalised intensities were filtered 

for at least 80% valid values per row and column, remaining missing values were median-
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centred and imputed using a randomised Gaussian distribution with a downshift of 1.8. For 

significance calling, the limma package was consulted to calculate moderated t statistics70. 

Nominal p-values were corrected using the Benjamini-Hochberg method. 

 

Isolation of polymorphonuclear neutrophils (PMNs) 

 

Initially, 400µl of whole blood was added to a tube and 20μl each of the Isolation Cocktail and 

RapidSpheres (EasySep Direct Human Neutrophil Isolation kit, STEMCELL Technologies 

Inc., cat#19666) were added. After 5 min incubation at RT, the reagent was filled up to 4ml 

with PBS (Dulbecco ́s Phophate Buffered Saline (1x), ThermoFisher Scientific, cat#14190-

094) + 1mM EDTA (Ethylenediaminetetraacetic acid, Sigma-Aldrich Chemie GmbH, 

cat#03690). Subsequently, the tube was placed in a magnet (EasySepMagnet, STEMCELL 

Technologies Inc.) for 5 min. Then, without being removed from the magnet, the contents of 

the tube were transferred to a new tube in a continuous motion. After adding 20μl 

RapidSpheres again, the incubation steps were repeated without adding PBS + 1mM EDTA. 

After decanting again, the new tube was placed in the magnet for 5 min without addition of 

RapidSpheres. The newly decanted tube was centrifuged at 320 x g for 7 min at 4°C 

(Centrifuge 5810 R, Eppendorf AG). The pellet was then resuspended in 100μl PBS. 10µl of 

the suspension was used to adjust the concentration to 5 million cells/ml. For this, the dead 

cells were stained with trypan blue (Sigma-Aldrich Chemie GmbH, cat#T8.154) and the 

concentration was calculated using a Neubauer counting chamber (LO-Laboroptik Ltd, 

Lancing). For cryoasservation at -80°C, cell suspension was added to RLT plus buffer (Qiagen 

GmBH, cat#1053393) containing 1% 2-mercapathoethanol (Sigma-Aldrich Chemie GmbH, 

cat#M3148) at a ratio of 1:10.  
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prime-seq 

 

For the analysis of the transcriptome of PMNs, prime-seq, an early barcoding bulk RNA-seq 

method, was used. Samples were pre-treated with proteinase K (Life Technologies, 

cat#AM2548) followed by isolation with cleanup beads (Sigma-Aldrich, 

cat#GE65152105050250) (ratio 2:1 beads per sample). DNase I (Thermo Fisher, 

cat#EN0521) was used to digest the cells to make the transcriptome accessible for the 

process of reserve transcription. This was done by adding 30 units of Maxima H enzyme 

(Thermo Fisher, cat#EP0753) and 1x Maxima H buffer (Thermo Fisher, cat#EP0753), 1 mM 

dNTPs (Thermo Fisher, cat# R0186), 1 µM template-switching oligo (IDT) and 1 µM barcoded 

oligo-dT primers (IDT) and incubating for 90 minutes at 42°C (reaction volume: 10µl). After 

pooling of all samples, they were purified in a 1:1 ratio with cleanup beads. For elimination of 

the leftover primers, exonuclease I (NEB, cat#M0293L) was added (Incubation setup: 37°C 

for 20 min, then 80°C for 10 min), followed by another purification with cleanup beads. The 

synthesis of the second strand of cDNA was prepared by adding 1X KAPA HS Ready Mix 

(Roche, cat#07958935001) and 0.6 µM SINGV6 primer (IDT) (reaction volume: 50µL). For 

amplification, subsequent PCR cycles were performed: Start: 98 °C for 3 min; 15 cycles: 98 

°C for 15 s, 65 °C for 30 s, 72 °C for 4 min; End: 72 °C for 10 min. To re-purify the sample, 

cleanup beads were added at a ratio of 0.8:1 beads per sample and dissolved out in 10 µL 

DNase/RNase-free distilled water (ThermoFisher, cat#10977-049). Quantification and size 

selection of the purified cDNA was then performed using the Quant-iT PicoGreen dsDNA 

Assay Kit (ThermoFisher, cat#P7581) and the High-Sensitivity DNA Kit (Agilent, cat#5067-

4627). For library preparation a fivefold lower reaction volume of the NEBNext Ultra II FS 

Library Preparation Kit (NEB, cat#E6177S) than recommended by the manufacturer was 

used.  Fragmentation of cDNA was performed using the enzyme mix and the reaction buffer 

(reaction volumes 6µl) and ligation was performed using Ligation Enhancer, Ligation Master 

Mix and a custom prime-seq adapter (1.5 µM, IDT) (reaction volume: 12.7 µL). SPRI-select 
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beads (Beckman Coulter, cat#B23317) were then used for a double size selection (ratio of 0.5 

and 0.7). For amplification, Q5 Master Mix (M0544L, NEB), 1 µL i7 Index Primer (Sigma-

Aldrich) and 1µL i5 Index Primer (IDT) were used followed by PCR (start: 98 °C for 30 s; 13 

cycles: 98 °C for 10 s, 65 °C for 75 s, 65 °C for 5 min; end: 65 °C for 4 min).  After successful 

size selection with SPRI-select beads and a quality check, the libraries were sequenced by 

using a NextSeq (Ilumina). 

The sequencing reads were processed using zUMIs pipeline using the Gencode human 

release version (https://www.gencodegenes.org/human/release_35.html). Only barcodes 

matching the expected samples were considered and exported as count matrices, both raw 

counts and library-size normalized ones. First, the data was checked using fastqc (version 

0.11.871). Regions on the 3’ end of the fragment reading into the poly-A tail were removed by 

Cutadapt (version 1.1272). The zUMIs pipeline (version 2.9.4d)73 was applied, filtering the data, 

with a phred threshold of 20 for 4 bases the UMI and BC, mapping the reads to the human 

genome with the Gencode annotation (v35) using STAR (version 2.7.3a), reads were counted 

using RSubread (version 1.32.4)74,75.  

 

PBMC isolation 

For isolation of peripheral blood mononuclear cells (PBMCs), 8 ml of whole blood was 

transferred to a BD Vacutainer® CPTTM (Becton, Dickinson and Company, cat#362780), 

swivelled twice and centrifuged at 1650 x g for 20 min at room temperature (RT) (Centrifuge 

5810 R, Eppendorf AG). After swivelling twice, the supernatant was transferred into a 15 ml 

tube and a further centrifugation step with 350 x g for 7 min at 4°C was performed. The 

resulting cell pellet was resuspended in 4 ml freezing medium and alliqouted. The freezing 

medium consisted of 45% RPMI (VLE-RPMI 1640, Bio&SELL GmbH, cat#BS.52551528.5) 

with 1% glutamine (GibcoTM L-Glutamine (200 mM), Thermo Fisher Scientific, cat# 

BS.K0283), 45% FBS (FBS SUPERIOR stabil®, Bio&SELL GmbH, cat#FBS.S0615) and 10% 
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DMSO (Dimethyl sulphoxide, Sigma-Aldrich Chemie GmbH, cat#D2438). For cryoasservation, 

samples were slowly frozen in a Mr. Frosty freezing container (Thermo Fisher Scientific, 

cat#5100-0036) at -80°C for 24h and then transferred to -80°C freezers. 

 

FACS and scRNA-seq preparation  

 

For scRNA-seq analysis of the frozen PBMCs, an adapted thawing protocol of 10X was used 

(Fresh Frozen Human Peripheral Blood Mononuclear Cells for Single Cell RNA Sequencing, Document 

Number CG00039 Rev E, 10x Genomics, (2023, May 2nd): 

https://assets.ctfassets.net/an68im79xiti/71r5PbRPB1LeqRkuPltBzr/64cfaa099d0a7fd41f79a

4aecd643926/CG00039_Demonstrated_Protocol_FreshFrozenHumanPBMCs_RevE.pdf. 

Samples were thawed at 37°C for 3 min. This was followed by stepwise dilution (5x 1:1) with 

dropwise addition of complete growth medium. The complete growth medium consistit (10% 

FBS + 90% RPMI). The sample was then filtered using a 50 µm strainer and centrifuged at 

300g for 5 min at RT.  

Supernatant was removed to the last millilitre and the cell pellet was resuspended in it by using 

a wide bore pipet. After slowly adding another 9 ml of complete growth medium, the sample 

was split into two. A further centrifugation step at 300 rcf for 5 min at 4°C was performed.  

One half of the sample was used for further processing for scSeq analysis. The cell pellet was 

resuspended in 100µl Fc block (BD Pharmingen, cat#564200) (1:50) and incubated on ice for 

10 min. To label the cells, TotalSeqB™ anti-human hashtag antibodies (1:500) (BioLegend) 

were added to the sample and then incubated at 4°C for 30 min. To maximize the 

performance, TotalSeqB™ anti-human hashtag antibodies were pre-centrifuged at 14000g at 

4°C for 10 min. Following this, the sample was washed 3 times by adding 5ml of FACS buffer 

(PBS with 0.5% BSA (Albumin Fraktion V, Carl Roth GmbH & Co. KG, cat#8076.4)) and 

centrifugation at 250g for 10 min at 4°C each time. After the last centrifugation step, the cell 

pellet was resuspended in 0.04% BSA in PBS and the concentration was adjusted to 200 
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cells/µl using a Neubauer counting chamber. Lastly, marked samples were pooled.  

The other half of the sample was used to prepare the FACS analysis. The sample was 

incubated with 200µl Fc block (1:50) at 4°C for 10 min. Staining of the cells was done by a 20 

min incubation with an antibody mastermix (1:400). After centrifugation at 300g for 7 min at 

4°C, the cell pellet was resupended in 300µl FACS buffer. The dead cells were stained 

immediately before flow cytometry with LSRFortessa Flow Cytometer (BD Biosciences). The 

flow cytometry data were analysed with FlowJo (BD). The statistical analysis and the graphical 

illustration were performed with Prism 9. 

 

Antibody panel 

  

 

ScRNA Library preparation. 

 

For single cell sequencing, libraries were prepared using the Chromium Next GEM Single Cell 

3' Reagent Kit v3.1 (CG000206 Rev D) from the 10X Genomics® protocol. Barcode-based 

multiplexing with TotalSeqB™ anti-human hashtag antibodies was performed to reduce 
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artefacts associated with batch variation.  

According to the manufacturer's instructions, the Gel Beads-in-emulsion (GEMs) were first 

prepared to obtain cDNA with reserve transcription. After purification of the cDNA, an 

amplification and size selection were performed.  

After final quantification and quality control, the gene expression and cell surface libraries were 

constructed for sequencing, which was performed by using an Illumina NovaSeq. 

 

Bioinformatics analysis of the scRNA-seq dataset  

Pre-processing 

SC Data Preparation (cellranger) 

After sequencing, the FASTQ files for the gene and cell surface libraries were processed using 

the cellranger count pipeline (chemistry: Single Cell 3’ v3; pipeline version: 3.1.0). Each 

sample was mapped to the human reference genome (GRCh38; version: 3.1.0).  The library 

and reference files were created according to the 10X Genomics instructions and example 

files for Antibody Capture with TotalSeq™-B (https://support.10xgenomics.com/single-cell-

gene-expression/software/pipelines/latest/using/feature-bc-analysis#feature-ref (17th Jan 

2023)). 

The pipeline quantifies each feature (genes + antibodies) in each cell and generated quality 

control summaries and feature barcode matrices for each of the 14 libraries (Suppl. Table 3). 

For further analysis we took the ‘filtered_feature_bc_matrix.h5’ of each library and split it up 

into two separate anndata objects: one containing the gene expression and one the antibody 

capture counts. 

 

Demultiplexing and Doublet Identification 

For the demultiplexing of the data we take the antibody capture counts anndata objects of 

each library convert them to Seurat objects, normalize the counts with ‘CLR’ (centered log-
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ration transformation) and apply the ‘HTODemux’ function of the Seurat package (version: 

4.1.1) as described in the vignette with the default 0.99 quantile threshold in order to classify 

the cells as positive or negative for each HTO (hashtag oligo). Cells that have been classified 

as positive for more than one HTO have been annotated as doublets. 

 

Cell quality control and filtering (QC) 

In a next step, we transferred the cell annotation results from the demultiplexing to the gene 

expression anndata files and applied some cell quality control criteria and filtering based on 

the gene expression counts to remove low quality cells. These steps were done for each library 

separately.  

In a first basic filtering step we kept only cells that have counts on at least 200 genes and 

genes that have counts in at least 3 cells. Furthermore, we combined the percentage of 

mitochondrial gene counts (pct_counts_mt), number of genes by counts (n_genes_by_counts) 

and total counts (total_counts) criteria to filter out further cells. We only kept cells that have: 

• n_genes_by_counts < 5000 ∩ total_counts < 20000 

• n_genes_by_counts > 500 ∩ pct_counts_mt < 15 

Subsequently the data was normalized (10.000 counts per cell) and log transformed (log1p) 

using the scanpy toolkit76 1.8.1 in Python v.3.9.6. Furthermore, we excluded mitochondrial and 

ribosomal genes as they were not of interest for the analysis. 

 

Data Integration, Clustering and Cell-Type Annotation 

In order to get a joint embedding of the complete dataset and correct for potential batch effects 

between the libraries we took the processed data from the QC and applied the Scanorama 

method (scanorama.correct_scanpy) as explained in the package description using 2000 

highly variable genes, batch-size parameter of 2000 and default parameters. This returned a 

Scanorama corrected count-matrix and a joint-embedding which we then use as input for the 

computation of a neighbourhood graph (scanpy.pp.neighbors, n_neighbors = 10, n_pcs = 50) 
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and the subsequent clustering of the cells using the Leiden algorithm (scanpy.tl.leiden; default 

parameters). 

We found 18 different clusters which we annotated manually by looking at the expression 

patterns of PBMC marker genes selected based on literature research and calculating 

differentially expressed genes (DEGs) between the clusters using a Wilcoxon rank sum test 

with Bonferroni-Hochberg adjustment as implemented in the scanpy framework 

(scanpy.tl.rank_genes_groups). With this strategy we could annotate all 18 clusters to all 

common major peripheral blood mononuclear immune cell-types (Suppl. Fig. 2a,b). 

 

Data Analysis 

Compositional Analysis 

In order to investigate compositional changes of the cell-type clusters between the different 

patient groups and timepoints we determined the percentage of cells that have been assigned 

to the different cell-type clusters for each patient and timepoint separately (for each patient 

and timepoint: amount of cells belonging to the cluster/ total amount of cells) and adjust them 

with centered log-ratio (CLR) transformation. Adjusted values were then analyzed using the 

Ordinary One-Way ANOVA with correction for multiple comparisons by Dunnett's test 

(*p≤0.05, **p≤0.01). The statistical analysis and the graphical illustration were performed with 

Prism 9.  

 

 

Multi-Omics Data Integration (MOFA) 

Data Harmonization and Model Training 

Data Harmonization and Integration 

For the integrated and combined analysis of all the different data sources (single-cell data, 

cytokines, neutrophils, proteomics and clinical data) we applied several pre-processing and 

normalization steps separately on the features of the different types of data to make them 
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comparable and adjust the distributions. 

 

ScRNA-seq Data 

We applied the pseudo-bulk approach to summarize single-cell data on the level of celltype 

(cluster) specific gene expression per sample because all other omics data was measured on 

the bulk-level. To this end, we calculated for each of the identified 18 cell-type clusters for 

each sample (= patient and timepoint) the mean counts across all cells. Afterwards we 

adjusted the gene counts of each sample in each cluster with a scaling factor so that each 

sample has the same amount of counts across all genes to account for technical differences 

in sequencing depth between the samples. 

In order to ensure that we only consider reliably expressed genes we applied additional 

filtering steps on the genes and clusters:  

We excluded clusters 14-18, which had only very low numbers of cells per patient and 

timepoint (mostly less than 10 cells). 

We filtered out genes based on the total number and percentage of cells that expressed those 

genes in the corresponding cluster keeping only genes that fulfill one of the criteria below: 

• percentage of cells expressing gene > 50 ∩ total number of cells expressing gene > 

1200 

• percentage of cells expressing gene > 40 ∩ total number of cells expressing gene > 

3000 

The thresholds were chosen considering that gene should be detectable in a high number of 

cells and in several samples but at the same time a considerable number of genes for each 

cluster should be kept. 

After filtering we log transform the count values and apply quantile normalization as further 

normalization steps to align the distributions of gene expression levels between the samples.  

This results in 11.831 features (which correspond to genes) across all the different clusters 

(ranging from 315 for cluster 13 and 2159 for cluster 4) which we used as input for the different 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 3, 2023. ; https://doi.org/10.1101/2023.05.02.23289392doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.02.23289392


   
 

   
 

cell-type cluster dimensions from the single-cell data for the MOFA analysis (Suppl. Fig. 3a). 

 

 

Cytokines 

In order to prepare the cytokine data for integration with the other datasets we set ‘OOR’ 

values to 0 and log transform the values to adjust the distributions after adding a pseudocount 

of 1 to all values. Furthermore, we exclude cytokines which have valid measured values in 

less than 20% of the samples. In total this results in 65 different cytokines which have been 

used as input features for the integrated analysis (Suppl. Fig. 3a). 

 

Neutrophils 

As input features from the neutrophil dimension, we take the umi exon counts from the prime-

seq and apply the processing steps below to align the reads with the single-cell sequencing 

data, adjust for potential technical effects and strictly remove samples and genes with low 

quality reads. 

In a first step we adjusted the gene names and map them from ‘ENSEMBL’ gene-ids to 

‘SYMBOL’ gene-ids. Then we filtered out ribosomal and mitochondrial genes as we also 

excluded them in the single-cell pre-processing and are not relevant for the analysis. 

Furthermore, we excluded genes that are not expressed in at least 80% of the samples and 

removed samples that do not have reads in at least 90% of the remaining genes. In a next 

step we adjusted for differences in sequencing depth between the samples and normalized 

the counts with a scaling factor so that the sum of reads for each sample are the same. Then 

we logarithmized the resulting counts. Finally, we decided to keep only highly variable genes, 

so we removed all genes which variance lies below the 25% quantile of the variance 

distribution. This resulted in a total of 892 genes measured on 92 samples which are 

considered as input features for the neutrophil dimension. As for the single-cell data we 

applied quantile normalization to the counts in a final normalization step (Suppl. Fig. 3a). 
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Proteomics 

For proteomics, we used the same pre-processing and normalization steps as in the described 

in the previous Plasma Proteome analysis and took the resulting normalized and median-

centered intensities measured for 490 different proteins as input features of this dimension 

(Suppl. Fig. 3a). 

 

Clinical Data   

As input features of the clinical data dimension, we used the measured CK, CRP, CK-MB and 

Troponin values and log transformed then (Suppl. Fig. 3a).  

 

Model Training 

After these individual pre-processing steps, we had in total 13.382 features across the 18 

different dimensions (cell-type cluster 1-14, neutrophils, cytokines, proteomics and clinical 

data) and applied feature-wise quantile normalization onto the quantiles of the standard 

normal distribution for all data types. Then we train the MOFA model using the R/Bioconductor 

package MOFA2 (version: 1.2.2) with maxiter parameter 50.000 to ensure convergence and 

20 factors and the remaining default parameters. The number of estimated factors was chosen 

to balance the trade-off between explained variance and low number of factors after various 

tests with different parameters (Suppl. Fig. 3a). 

To evaluate the effect of the clinical features we train a second MOFA model excluding the 4 

clinical features with in total 13.378 features and compare the resulting factor values and 

feature weights to the original model. 

 

Downstream Analyses 

Gene sent enrichment analysis (Pathways) 

On the feature weight matrix resulting from our trained MOFA model we conduct pathway 

enrichment analysis for the first 5 inferred factors of the MOFA model using the gene set 

annotations from the REACTOME25 and KEGG77 databases. We test all pathways belonging 
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to the ‘Immune System’ category in REACTOME (n=191) and pathways that are classified as 

‘Immune system’ or ‘Signal transduction’ pathways in KEGG (n=52). 

To test the enrichment of the pathways across all our data input dimensions we generate an 

extended pathway gene annotation set for those pathways in which a feature (consisting of 

data dimension and gene/protein code) is considered to belong to the pathway if the 

gene/protein code maps to the genes annotated to the pathway. To map the gene/protein 

codes to the gene-set annotations in KEGG and REACTOME we use the bitr function from 

the clusterProfiler package (version 4.0.5) to convert them to ENTREZID. 

We remove all the pathways for which we have included less than 20% of the total amount of 

genes annotated to the pathway in our feature set and run the enrichment analysis using the 

‘run_enrichment’ method implemented in the R/Bioconductor package MOFA2 (version: 1.2.2) 

with set.statistic parameter ‘rank.sum’ and default parameters otherwise. We run the 

enrichment separately for features with only positive or negative weights and jointly across all 

features. 

Pathways with an adjusted p-value < 0.05 (Benjamini-Hochberg adjustment) have been 

considered to be significantly enriched. 

 

Cell-cell communication  

To analyze the potential axes of cell-cell communication between different cell-types we use 

the prior knowledge about potential ligand-receptor-target interactions of the NicheNet27 

resource collected in the nichenetr package (version: 1.1.0) and load the provided ligand-

receptor network and ligand-target matrix78. Based on the classifications in those networks we 

identify ligands, receptors and potential targets among the 13.382 features included in our 

integrated dataset resulting from the ‘Data Harmonization and Integration step’. We calculated 

spearman correlation between all identified ligand-target pairs within this dataset. 

For the further analysis of the calculated ligand-target correlations in combination with the 

corresponding regulatory potential score we only consider ligand-target pairs: 
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• between ligand and targets of different cell-types (e.g., between monocytes and T 

cells) and different views (e.g., between cytokines and the different cell-type clusters). 

• where we have reliably measured a receptor in the target cell-type-cluster to which the 

ligand might potentially bind to as specified by ligand-receptor network provided by the 

NicheNet27 resource in order to affect the target gene (in case the target belongs to 

one of the cell-type cluster views from the scRNA-seq data). We consider a receptor 

gene to be reliably measured in case it fulfills one of the thresholds below: 

o percentage of cells expressing receptor gene in cell-type cluster > 30 ∩ total 

amount of cells expressing receptor gene in cell-type cluster > 600 

o percentage of cells expressing receptor gene in cell-type cluster > 10 ∩ total 

amount of cells expressing receptor gene in cell-type cluster > 1200 

Subsequently we focus on pairs with high correlation and regulatory potential scores where 

the target gene has a high feature weight on the analyzed MOFA factor. 

 

Predictions 

To evaluate the prediction potential of our MOFA factors to distinguish our different patient 

groups we calculate ROC curves contrasting the prediction power of the inferred factors to 

established clinical markers. 

For Factor 4 predictions we only consider factor values from samples measured at TP1 that 

could be classified to have a ‘good’ or ‘poor’ outcome. We compare the prediction potential of 

the factor values to the value of the clinical markers (CK, Troponin, CRP) for those samples 

at TP1. For the benchmarking against the prediction power across the complete time-course 

of the clinical values we take the maximum and mean values of those markers across all 

measured timepoints. In both cases we scale the clinical values as well as the factor values 

to be in a range between 0 and 1(￼                                )  and use them as input for the ROC 

curve calculation giving the probability of a sample being classified as ‘good’ vs. ‘poor’ 

outcome. 
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For Factor 1 predictions we only consider factor values from samples classified as ‘CCS’ or 

‘non-CCS’ and contrast those to the prediction power of calculated ‘SCORE2’43. for those 

samples. As for Factor 4 we scale these values to be in a range between 0 and 1 and use 

them as input for the ROC curve calculation giving the probability of a sample being classified 

as ‘CCS’ vs. ‘non-CCS’ sample. 

 

Replication in validation cohort (Groningen dataset) 

To validate our approach and findings we used an independent second dataset including n=24 

patients measured across three different timepoints (TP1G: at the heart catheterisation, 

TP2G: 24 hours after admission, TP3G: after 6-8 weeks) and a control group (TP0G, n=31) 

contained within the Groningen study17. 7980,81t1: at the heart catheterisation, TP2Gt2: 24 hours 

after admission, TP3Gt3: after 6-8 weeks) and a control group (TP0G, n=31) generated within 

the Groningen study17. The Groningen study was part of the CardioLines biobank 79. From all 

patients informed consent was obtained. As a control group age and sex-matched participants 

from the the LifeLines80,81.: at the heart catheterisation, TP2Gt2: 24 hours after admission, t3: 

after 6-8 weeks) and a control group (n=31) generated within the Groningen study17. The 

Groningen study was part of the CardioLines biobank17. From all patients informed consent 

was obtained. As a control group age and sex-matched participants from the LifeLines17. 

Further specifications of the dataset and the processing can be found within the corresponding 

manuscript17. The data in the Groningen study17 was measured with two different chemistries: 

v2 10x chemistry and v3 10x chemistry which showed strong technical differences in gene 

expression profiles between the samples that were prepared with different chemistries. 

Therefore, a separate processing of both datasets was necessary. In our replication we 

focused on samples measured with the v2 10X chemistry as this cohort included a higher 

number of samples (v2: n=55; v3: n=21). The V3 10X chemistry cohort did not include a 

sufficient number of samples which could be divided into poor or good outcome groups and 

would have therefore been underpowered. Classification into good and poor outcome groups 

in the Groningen cohort was performed similarly as in the Munich cohort. Based on the ΔEF 
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from echocardiography results (during the hospital stay and follow up), a classification was 

made according to positive (good outcome, n=7) and negative or stable (poor outcome, n=5) 

values. 

For the replication, in a first step, we evaluated the alignment of the different strategies for 

cell-type annotations that were applied in the two different studies. Subsequently we 

harmonized annotations between both datasets and developed strategies to replicate findings 

on the MOFA factors that were presented within the current study. MOFA Factor 1 (Integrative 

CCS) could not be evaluated in the Groningen cohort as this dataset did not include the 

differentiation of the control group into ‘CCS’ and ‘non-CCS’ patients.  

 

Alignment of cell-type annotations 

In the Groningen study cell-type annotation was done using the automated Azimuth method 

(for more details see manuscript17). As our data was processed and annotated in a different 

way in a first step, we compared clusters and annotations resulting from our study to the 

Groningen study. For this we run the pre-processing and automated annotation strategy as 

described in the Groningen study17 on our data and compared the resulting annotations of the 

single cells to the annotations resulting from our initial clustering and manual annotation 

strategy (Suppl. Fig. 4).In the Groningen study cell-type annotation was done using the 

automated Azimuth method (for more details see manuscript17,82). As our data was processed 

and annotated in a different way in a first step, we compared clusters and annotations resulting 

from our study to the Groningen study. For this we run the pre-processing and automated 

annotation strategy as described in the Groningen study17 [insert reference] on our data and 

compared the resulting annotations of the single cells to the annotations resulting from our 

initial clustering and manual annotation strategy (Suppl. Fig. 4). The results from this 

comparison are outlined in Supplementary Fig. 4. In general, our clustering and the automated 

azimuth annotation resulted for some cell-types in more granular (e.g. B cell cluster 10 would 

be distributed across ‘B naive', ‘B memory’ and ‘B intermediate’ azimuth annotations) or more 

aggregated annotations (e.g. CD14high monocyte clusters 4, 6 and 7 would all be aggregated 
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as CD14high monocytes) but on a more aggregated level annotations aligned well except for 

some T cell clusters (namely cluster 1 CD8+ T cells, cluster 11 CD4+ T cells and cluster 5 CD4+ 

T cells).  

 

Replication of MOFA analysis with harmonized cell-type annotations 

To evaluate the effect of the different granularity levels of annotation on the MOFA factor 

results in a subsequent step we run the same MOFA analysis as outlined above on the Munich 

data this time using instead of our manually annotated cell-type clusters the annotations 

resulting from the pre-processing and automated azimuth annotation as described in the 

Groningen manuscript (Suppl. Fig. 5a). We evaluated whether the resulting factors were able 

to capture the same patterns as found with our original strategy and whether factor and feature 

weights of the newly inferred factors and the factors presented in the manuscript aligned well 

by correlating them (Suppl. Fig. 5b, 6a,b). Overall, we could also reproduce the patterns 

presented previously with the alternative annotations (Suppl. Fig. 5b) and the inferred factor 

and feature weights of the presented factors were highly correlated (|cor| > 0.8) (Suppl. Fig. 

6a,b). 

In order to map the different input features based on the different cell-type annotation levels 

we mapped features as given in the table below: 

Munich approach: clusters and 
annotations 

Groningen approach: automated azimuth 

CD14high monocytes clusters (cluster 4, 6, 7) CD14 Mono 

B cells (cluster 8, 10) B cell (aggregating ‘B naive', ‘B memory’, ‘B 
intermediate’) 

CD16high monocytes (cluster 9, 12) CD16 Mono 

CD4+ T cells (cluster 0, 2) CD4TCM 

Dendritic cells (cluster 13) cdC2 

NK cells (cluster 3) NK 

CD4+ T cells (cluster 5, 11) / 

CD8+ T cells (cluster 1) / 

As an example: the weight of a specific gene from cluster 4 CD14high monocytes (e.g. HMGB1) 

would then be matched to the same gene (e.g. HMGB1) of the aggregated CD14 Mono 

dimension given by the automated azimuth annotation. 
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Features from cluster 1, 5 and cluster 11 were not mapped due to the low alignment between 

the clusters and corresponding unique azimuth annotations. 

 

Processing of Groningen scRNA seq data 

In the next step we applied the pre-processing steps as described within the ScRNA-seq Data 

paragraph for the MOFA analysis also on the Groningen scRNA-seq dataset resulting in 

normalized pseudobulk-aggregated features per annotated azimuth cell-type in the Groningen 

data.  

As the expression values of the genes where notably lower in the Groningen dataset we made 

some minor adjustments to the requirements with regards to the percentage of cells 

expressing a gene and the total amount of cells expressing a gene to get a comparable set of 

features as in our data: 

• percentage of cells expressing gene > 30 ∩ total amount of cells expressing gene > 

1000 

• percentage of cells expressing gene > 20 ∩ total amount of cells expressing gene > 

2500 

After applying these pre-processing steps on the Groningen data, we had in total 6.353 

features across the 13 different dimensions (azimuth cell-types 1-13). 

 

Factor 2 (time pattern replication) 

To replicate the Factor 2 on the Groningen dataset in a first step we mapped input features 

from the Munich dataset to the Groningen dataset as outlined in the table above and kept only 

features available in both datasets after the pre-processing (therefore cytokine, clinical, 

proteomics and neutrophil features as well as some genes from the scRNA-seq dataset not 

within both datasets were removed). We used the resulting feature-weight matrix from the 

Munich azimuth MOFA estimation (WMU) and calculated the right inverse to then apply it on 

the normalized input data (YGR) from the Groningen cohort to infer the corresponding sample 

factor matrix (ZGR) for the Groningen cohort as shown below. The pattern across timepoints of 
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the resulting sample factor matrix (ZGR) was then compared to the pattern given within the 

Munich dataset. 

𝑍𝐺𝑅  =  𝑌𝐺𝑅  ⋅  (𝑊𝑀𝑈  )−1    with: (𝑊𝑀𝑈) −1  =  𝑊𝑇(𝑊𝑊𝑇  )−1 

(GR = Groningen cohort, MU = Munich cohort) 

 

Factor 4 (prediction replication) 

For Factor 4 the main goal of our replication was to evaluate the potential of top-ranking 

features on Factor 4 to predict the outcome already at an early stage (TP1). As Factor 4 is 

derived based on the pattern across all four timepoints measured in our data and top-ranking 

Factor 4 features are not only characterized by the variation at TP1 between ‘good’ and ‘poor’ 

outcome samples but also by the variation across the different timepoints we chose to add 

another step to our analysis to identify those features within the top-ranking features that have 

high prediction potential only looking at their TP1 values. For this we chose to select the 

intersection of the top 280 features of the Integrative ACS Outcome Factor (corresponding to 

roughly 20% of the total amount of features) based on the MOFA model estimated with our 

manual annotation strategy and the MOFA model with the automated azimuth annotation. 

Subsequently, we trained a lasso model (logistic regression) with cross validation using the 

cv.glmnet function of the R package glmnet (version: 4.1.7; alpha=1; family = ‘binomial’; other: 

default parameters) taking as input only the value of those features at TP1M and predicting 

the outcome of the samples.  

Then we applied this trained model on the same set of features with their values at TP1G on 

the Groningen dataset considering this dataset our holdout test dataset and evaluated 

prediction performance for those samples calculating AUC values. 

Additionally, to evaluating the broad selected top-ranking feature set of Factor 4 in this way 

we also evaluated the prediction potential of features that we highlighted in the paper (namely 

NK cell features CD74, TXNIP, GZMB) based on potential biological mechanisms and trained 
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a logistic regression model for these features on the Munich data which we then applied to the 

Groningen cohort. 

 

Echocardiographic assessment of LV function 

Echocardiographic assessment of left ventricular ejection fraction (LVEF) as a proxy for 

systolic function was performed according to current guidelines. In brief, B-mode 

echocardiography was performed by cardiac intensive care unit (C-ICU) fellows and, following 

discharge from the ICU, by cardiology residents. LVEF was then measured using the biplane 

summation-of-disks method in apical four chamber (A4CH) and apical two chamber (A2CH) 

views by an experienced cardiology fellow that was unaware of patient outcomes at the time 

of measurement. 

 

Figure alignment, data and code availability  

Figures were aligned by Adobe Illustrator. 

All mapped data will be made available from the German Human Genome Archive (GHGA) 

and the European Genome-Phenome Archive (accession number pending). 

All code will be made available on github at https://github.com/heiniglab/stemi_mofa 
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Figure Legends: 

Fig.1 Study overview and longitudinal clinical and cellular characteristics of patients 

with myocardial ischemia 

(a) Study design: In the Munich cohort, blood was analyzed longitudinally (TP1-4M) from 

patients with ACS as well as from patients with CCS and non-CCS (single sampling timepoint 

TP0M). A joint Multi-Omic dataset was created by using the following methods: clinical blood 

test (n=125), scRNA-seq (n=121), flow-cytometry (n=122), plasma proteomics (n=119), 

cytokine assay (n=127) and prime-seq (n=121). Samples were defined as independent Omic 

measures involving individual patients at different timepoints. This was followed by data 

integration, MOFA model estimation and subsequent downstream analysis such as factor 

analysis, pathways, cell-cell communication and prediction. In total, samples from n=62 

patients were included in the Munich data cohort. Findings from the Munich data cohort were 

evaluated in the Groningen data (V2) as an independent validation cohort which measured 

blood from subjects (n=55) longitudinally (TP1-3G) as well as from a patient control group 

(TP0G). Samples were defined as independent Omic measures involving different timepoints 

or subjects. (b) Coronary catheterization with reperfusion of the occluded left circumflex artery 

(LCX) by stent implantation.  (c) Clinical blood test. Individual timepoints of sterile ACS (TP1-

4M) compared to CCS patients (TP0M). CK (ACS: TP1M n=17, TP2M n=19, TP3M n=17, 

TP4M=12; CCS: TP0M n=13); CK-MB (ACS: TP1M n=16, TP2M n=19, TP3M n=16, TP4M=6; 

CCS: TP0M n=4); Troponin (ACS: TP1M n=17, TP2M n=19, TP3M n=16, TP4M=10; CCS: 

TP0M n=13); Leukocytes (ACS: TP1M n=17, TP2M n=19, TP3M n=17, TP4M n=12; CCS: 

TP0M n=15). Parametric distributed data were analyzed using the Ordinary One-Way ANOVA 

with correction for multiple comparisons by Dunnett's test; non-parametric distributed data 

were analyzed using the Kruskal-Wallis test with correction for multiple comparisons by Dunn's 

test. *p≤0.05, **p≤0.01, ***p≤0.001. Illustration of the mean value with SEM. (d) UMAP of 

scRNA-seq data from PBMCs showing cells of identified and annotated cell type clusters used 

for subsequent analyses (n=148.275). (e) Analysis of centered log ratio (CLR) transformed 
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cell type abundance based on scRNA-seq dataset. Individual timepoints of sterile ACS (TP1M 

n=16, TP2M n=19, TP3M n=16, TP4M n=11) compared to CCS patients (TP0M n=16). 

Parametric distributed data were analyzed using the Ordinary One-Way ANOVA with 

correction for multiple comparisons by Dunnett's test; non-parametric distributed data were 

analyzed using the Kruskal-Wallis test with correction for multiple comparisons by Dunn's test. 

*p≤0.05, **p≤0.01. In case only the column factor was significant, graphs are marked with a 

vertical bar on top. Illustration as a Box-Whiskers plot (minimum to maximum). (f) Variance 

decomposition showing the percentage of explained variance per view and factor of the MOFA 

model with 20 factors. Heatmap shows for each view the percentage of the variance of that 

view that is explained by the respective factor. Barplot (right) shows the total percentage of 

explained variance by all 20 factors. 

  

Fig. 2 Integrative ACS defines the condensed immune signature of longitudinal 

myocardial infarction  

(a) Overview of Integrative ACS (Factor 2): Heatmap shows for each view the percentage of 

the variance of that view that is explained by the factor. The barplots show the total amount 

(left) and the relative amount – in respect to the number of view specific features - (right) of 

features among the top 1% of highest-ranking features that influence the factor.  (b) Integrative 

ACS (Factor 2). Comparison of the factor values of each timepoint of sterile ACS (TP1M n=17, 

TP2M n=19, TP3M n=17, TP4M n=12) with CCS patients (TP0M n=16) and non-CCS patients 

(TP0M n=18). Parametric distributed data were analyzed using the Ordinary One-Way 

ANOVA with correction for multiple comparisons by Dunnett's test. *p≤0.05, **p≤0.01, 

***p≤0.001. Illustration of the mean value with SEM. (c) Replication of Integrative ACS in 

Groningen cohort. Comparison of the factor values of each timepoint of ACS patients (TP1-

3G n=24) with control group (TP0G n=31) estimated based on top features of Integrative ACS. 

Non-parametric distributed data were analyzed using the Kruskal-Wallis test with correction 

for multiple comparisons by Dunn's test. *p≤0.05, **p≤0.01. Illustration of the mean value with 
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SEM. (d) Integrative ACS (Factor 2). Normalized expression values of top 0.5% features for 

CD4+ T cell Cluster 0 for sterile ACS (TP1M n=17, TP2M n=19, TP3M n=17, TP4M n=12) and 

CCS (TP0M n=16) patients in longitudinal comparison (heatmap) and weight of the features 

(barplot). (+ positive factor weight; - negative factor weight). (e) Normalized gene expression 

values of selected features for sterile ACS (TP1M n=16, TP2M n=19, TP3M n=16, TP4M 

n=11) and CCS (TP0M n=16) patients in longitudinal comparison. (+ positive factor weight; - 

negative factor weight). 

  

Fig. 3 Integrative ACS is characterized by distinct interleukin signatures in monocytes 

and T cells 

(a) Positively enriched REACTOME immune system pathways on Integrative ACS (Factor 2) 

across all data dimensions for which at least 50% of genes have been included within the 

feature set. FDR-adjusted p-value <0.05. (b) Factor weights of genes (top 25%) on Integrative 

ACS (Factor 2) belonging to enriched Interleukin pathways averaged across all dimensions 

and shown per dimension below.  (c) Normalized gene expression values of genes belonging 

to Interleukin-6 signaling pathway for sterile ACS (Cluster 0,2,5: TP1M n=16, TP2M n=19, 

TP3M n=16, TP4M=11; Cytokines: TP1M n=17, TP2M n=19, TP3M n=16, TP4M=11) and 

CCS (TP0M n=16) patients in longitudinal comparison of CD4+ T cell clusters (cluster 0, 2 and 

5) and Cytokine dimension. (+ positive factor weight). (d) Normalized gene expression values 

of genes belonging to Interleukin-6 signaling pathway for sterile ACS (TP1M n=16, TP2M 

n=19, TP3M n=16, TP4M n=11) and CCS (TP0M n=16) patients in longitudinal comparison of 

CD14high monocytes clusters (cluster 4 and 7).  

  

Fig. 4 T cell mediated monocytic changes during ACS as unraveled by analysis of 

intercellular regulatory potential   
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(a) Spearman correlations (|cor| ≥0.4) between ligand and target genes across all samples 

(n=128). Target genes selected as top 1% of features with positive feature weight on 

Integrative ACS. Ligands selected based on minimum regulatory potential score of 0.0012 for 

those targets according to the NicheNet Model (corresponding to 97% quantile of regulatory 

potential score). (b) Spearman correlations (|cor| ≥0.4) between ligand and target genes 

across all samples (n=128). Target genes selected as top 1% of features with negative feature 

weight on Integrative ACS. Ligands selected based on minimum regulatory potential score of 

0.0012 on those targets according to the NicheNet Model (corresponding to 97% quantile of 

regulatory potential score). (c) Spearman correlation scores of selected examples of circoplot 

(Fig. 4a,b). (d) Normalized gene expression values of selected features for sterile ACS (TP1M 

n=16, TP2M n=19, TP3M n=16, TP4M n=11) and CCS (TP0M n=16) patients in longitudinal 

comparison. (e) Factor weights of the top 15 ligands with the highest factor weight on 

Integrative ACS (Factor 2). 

 

Fig. 5 Factor analysis identifies distinct immune signatures in ACS subtypes  

(a) Integrative ACS (Factor 2). Longitudinal comparison of factor values between ACS 

subtypes (sterile ACS TP1M n=17, TP2M n=19, TP3M n=17, TP4M n=12; ACS acquiring 

hospital infection TP1M n=5, TP2M n=5, TP3M n=5, TP4M n=4; ACS with delayed 

recanalization after vessel occlusion TP1M n=4, TP2M=2, TP3M n=2, TP4M n=2) (b) 

Comparison between the early timepoints (TP1-2M) of ACS subtypes (sterile ACS, ACS 

acquiring hospital infection and ACS with delayed recanalization after vessel occlusion). CK 

(sterile ACS TP1M n=17, TP2M n=19; infectious ACS TP1M n=5, TP2M n=5; ACS with 

delayed recanalization after vessel occlusion TP1M n=4, TP2M=2); CK-MB (sterile ACS TP1M 

n=16, TP2M n=19; ACS acquiring hospital infection TP1M n=5, TP2M n=5; ACS with delayed 

recanalization after vessel occlusion TP1M n=3, TP2M=1); Troponin (sterile ACS TP1M n=17, 

TP2M n=19; ACS acquiring hospital infection ACS TP1M n=5, TP2M n=5; ACS with delayed 

recanalization after vessel occlusion TP1M n=4, TP2M n=2). Dataset was analyzed using the 
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Mixed-effects analysis with correction for multiple comparisons by Tukey's test. *p≤0.05. (c) 

Longitudinal comparison of CRP between sterile ACS and ACS acquiring hospital infection 

patients (sterile ACS TP1M n=17, TP2M n=18, TP3M n=17, TP4M n=12; ACS acquiring 

hospital infection TP1M n=5, TP2M n=5, TP3M n=5, TP4M n=4). The dataset was analyzed 

using the Mixed-effects analysis with correction for multiple comparisons by Šidák's test. 

*p≤0.05. Illustration of the mean value with SEM. (d) Ejection fraction (EF) comparing good 

(n=14) and poor (n=7) outcome during hospitalization. The parametric dataset was analyzed 

using an unpaired t-test. *p≤0.05, **p≤0.01. Illustration of the mean value with SEM. (e) 

Integrative ACS Outcome (Factor 4). Longitudinal comparison of factor values between good 

and poor outcome patients (good outcome: TP1M n=13, TP2M n=14, TP3M n=14, TP4M=11; 

poor outcome: TP1M n=6, TP2M n=7, TP3M n=7, TP4M n=4). The parametric dataset was 

analyzed using an unpaired t-test. *p≤0.05. Illustration of the mean value with SEM. (f) 

Longitudinal comparison of CK between patients with good and poor outcome (good outcome: 

TP1M n=13, TP2M n=14, TP3M n=14, TP4M=11; poor outcome: TP1M n=6, TP2M n=7, TP3M 

n=7, TP4M n=4). The dataset was analyzed using the Mixed-effects analysis with correction 

for multiple comparisons by Šidák's test. *p≤0.05, **p≤0.01. Illustration of the mean value with 

SEM. (g) ROC AUC. Comparison of the predictive power of Integrative ACS Outcome (Factor 

4) (n=19) and nominalized CK levels (n=19), normalized CRP levels (n=16) and normalized 

Troponin levels (n=19) collected at TP1M. (h) ROC AUC. Evaluation of prediction potential in 

Groningen cohort. ROC curve of lasso model trained on top features of Integrative ACS 

Outcome at TP1M and applied to Groningen cohort to predict the outcome (TP1G good 

outcome: n=7; poor outcome n = 5) (i) Overview of Integrative ACS Outcome (Factor4): 

Heatmap shows for each view the percentage of the variance of that view that is explained by 

the factor. The barplots show the total amount (left) and the relative amount – in respect to the 

number of view specific features - (right) of features among the top 1% of highest-ranking 

features that influence the factor. (j) Factor values of top 1% features showing only features 

belonging to NK cell cluster 3, Clinical, Plasma-Proteomics and Cytokine data dimension on 

Integrative ACS Outcome (Factor 4). (k) Normalized gene expression values of selected top 
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features from NK cells in Munich cohort and Groningen cohort comparing patients with good 

(Munich: n=13, Groningen: n=7) and poor (Munich: n=4, Groningen: n=5) outcome at TP1. (l) 

ROC AUC. Prediction results of logistic regression model trained on selected NK features 

(CD53, GZMB, TXNIP) on the Munich dataset as training dataset and applied to the Groningen 

dataset as holdout validation dataset. 

 

Fig. 6 CCS patients can be robustly identified prior to invasive diagnostics using 

Integrative CCS 

(a) Integrative CCS (Factor 1). Comparison of factor values for patients with CCS (TP0M 

n=16), coronary sclerosis (TP0M n=7) and healthy coronaries (TP0M n=11). Parametric 

distributed data were analyzed using the Ordinary One-Way ANOVA with correction for 

multiple comparisons by Tukey's test. *p≤0.05, **p≤0.01, ***p≤0.001. Illustration of the mean 

value with SEM. (b) ROC AUC. Comparison of the predictive power of Integrative CCS (Factor 

1) (n=34) and SCORE2 (n=21) on the risk of a cardiovascular event. The dotted line shows 

the ROC AUC of Integrative CCS (n=21) and SCORE2 (n=16) without including patients with 

coronary sclerosis. (c) Overview of Integrative CCS (Factor 1): heatmap shows for each view 

the percentage of the variance of that view that is explained by the factor and the barplots the 

total amount (left) and relative amount – in respect to the number of view specific features - 

(right) of features among the top 1% of highest-ranking features on the factor. (d) Factor 

values of top 1% features showing only features belonging to CD4+ T cells cluster 0 and 2 on 

Integrative CCS Outcome (Factor 1).   

Suppl. Fig. 1    

(a) Clinical blood tests. Individual timepoints of sterile ACS (TPM1-4) compared to CCS 

(TP0M). CRP (ACS: TP1M n=17, TP2M n=18, TP3M n=17, TP4M n=12; CCS: TP0M n=15); 

Neutrophils (ACS: TP1M n=6, TP2M n=5, TP3M n=5, TP4M n=3; CCS: TP0M n=5). 

Parametric distributed data were analyzed using the Ordinary One-Way ANOVA with 
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correction for multiple comparisons by Dunnett's test; non-parametric distributed data were 

analyzed using the Kruskal-Wallis test with correction for multiple comparisons by Dunn's test. 

*p≤0.05, **p≤0.01, ***p≤0.001. Illustration of the mean value with SEM. (b) Gating strategy 

used for flow-cytometric quantification of PBMCs in blood. (c) Analysis of the relative 

proportion of phenotypically defined immune cells to CD45+ leukocytes in PBMCs based on 

flow cytometry. Individual timepoints of sterile ACS (TP1M n=24, TP2M n=25, TP3M n=23, 

TP4M n=17) compared to CCS (TP0M n=16). Parametric distributed data were analyzed using 

the Ordinary One-Way ANOVA with correction for multiple comparisons by Dunnett's test; 

non-parametric distributed data were analyzed using the Kruskal-Wallis test with correction 

for multiple comparisons by Dunn's test. *p≤0.05, **p≤0.01, ***p≤0.001. Illustration of the mean 

value with SEM. 

  

Suppl. Fig. 2 

(a)  Normalized and log-transformed mean expression of differentially expressed genes 

(bottom x-axis) shown across all clusters (y-axis). Differentially expressed genes calculated 

using a Wilcoxon rank sum test with Bonferroni-Hochberg correction contrasting expression 

of one cluster (top x-axis) to expression of the other clusters. (b) Scanorama transformed 

mean expression of PBMC (left) and T cell marker (right) genes per cluster (y-axis) and 

annotated cell-types (top x-axis). (c) Analysis of centered log ratio (CLR) transformed cell type 

abundance based on scRNA-seq dataset. Individual timepoints of sterile ACS (TP1M n=16, 

TP2M n=19, TP3M n=16, TP4M n=11) compared to CCS patients (TP0M n=16). Parametric 

distributed data were analyzed using the Ordinary One-Way ANOVA with correction for 

multiple comparisons by Dunnett's test; non-parametric distributed data were analyzed using 

the Kruskal-Wallis test with correction for multiple comparisons by Dunn's test. *p≤0.05. 

Illustration as a Box-Whiskers plot (minimum to maximum). 
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Suppl. Fig. 3 

(a) Overview data input MOFA: amount of features for each input data dimension (D), amount 

of samples and missing data highlighted by grey colors (specifying missing data for a specific 

dimension and sample). (b) Factor values of all samples (n=128) in longitudinal comparison 

for all 20 MOFA factors. 

 

Suppl. Fig. 4 

(a) Comparison of the cell-type annotation strategies on Munich data: x-axis showing clusters 

and assigned cell-types based on marker genes approach; y-axis showing automated cell-

type annotations using the Groningen Azimuth annotation pipeline. (b) Comparison of the cell-

type annotation strategies on Munich data as umap: left umap showing clusters and assigned 

cell-types based on marker genes approach; right umap showing automated cell-type 

annotations using the Groningen Azimuth annotation pipeline on the same umap. 

 

Suppl. Fig. 5 

(a) Overview data input MOFA with automated azimuth annotations: amount of features for 

each input data dimension (D), amount of samples and missing data highlighted by grey colors 

(specifying missing data for a specific dimension and sample). (b) Factor values of all samples 

(n=128) in longitudinal comparison for all 20 MOFA factors estimated with azimuth 

annotations. 

 

Suppl. Fig. 6 

(a) Pearson correlation between sample factor values inferred by two different MOFA 

models: (1) model with manual cell-type cluster annotation (Suppl. Fig. 3) (y-axis) and (2) 
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model with automated azimuth annotations (Suppl. Fig. 5) (x-axis). (b) Pearson correlation 

between feature factor weights inferred by two different MOFA models; (1) model with 

automated azimuth annotations (Suppl. Fig. 5) (y-axis) and (2) model with manual cell-type 

cluster annotation (Suppl. Fig. 3). 

 

Suppl. Fig. 7 

(a) Integrative ACS (Factor 2). Normalized expression values of top 1% features for sterile 

ACS (TP1M n=17, TP2M n=19, TP3M n=17, TP4M n=12) and CCS (TP0M n=16) patients in 

longitudinal comparison visualized within heatmap and weight of the features visualized as 

barplot (+ positive factor weight; - negative factor weight). 

 

Suppl. Fig. 8 

(a) Pearson correlation between sample factor values inferred by two different MOFA 

models: (1) model including clinical features (y-axis) and (2) model without clinical features 

(x-axis). (b) Pearson correlation between feature factor weights inferred by two different 

MOFA models; (1) model including clinical features (y-axis) and (2) model without clinical 

features (x-axis) per factor. 

  

Suppl. Fig. 9 

(a) Comparison overlap of top 1% of features (D=132) between MOFA model inferred with 

clinical variables as features and without clinical variables. (b) Factor values of all samples 

(n=128) in longitudinal comparison for all 20 MOFA factors inferred by the MOFA model 

trained without clinical features. (c) Circulating plasma cytokines are shown in comparison of 

the individual timepoints of sterile ACS (TP1M n=17, TP2M n=19, TP3M n=16, TP4M n=11) 

with CCS (TP0M n=16). Parametric distributed data were analyzed using the Ordinary One-
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Way ANOVA with correction for multiple comparisons by Dunnett's test; non-parametric 

distributed data were analyzed using the Kruskal-Wallis test with correction for multiple 

comparisons by Dunn's test. *p≤0.05. Illustration of the median with interquartile range. In 

case only the column factor was significant, graphs are marked with a vertical bar on top. 

 

Suppl. Fig. 10 

(a) Circulating plasma cytokines are shown in comparison of the individual timepoints of sterile 

ACS (TP1M n=17, TP2M n=19, TP3M n=16, TP4M n=11) with CCS (TP0M n=16). Parametric 

distributed data were analyzed using the Ordinary One-Way ANOVA with correction for 

multiple comparisons by Dunnett's test; non-parametric distributed data were analyzed using 

the Kruskal-Wallis test with correction for multiple comparisons by Dunn's test. *p≤0.05, 

**p≤0.01, ***p≤0.001. Graphs in which the column factor was not significant but individual 

timepoints in the multiple comparison were significant are marked in red. Illustration of the 

median with interquartile range. In case only the column factor was significant, graphs are 

marked with a vertical bar on top. 

 

Suppl. Fig. 11 

(a) The components of the cellular interleukin-6 cascade illustrated by REACTOME. The 

coloring of the components is based on the average factor values of the genes belonging to 

the pathway and the top 25% of genes on Integrative ACS. Adapted from URL: 

https://reactome.org/content/detail/R-HSA-1059683 

 

Suppl. Fig. 12 
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(a) Circulating plasma cytokines are shown in comparison of the individual timepoints of ACS 

subtypes (sterile ACS TP1M n=17, TP2M n=19, TP3M n=16, TP4M n=11; ACS acquiring 

hospital infection TP1M n=5, TP2M n=5, TP3M n=5, TP4M n=4; ACS with delayed 

recanalization after vessel occlusion TP1M n=4, TP2M n=2, TP3M n=2, TP4M n=2). Dataset 

was analyzed using the Mixed-effects analysis with correction for multiple comparisons by 

Tukey's test. *p≤0.05, **p≤0.01, ***p≤0.001. Graphs in which the column factor was not 

significant but individual timepoints in the multiple comparison were significant are marked in 

red. Illustration of the median with interquartile range.In case only the column factor was 

significant, graphs are marked with a vertical bar on top. 

 

Suppl. Fig. 13 

(a) Circulating plasma cytokines are shown in comparison of the individual timepoints of ACS 

subtypes (sterile ACS TP1M n=17, TP2M n=19, TP3M n=16, TP4M n=11; ACS acquiring 

hospital infection TP1M n=5, TP2M n=5, TP3M n=5, TP4M n=4; ACS with delayed 

recanalization after vessel occlusion TP1M n=4, TP2M n=2, TP3M n=2, TP4M n=2). Dataset 

was analyzed using the Mixed-effects analysis with correction for multiple comparisons by 

Tukey's test. *p≤0.05, **p≤0.01, ***p≤0.001. Graphs in which the column factor was not 

significant but individual timepoints in the multiple comparison were significant are marked in 

red. Illustration of the median with interquartile range. (b) ROC AUC. Comparison of the 

predictive power of Integrative ACS Outcome (Factor 4) (n=19) and mean and max CK levels 

(n=19) and mean and max CRP troponin levels (n=19) based on the complete longitudinal 

values. 

 

Suppl. Fig. 14 

(a) Integrative ACS Outcome (Factor 4) Normalized expression values of top 1% features in 

longitudinal comparison visualized within heatmap and weight of the features visualized as 
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barplot, all samples included (n=128). Divided by outcome; 'NA' in case no EF value has been 

available for the ACS samples (n=7) and for CCS and non-CCS samples (+ positive factor 

weight; - negative factor weight). 

 

Suppl. Fig. 15 

(a) Circulating plasma cytokines are shown in comparison of good and poor outcome (good 

outcome:  TP1M n=13, TP2M n=14, TP3M n=13, TP4M n=10; poor Outcome: TP1M n=6, 

TP2M n=7, TP3M n=7, TP4M n=2). The dataset was analyzed using the Mixed-effects 

analysis with correction for multiple comparisons by Šidák test. *p≤0.05. Graphs in which the 

column factor was not significant but individual timepoints in the multiple comparison were 

significant are marked in red. In case only the column factor was significant, graphs are 

marked with a vertical bar on top. Illustration of the median with interquartile range. Illustration 

of the median with interquartile range. 

 

 

Suppl. Fig. 16 

 

(a) Circulating plasma cytokines are shown in comparison of good and poor outcome (good 

outcome:  TP1M n=13, TP2M n=14, TP3M n=13, TP4M=10; poor Outcome: TP1M n=6, TP2M 

n=7, TP3M n=7, TP4M n=2). The dataset was analyzed using the Mixed-effects analysis with 

correction for multiple comparisons by Šidák test. *p≤0.05, **p≤0.05. Graphs in which the 

column factor was not significant but individual timepoints in the multiple comparison were 

significant are marked in red. Illustration of the median with interquartile range. Illustration of 

the median with interquartile range. In case only the column factor was significant, graphs are 

marked with a vertical bar on top. 
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Suppl. Fig.17 

(a) Normalized expression values of selected top features of Integrative ACS Outcome (Factor 

4) in longitudinal comparison for samples classified with good or poor outcome ( 

NK cells (cluster 3): good outcome:  TP1M n=13, TP2M n=13, TP3M n=14, TP4M=11; poor 

Outcome: TP1M n=4, TP2M n=6, TP3M n=6, TP4M n=3 

Cytokines: good outcome:  TP1M n=13, TP2M n=14, TP3M n=13, TP4M=10; poor Outcome: 

TP1M n=6, TP2M n=7, TP3M n=7, TP4M n=4 

Plasma Proteomics: good outcome:  TP1M n=10, TP2M n=13, TP3M n=13, TP4M=10; poor 

Outcome: TP1M n=6, TP2M n=7, TP3M n=7, TP4M n=4). 

 

Suppl. Fig. 18 

(a) Integrative CCS (Factor 1). Normalized expression values of top 1% features in longitudinal 

comparison visualized within heatmap and weight of the features visualized as barplot, all 

samples included (n=128) (+ positive factor weight; - negative factor weight). 

  

Suppl. Fig. 19 

(a) Normalized expression values of selected top features of Integrative CCS (Factor 1) in 

comparison for samples classified CCS (TP0M n=16) and non CCS (TP0M n=17). (b) Factor 

weights of the top 10 ligands with the highest factor weight on Integrative CCS (Factor 1). (c) 

Normalized gene expression values of selected top features comparing patients with CCS 

(TP0M n=16) and non-CCS (TP0M n=17). (d) Spearman correlations (|cor| ≥0.4) between 

ligand and target genes across all samples (n=128). Target genes selected as top 1% of 
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features with negative feature weight on Integrative CCS (Factor 1). Ligands selected based 

on minimum regulatory potential score of 0.0012 on those targets according to the NicheNet 

Model (corresponding to 97% quantile of regulatory potential score). (e) Spearman 

correlations (|cor| ≥0.4) between ligand and target genes across all samples (n=128). Target 

genes selected as top 1% of features with positive feature weight on Integrative CCS (Factor 

1). Ligands selected based on minimum regulatory potential score of 0.0012 on those targets 

according to the NicheNet Model (corresponding to 97% quantile of regulatory potential score). 

(f) Normalized expression values of selected top features of Integrative CCS (Factor 1) in 

comparison for samples classified CCS (TP0M n=16) and non-CCS (TP0M n=17). (g) 

Correlation score of selected examples of circoplots (d,e). 

Suppl. Fig. 20 

(a) Circulating plasma cytokines are shown in comparison of CCS (TP0M n=16) with non-CCS 

(TP0M n=18) patients. Parametric data were analyzed using an unpaired t-test, non-

parametric data were tested using the Mann-Whitney test. *p≤0.05, **p≤0.01. Illustration of 

the median with interquartile range.  

  

Suppl. Fig. 21 

(a) Circulating plasma cytokines are shown are shown in comparison of CCS (TP0M n=16) 

with non-CCS (TP0M n=18) patients. Parametric data were analyzed using an unpaired t-test, 

non-parametric data were tested using the Mann-Whitney test. *p≤0.05. Illustration of the 

median with interquartile range. 
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