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ABSTRACT 
Many diseases exhibit complex multimorbidities with one another. An intuitive way to model the 
connections between phenotypes is with a disease-disease network (DDN), where nodes represent 
diseases and edges represent associations, such as shared single-nucleotide polymorphisms (SNPs), 
between pairs of diseases. To gain further genetic understanding of molecular contributors to disease 
associations, we propose a novel version of the shared-SNP DDN (ssDDN), denoted as ssDDN+, which 
includes connections between diseases derived from genetic correlations with endophenotypes. We 
hypothesize that a ssDDN+ can provide complementary information to the disease connections in a 
ssDDN, yielding insight into the role of clinical laboratory measurements in disease interactions. Using 
PheWAS summary statistics from the UK Biobank, we constructed a ssDDN+ revealing hundreds of genetic 
correlations between disease phenotypes and quantitative traits. Our augmented network uncovers 
genetic associations across different disease categories, connects relevant cardiometabolic diseases, and 
highlights specific biomarkers that are associated with cross-phenotype associations. Out of the 31 clinical 
measurements under consideration, HDL-C connects the greatest number of diseases and is strongly 
associated with both type 2 diabetes and diabetic retinopathy. Triglycerides, another blood lipid with 
known genetics causes in non-mendelian diseases, also adds a substantial number of edges to the ssDDN. 
Our study can facilitate future network-based investigations of cross-phenotype associations involving 
pleiotropy and genetic heterogeneity, potentially uncovering sources of missing heritability in 
multimorbidities. 
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INTRODUCTION 
Complex interactions between a variety of diseases can be explained by the presence of overarching 
groups of co-occurring phenotypes. Shared susceptibility between such diseases can be derived from 
common genetic, biological, or environmental factors. Indeed, diseases with comparable characteristics 
can occur simultaneously or sequentially with similar pathogenesis in a subject1. However, the best way 
to identify the contribution of genetic components to the etiology of such multimorbidities remains an 
open question. Due to the highly connected nature of diseases at the molecular level, it is necessary to 
concurrently examine not only phenotypes, but also the many genetic factors that could influence their 
pathological dynamics2. The field of network medicine offers an intuitive way of investigating the 
interactions between phenotypes3. Both global and local connectivity across multiple phenotypes can be 
explored through graph-based modeling and network representation. In particular, the disease-disease 
network (DDN) represents diseases as nodes and connections between diseases, such as observed or 
quantified biological factors, as edges4. 
 
With the extensive growth of large-scale biomedical data, electronic health record (EHR)-linked biobanks 
have become a vital resource in the study of pleiotropy and the genetic architecture of complex traits. A 
phenome-wide association study (PheWAS) applied to an EHR-linked biobank can find hundreds of 
thousands of associations between phenotypes, such as diseases, clinical symptoms, or laboratory 
measurements, and genetic variants, such as common single-nucleotide polymorphisms (SNPs)5. 
Furthermore, PheWASs are disease- and variant-agnostic, meaning that the identification of these 
potential instances of pleiotropy remains unbiased6,7. The summary statistics from a PheWAS can be used 
to create corresponding shared-SNP DDNs (ssDDNs), where edges represent sets of associated SNPs that 
pass a desired threshold of significance and are shared between the two phenotypes8–10. By analyzing a 
ssDDN, a researcher or clinician can evaluate how diseases are linked to one another, with immediate 
insight into potential shared genetic architecture through the identification of putative pleiotropic SNPs 
at specific genomic locations. 
 
EHR-linked biobanks often report quantitative lab results of blood- and urine-based biochemical markers. 
Many of these traits have a strong genetic basis, and they can be used as intermediate phenotypes in the 
analysis of complex diseases, offering additional information in the investigation of disease connections11–

15. Given the polygenic predictive power of such continuous endophenotypes, integrating them into 
studies of non-mendelian disorders allows for improved interpretability at the molecular level, beyond 
what genetic pleiotropy can uncover16. Several individual laboratory measurements have been shown to 
be clinical predictors of cardiovascular disease, and evidence is accumulating for quantitative biomarker 
links with many other types of common diseases17. For example, Veturi et al. recently showed substantial 
pleiotropy between plasma lipids and diseases across many organ systems18. This is supported by over a 
decade of research from the Global Lipids Genetics Consortium, which has found that heritable lipid levels, 
such as lipoprotein cholesterols, triglycerides, and total cholesterol, are not only genetically related to 
complex diseases through shared loci, but are modifiable risk factors of those diseases19–21.  
 
Based upon the additional insight that may be derived from such intermediate phenotypes, we propose 
a novel augmented version of the ssDDN, denoted as ssDDN+. Additional genetic associations between 
diseases are incorporated into the original ssDDN based upon shared genetic correlation with clinical 
laboratory measurements. We hypothesize that a ssDDN+ can represent inherited factors contributing to 
cross-phenotype associations and provide insight into the role of endophenotypes in these disease 
interactions. In this study, we constructed a ssDDN+ using PheWAS summary statistics from the UK 
Biobank (UKBB), revealing hundreds of genetic correlations between disease phenotypes and quantitative 
traits. We show that our augmented network uncovers genetic associations across different disease 
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categories, connects relevant cardiometabolic diseases, and identifies specific biomarkers that are 
associated with the genetic architecture of multiple diseases. Comparing our ssDDN+ to its corresponding 
ssDDN demonstrates the complementary information that is revealed in this new network topology, 
highlighting the influence of quantitative traits within the diseasome4.  
 
 
RESULTS 
 
Disease networks 
Disease-disease networks (as described in the Methods) were constructed using a cohort of approximately 
400,000 participants from the UKBB for 318 binary disease phenotypes (Supplemental Table 1). The 
shared-SNP DDN, built using disease-SNP associations from PheWAS summary statistics alone, was 
augmented through the addition of edges representing shared genetic correlations with 31 clinical 
laboratory measurements (Fig. 1). These quantitative traits represent intermediate phenotypes which 
gain further insight into the genetics of binary disease traits (Supplemental Table 2). The unsigned, 
unweighted endophenotype-augmented disease network (ssDDN+) includes all edges from the baseline 
ssDDN, while incorporating additional genetic information from biomarkers. 
 

 
 
Fig. 1:  Overview of network construction 
An overview of the process of developing the ssDDN+. (A) Disease phenotypes sharing genome-wide significant SNPs 
uncovered via a PheWAS are used to construct a shared-SNP DDN, where edges represent shared associations with 
variants between a pair of diseases. (B) Genetic correlation is determined between all diseases and quantitative 
endophenotypes, and if diseases are both genetically correlated (green dashed line) with the same endophenotype 
then edges between those diseases are added to the ssDDN. 
 
Additional edges in the ssDDN+  
Using 322 significant genetic correlations between binary diseases and continuous measurements 
(Supplemental Fig. 1, Supplemental Fig. 2), we constructed a corresponding ssDDN+ from our UKBB ssDDN 
(Fig. 2). 1,561 new cross-phenotype genetic associations were identified compared with the original 
ssDDN, increasing the network’s total edge count by 242% (Supplemental Table 3). The ssDDN and ssDDN+ 
exhibited similar clustering behavior to one another (Supplemental Table 4). However, including indirect 
edges increased the connected node count from 114 to 138, meaning that 24 diseases gained connections 
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to others because of associations derived from laboratory measurements. 116 indirect edges represented 
the same cross-phenotype associations as pre-existing direct edges, suggesting that highly significant SNPs 
associated with disease associations may be involved in the same pathways as the biomarkers that 
connect them. Indirect edges that contributed new information in the ssDDN+ can be explored online 
through our Human-Disease Phenotype Map browser at hdpm.biomedinfolab.com/ddn/biomarkerDDN. 
Additional network statistics for each DDN can be found in Supplemental Table 4. 

 
Fig. 2: Endophenotype augmented disease-disease network 
(A) A depiction of the full ssDDN+ based upon PheWAS summary statistics of binary disease phenotypes and 
continuous biomarker measurements from the UKBB. Gray edges represent direct shared-SNP edges, and red edges 
represent indirect biomarker genetic correlation edges. (B) A density plot projection of direct and indirect edge 
distributions in a single dimension.  Direct and indirect edges identify different sets of genetic associations between 
diseases.  
 
Highly connected diseases and hub nodes 
Within each DDN, a node’s degree, the number of other nodes to which it is connected, represents how 
genetically associated the corresponding disease is to other diseases. Hub nodes, nodes with the highest 
centrality in the graph, represent the most highly connected diseases. When we transition from the ssDDN 
to the ssDDN+, the relative degree of many diseases changes substantially. Fig. 3 demonstrates how the 
degree rank of disease phenotypes changes by supplementing the ssDDN with indirect edges and 
highlights known biology and genetic susceptibility for certain diseases.  For instance, hyperlipidemia, a 
disease whose signal in our data is mostly represented by patients with hypercholesterolemia, has known 
mendelian effects from genes including LDLR, APOB, and PCSK922. Correspondingly, we see hyperlipidemia 
has the top degree rank in the ssDDN. Furthermore, hyperlipidemia also exhibits known associations with 
a variety of lipidomic biomarkers23, justifying its role as the disease with the highest degree in the ssDDN+.  
 
Many newly connected diseases also gain a high degree rank compared to other diseases after the 
inclusion of endophenotypes to the ssDDN. For instance, gastroesophageal reflux disease (GERD) has a 
known heritability estimate of roughly 31% based upon twin and family studies, with known risk genes 
including FOXF1, MHC, and CCND124. However, the original ssDDN fails to capture any sort of genetic signal 
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for GERD, meaning that the disease remains unconnected to other nodes. This failure to identify cross-
phenotype associations with GERD in the original ssDDN is likely due to a combination of stringent 
significance thresholds for disease-variant association as well as external factors outside of genetics 
mitigating the associations that would otherwise be apparent in the input PheWAS data. Given known 
evidence that predictive biomarkers, such as C-peptide and TNF-alpha25, exist for GERD, this disease 
becomes a perfect candidate for the identification of additional information in the ssDDN+. Indeed, based 
upon the inclusion of endophenotypes, GERD gains one of the highest degree ranks in the ssDDN+. 
 
Finally, some diseases that are originally hub nodes in the ssDDN become comparatively less influential in 
the ssDDN+. For instance, skin cancer is a hub node in the ssDDN and is a disease known to have common 
genetic associations with a variety of other neoplasms26. However, there is still a high amount of 
uncertainty in their clinical utility of biomarkers for skin cancer prognosis27. This behavior is reflected in 
both networks in our study. Within the ssDDN, skin cancer has a prominent position with respect to other 
diseases in the network. However, based upon the measures that we were able to incorporate into our 
ssDDN+, no additional edges are included for skin cancer. In other words, this specific ssDDN+ provides 
no further information about cross-phenotype associations with skin cancer as compared to its 
corresponding ssDDN. 

 
Fig. 3: Change of node degree rank from ssDDN to ssDDN+ 
A slope graph of degree rankings for diseases in the ssDDN and ssDDN+. The degree of a node in a graph represents 
the number of other nodes to which it is connected. Within each network, degrees were computed for each node, 
and then diseases were ranked with respect to one another according to degree value. A rank of 1 represents the 
most connected disease. For both DDNs, hyperlipidemia (phecode 272.1) has the highest node rank. Ranks in the 
figure are colored by quartile within the ssDDN, with black representing nodes that became connected in the ssDDN+ 
after not having any connections in the original ssDDN. Some newly connected nodes (e.g., GERD) are hub nodes in 
the ssDDN+, while some highly connected nodes (e.g., skin cancer) became relatively less connected. 
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Differential contribution of endophenotypes by phenotype category 
Although the addition of new edges in the ssDDN+ changes the topology of the network, this change is 
not evenly distributed across organ systems and disease types. Fig. 4a depicts specific pairs of phenotype 
groupings that become increasingly connected to one another by these new edges. In particular, a high 
concentration of new edges between the musculoskeletal and endocrine/metabolic disease categories is 
observed. This behavior is corroborated by prior research indicating associations between 
musculoskeletal degradation and the onset of metabolic disorders28. On the other hand, disease 
categories such as neoplasms and sense organs continue to remain relatively disconnected to other 
groupings, confirming conclusions drawn regarding cross-phenotype associations across disease 
categories in previous studies4,8.These differences across disease categories are due in part to the types 
of diseases that are genetically associated with the clinical measurements for which we had data to use. 
Indeed, we observe noticeable changes in the proportion of edges connected to diseases depending on 
category in the ssDDN+ (Fig. 4b). The most notable difference is the relative doubling of links connected 
to the phenotypes in the musculoskeletal system. Additionally, the proportion of edges that connect 
diseases from different groups increases from 75% to 85%, suggesting that endophenotypes may be useful 
in identifying additional genetic associations between diseases of different categories. 
 

            

 
Fig. 4: Category distribution of indirect edges 
(A) A heatmap of the disease categories connected by indirect edges in the ssDDN+, normalized by the number of 
nodes in each category. Red represents category pairs with more indirect edges, and blue represents category pairs 
with fewer indirect edges. (B) A paired bar chart depicting the percentage of edges connecting at least one node in 
each disease category, colored by type of DDN. Some categories gain a disproportionately large number of edges 
from ssDDN to ssDDN+, while others gain only few edges.  
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Cardiometabolic disease associations and influence of HDL-C  
Previous research has highlighted a variety of potential genetic contributors to comorbidities among 
cardiometabolic diseases29–31, and an initial analysis of the ssDDN+ seems to confirm the influence of the 
endocrine/metabolic disease category. To further investigate such connections, we focus in on a 
subnetwork of our ssDDN+, where we consider only cardiometabolic phenotypes. The inclusion of 144 
endophenotype genetic correlations increases the edge count from 116 to 200 when transitioning from 
the cardiometabolic ssDDN to its ssDDN+ (Supplemental Fig. 3). Multiple diseases of great interest, 
including heart failure, obesity, and type 1 diabetes, also become much more genetically connected, 
suggesting that in many instances, important disease connections may be missed in the ssDDN (Fig. 5). 
 

 
Fig. 5: Cardiometabolic network edge types 
A stacked bar chart depicting the types of links connected to the 12 disease phenotypes that gained the most edges 
going from the cardiometabolic ssDDN to the cardiometabolic ssDDN+.  Gray represents direct shared-SNP edges, 
and red represents indirect endophenotype-correlated edges. Some diseases with known genetic drivers become 
connected to other phenotypes only as a result of indirect edges. For instance, clinical symptoms including heart 
failure, chest pain, and precordial pain, can only be connected to other chronic diseases after augmenting the ssDDN 
with endophenotypes.  
 
The clinical traits used to build the ssDDN+ are involved in many different pathways, and thus we find 
certain biomarkers reveal many more edges than others. For instance, high-density lipoprotein 
cholesterol (HDL-C) contributes 996 new edges in the full ssDDN+ and 70 new edges in the 
cardiometabolic ssDDN+, while other biomarkers such as phosphates add no new edges (Supplemental 
Tables 5 and 6). This result highlights how clinical biomarkers may provide different levels of information 
from shared SNP links, and how phenotypes such as HDL-C may offer improved predictive power in 
identifying disease comorbidities. Focusing in on the cardiometabolic-specific ssDDN+, we can visualize 
how HDL-C adds considerable edges to the network. (Fig. 6). For instance, the inclusion of genetic 
correlation through HDL-C as edges connects hypothyroidism and angina pectoris, diseases known to be 
associated with HDL-C and with one another32,33. 
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Fig. 6: Contribution of edges by individual endophenotypes  
An adjacency matrix presenting the contribution of HDL-C to edges in the cardiometabolic ssDDN+, as well as the 
influence of different clinical traits on connections among diseases. Gray squares represent associations identified 
between diseases through the shared SNP approach, while white squares represent a lack of connection between 
phenotypes. In the upper triangular adjacency matrix, red squares represent disease associations generated as a 
result of HDL-C. In the lower triangular matrix, red numbers represent the number of biomarker correlations shared 
between diseases in the ssDDN+. 
 
Many of the endophenotype-disease associations found from our DDNs are validated by other genetic 
and epidemiological studies. Specifically, out of the 31 clinical measurements under consideration, HDL-C 
connects the greatest number of nodes. Furthermore, it has the strongest genetic correlation with type 2 
diabetes (𝑟! = 0.49). There is some evidence of HDL-C’s causal role in complex diseases, such as type 2 
diabetes and coronary artery disease (CAD)34–38. Furthermore, the prominence of HDL-C and other fat-
related compounds in our network, such as Apolipoprotein A and Triglycerides, is backed by a wealth of 
literature on their important roles in disease pathways. Additionally, HDL-C is known to have an 
association with increased risk of age-related macular degeneration39. Although macular degeneration 
was not included in our analysis, HDL exhibited a strong genetic correlation of 0.46 with a very similar 
phenotype that was considered – diabetic retinopathy. We also saw a strong association between 
triglycerides, another blood lipid that added a substantial number of edges to the ssDDN, and risk of CAD. 
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DISCUSSION 
In this study, we generated and analyzed a disease-disease network of genetic associations between 
binary phenotypes using significant SNPs from PheWAS summary statistics and genetic correlations with 
clinical laboratory measurements. Our network complements others by uncovering cross-phenotype links 
through genetic correlations between diseases and biomarkers, creating a denser model of the phenome. 
We highlighted disease classes as well as specific diseases with known genetic risk which benefit from this 
type of representation.  
 
Studies of missing heritability throughout the past decade have made it apparent that considering only 
highly significant GWAS SNPs will often fail to capture the entire genetic architecture of complex 
diseases40,41. It is additionally important to functionally assess genetic effects – understanding the 
association between diseases and the disruption of molecular pathways through mutations can bring us 
closer to fully comprehending how diseases manifest as comorbidities and complications42. Both points 
highlight the utility of incorporating disease-associated biomarkers into the formation of human disease 
networks. Furthermore, PheWASs based on logistic regression binarize complex diseases that may have a 
range in their physical manifestation, making the use of endophenotypes even more pertinent.  
 
In our analysis, the endophenotypes we incorporated contribute a non-random distribution of edges to 
specific diseases categories – musculoskeletal diseases gain more connections, while neoplasms gain 
much fewer. This difference is driven in part by which types of diseases have significant correlation with 
the biomarkers under consideration, and how for some phenotypes, the analysis of biological molecules 
is more useful when assessing genetic contributors. The differential augmentation across diseases 
provides evidence of the importance of including quantitative laboratory measurements. When looking 
specifically at cardiometabolic phenotypes, new edges are added from associations with biomarkers to 
phenotypes that have been determined to have strong polygenic causes, including heart failure43, 
obesity44, and diabetic retinopathy45. 
 
The fundamental value this ssDDN+ adds is a novel way to model the diseasome. By harnessing the value 
of intermediate disease phenotypes, we can represent an increased number of genetic associations 
present in disease connections. For example, this ssDDN+ links Heart Failure (phecode 428.2), a disease 
with no connections in the ssDDN, to 54 other diseases. By integrating genetic correlations with 
endophenotypes into the ssDDN, we pick up additional signal that make the investigation of this and other 
phenotypes’ connections possible. Our network has multiple potential future applications, including drug 
design with network pharmacology, finding genetic targets for future therapeutics, and the advancement 
of personalized medicine and disease risk prediction46. 
 
There are a few limitations to consider in our study. Though the binary diseases and continuous laboratory 
measurements both come from the UKBB, the summary statistics for each category of traits were 
generated by different groups with different processing conditions, yielding slightly different numbers of 
individuals in each case47,48. Within the binary disease PheWAS however, each GWAS uses a slightly 
different number of samples due to phenotype-specific exclusion criteria. Therefore, these relatively small 
differences in samples across PheWASs should not undermine our results. The two PheWASs also use 
slightly different criteria to define their SNPs, with one having around 13.7 million SNPs tested compared 
to roughly 28 million SNPs in the other. Since we harmonized the SNPs down to a count of 1.2 million 
variants with precomputed LD scores, this distinction does not impact our analysis. Additionally, we used 
very strict significance thresholds, both for finding shared SNPs between diseases and for determining 
legitimately genetically correlated biomarker-phenotype pairs. Although this stringency may result in 
missing some genetic associations between diseases, it allows us to be confident in the connections we 
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do observe in the ssDDN. We also note that our DDNs represent data only for the UKBB population, 
meaning that conclusions drawn from our analysis can only be interpreted from a British European 
perspective. Finally, despite the fact that the phecode system of disease classification is more aligned with 
definitions of biomedical research than comparable disease encoding systems such as ICD-9 or ICD-1049, 
we appreciate that it is still imperfect at capturing true occurrences of phenotypes in patients. As a result, 
any conclusions drawn from our analysis need to bear this potential inaccuracy in mind. 
 
In conclusion, we built an augmented disease-disease network that integrates genetic correlations with 
endophenotype measurements to represent additional cross-phenotype associations. Further steps in our 
analysis involve considering additional clinical traits depending on data availability, as well as additional 
population cohorts, as we may find even more endophenotype associations and thus more network 
edges50. We also hope to compare ssDDN+s to their corresponding ssDDNs given different significance 
thresholds for associations between diseases and SNPs. Future work should consider integrating 
mendelian randomization to identify the causality behind the correlative relationships that were 
uncovered. Additionally, full analysis of networks built from all levels of diseases risk (SNP-based, gene-
based, symptom-based, molecular-based, pathway-based, microRNA-based, exposure-based, etc.) will be 
essential to integrate into studies and patient-prediction tasks51, along with multilayer graphs that 
summarize complex biological architecture beyond individual edges. Overall, our method helps to 
navigate the study of complex diseases and enables further network-based analysis involving pleiotropy, 
polygenicity, and heterogeneity. Our results can facilitate future network-based research of diseases, 
uncovering potential sources of missing heritability in multimorbidities and highlighting potential genetic 
targets for precision medicine investigations. 
 
METHODS 
 
Phenome-wide association analyses  
PheWAS summary data from the UKBB were used to investigate the genetic relations among disease 
phenotypes. To derive genetic associations for binary disease phenotypes, a PheWAS was run for 400,000 
British individuals of European ancestry with 1,403 phecode-labeled phenotypes using SAIGE52, controlling 
for sex, age, genetic relatedness, and the first four principal components48. Imputation using the 
Haplotype Reference Consortium panel yielded 28 million imputed SNPs, with all genomic positions on 
GRCh3753. To improve interpretability of diseases under consideration, we removed phenotypes if they 
had a case count less than 1,000 cases, had a phecode encoding specific to the hundredths digit, or 
belonged to phecode categories of “symptoms” or “injuries & poisonings”. Additional manual curation 
was also applied to remove hierarchically related diseases with similar case counts that would have 
represented correlated phenotype signals, resulting in a final set of 318 binary phenotypes. To derive 
genetic associations for continuous endophenotypes, a PheWAS was run for 361,194 British individuals of 
European ancestry with 31 rank-normalized quantitative biomarker measurements (Supplemental Table 
2). This PheWAS was performed for 13.7 million QC-passing SNPs using Hail 0.254, corrected for sex, age, 
and the first 20 principal components47. Between the two PheWASs, for alleles to remain consistent across 
the full set of diseases and biomarkers, variants were restricted to a unified list of HapMap3 SNPs. Due to 
the complicated LD structure in the major histocompatibility complex, SNPs in that region were also 
removed12,55. As a result, roughly 1.2 million SNPs remained for the identification of associations between 
diseases and laboratory measurements56.  
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Disease-endophenotype correlations 
The shared-SNP approach of identifying genetic associations between traits is a reasonable assumption 
for binary traits given the shared components hypothesis2. However, in the case of evaluating genetic 
associations between binary traits and continuous traits, such a method may fail to appropriately capture 
the magnitude of associations with the quantitative marker. Linkage disequilibrium score regression 
(LDSC)57 offers an effective method of calculating genetic correlations between pairs of phenotypes 
through the analysis of PheWAS summary-level data58. This process considers all common SNPs in a 
genome regardless of significance, accounting for SNP weight when determining associations between 
traits.12,59. Applying LDSC to the summary statistics described in the above section, we generated bivariate 
genetic correlation values (rg) between each binary disease phenotype and each quantitative 
endophenotype. Filtration to consider only genetic correlations for heritable phenotypes produced 
9,566 disease-endophenotype rg estimates. Of these correlations, 322 were found to be significant with a 
false discovery rate (FDR) < 0.0512,60,61.  
  
Construction of ssDDN and ssDDN+ 
Curated PheWAS summary data for 318 binary traits were used to generate the baseline ssDDN. The 
augmented version of the ssDDN, the ssDDN+, was constructed by incorporating the same PheWAS 
summary data with genetic correlations between the 318 binary traits and 31 additional continuous traits 
(Fig. 1). The methodology described by Verma et al.8 was applied to create the ssDDN. An edge in the set 

𝐄 = (e"#*
|𝑽|×|𝑽|

 was established between each pair of binary phenotypes  v"  and v#  if the two diseases 
shared associations with at least one common SNP at a genome-wide significance threshold of 
5 × 10'(.9,10,62,63 e"# represents the presence or absence of a connection, meaning that e"# = 1 if v" and v# 
had any common shared SNPs and e"# = 0  otherwise. These edges can be thought of as direct links 
between phenotypes in the ssDDN. The final ssDDN is an undirected, unweighted graph. 
 
The corresponding ssDDN+ can be represented as graph 𝐆0 = (𝐕, 𝐄4), where node set 𝐕 represents the set 
of binary phenotypes and edge set 𝐄4  represents all connections between phenotypes. 𝐄4  can be 
decomposed into direct connections (𝐄 ) obtained from the ssDDN and indirect connections (𝐄) ) 
estimated from significant genetic correlations derived from LDSC. We constructed a genetic correlation 

matrix 𝐑 = (r"# ∈ ℝ*
|𝑽|×|𝑻|

 where 𝑻 represents the set of all quantitative traits. The correlation matrix 𝐑 
was transformed into an association matrix 𝐑; , such that r<"+ = 1 if the genetic correlation r"+ between 
phenotype v" and quantitative trait t+ passed statistical significance. Then, the indirect connection (e"#)) 
was established by determining whether phenotypes v" and v# shared a genetic association with the same 
trait t, with  e"#) = sgn(�̂�-, ⋅ 	 �̂�.,), where sgn(⋅) is the signum function. If a common genetically correlated 
quantitative trait was identified between the two phenotypes, then an indirect edge was included in 𝐄). 
The final graph, with edge set 𝐄4  comprising of the union of 𝐄 and 	𝐄) , corresponds to the complete 
undirected, unweighted ssDDN+. To generate, visualize, and analyze both graphs, we made use of Gephi 
0.9064 and sigma.js65, open-source network visualization software packages, as well as NETMAGE10, a web-
based tool that allows users to upload PheWAS summary statistics and generate corresponding interactive 
disease-disease networks. Further analysis and visualization of DDN network statistics were performed 
using R 4.1.366. 
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Disease categories 
The 318 phecode-encoded binary phenotypes were organized into 15 unequally sized categories 
(Supplemental Table 1)67. Category-specific analyses allowed us to assess how the network structure of 
the ssDDN+ can provide insight into connections between biologically similar diseases that affect the same 
organ systems. We considered phenotypes in either the groups “endocrine/metabolic” and “circulatory 
system” as cardiometabolic diseases. 
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