Significant Production of Ozone from Germicidal UV Lights at 222 nm

3 Zhe Peng,^{1,2} Douglas A. Day,^{1,2} Guy Symonds,^{1,2} Olivia Jenks,^{1,2} Harald Stark,^{1,2,3} Anne V. 4 Handschy,^{1,2} Joost de Gouw,^{1,2} and Jose L. Jimenez^{1,2} 5 6 1: Dept. of Chemistry, University of Colorado, Boulder, CO, USA 7 2: Cooperative Institute for Research in Environmental Sciences (CIRES), University of 8 Colorado, Boulder, CO, USA 9 3: Aerodyne Research, Billerica, MA, USA 10 11 12 13 Abstract 14 15 Lamps emitting at 222 nm have attracted recent interest for germicidal ultraviolet disinfection 16 ("GUV222"). Their impact on indoor air quality is considered negligible. In this study, ozone 17 formation is observed for eight different lamps from five manufacturers, in amounts an order-of-18 magnitude larger than previous reports. Most lamps produce O_3 in amounts close to the firstprinciples calculation, with e.g. a generation rate of 22 ppb h⁻¹ for Ushio B1 modules in a 21 m³ 19 20 chamber. Much more O₃ is produced by lamps when optical filters were removed for tests, and 21 by an undesired internal electrical discharge. A test in an office shows an increase of ~6.5 ppb

- 21 by an undestred internal electrical discharge. A test in an once shows an increase of ~0.5 ppc 22 during lamp-on periods, consistent with a simple model with the O₃ generation rate, ventilation
- and O_3 losses. We demonstrate the use of a photolytic tracer to quantify the averaged GUV222
- 24 fluence rate in a room. Low-cost electrochemical O₃ sensors were not useful below 100 ppb.
- 25 Formation of O₃ increases indoor particulate matter (PM), which is ~10-30 times more deadly
- than O_3 per unit mass, and which is ignored when only considering O_3 threshold limit values. To
- 27 limit GUV222-created indoor pollution, lower fluence rates should be used if possible, especially
- 28 under low-ventilation conditions.
- 29

1 2

30

33 1. Introduction

34

35 Germicidal ultraviolet (GUV) disinfection has been used for a century to inactivate airborne 36 pathogens, i.e. those that infect via inhalation of pathogen-containing aerosols that float in the air.^{1–3} Despite some early interest in widespread deployment (e.g. a campaign from 37 38 Westinghouse to install GUV lamps in every American home⁴), it has remained mostly a niche technique in medical circles, in particular to reduce tuberculosis transmission.⁵ Research during 39 40 the COVID-19 pandemic led to the conclusion that airborne transmission is dominant for this 41 virus,⁶ and also important for other respiratory viruses.⁷ This has resulted in intense interest in 42 methods to remove pathogens from the air, including ventilation, filtration, and air disinfection, in 43 particular by GUV.⁸ 44

45 GUV uses lamps that emit light in the UVC range (200-280 nm) to irradiate indoor air, which can

inactivate aerosol-bound pathogens. It has traditionally been performed using filtered mercury 46

47 lamps whose most intense emission is at 254 nm ("GUV254"). More recently the use of shorter 48 wavelengths ("far UVC", 200-230 nm) has gained in popularity, in particular using KrCl excimer

49 with peak emission of 222 nm ("GUV222"). Extensive scientific reference information on GUV

- has been compiled at the online GUV Cheat Sheet.9 50
- 51

UVC lamps with wavelengths below 242 nm can generate O₃,¹⁰ a dangerous pollutant. A recent 52

review concluded that O_3 generation by KrCl lamps was minimal; for example a 12 W lamp was 53

estimated to take 267 h to produce 4.5 ppb O₃ in a 30 m³ room in the absence of losses.¹¹ A 54

recent modeling paper estimated O₃ generation to be nearly two orders-of-magnitude faster,¹² 55

56 but those findings have not been confirmed experimentally. There is also discussion in the

57 literature whether O_3 is mainly formed by the UVC radiation or by discharges in electrical connections.¹¹

58 59

60 In addition, it is typically difficult to quantify the GUV fluence rate that the air experiences in a 61 room or chamber, since lamp emission results in inhomogeneous light spatial distributions, the

62 reflectivity of materials at the GUV wavelengths varies widely, and due to continuous and highly

- 63 variable air motion. Measurements in different points of a room to quantify the average, or
- computer modeling can be performed but are time consuming. Quantification of the radiation 64 65 field with measurements of inactivation of viruses or bacteria require culture assays which are
- 66 slow and very costly.
- 67

68 Here we present direct measurements of O_3 production from KrCl excimer lamps in a laboratory

- chamber and compare them with literature estimates. A chemical tracer that allows 69
- 70 quantification of GUV fluence rate is introduced. Measurements are also performed in an office.
- 71 Significant O₃ production is observed in both controlled-laboratory and real-world settings.
- 72
- 73 2. Methods
- 74

75 Demonstration of tracers for GUV exposure of air

77 In this work, we use CBr₄ as a chemical tracer of GUV exposure. We show that it has relatively

78 fast decay under 222 nm irradiation and can be detected by commonly-available Proton-

79 Transfer-Reaction Mass Spectrometers with high sensitivity. It does not react with common

- atmospheric oxidants such as O_3 , OH, or NO_3 at typical indoor air concentrations. It has high
- 81 vapor pressure and low water solubility which minimizes partitioning to room surfaces and
- tubing.^{13,14} More details can be found in Section S1.
- 83

84 Laboratory chamber experiments

85

86 A well-characterized environmental chemical reaction chamber was used to measure the O₃

87 production rate and CBr₄ tracer decay for individual GUV fixtures. A ~21 m³ Teflon reaction

88 chamber (approximately 3x3x2 meters, LxWxH) is constructed of 50 µm thick FEP Teflon film

(ATEC, Malibu, California). Temperature during the experiments was ~20-25°C, and the built-in
 chamber UVA / visible lights were not used other than at occasional low-levels of visible lights

91 for task lighting. The chamber systems are described in previous publications exploring

91 of task lighting. The chamber systems are described in previous publications exploring 92 chemical and physical processes of gases and aerosols.^{15,16} The GUV light source was placed

92 either a few cm outside the chamber (at one corner shining into the bag and diagonally across

93 either a few cm outside the chamber (at one corner shining into the bag and diagonally across

to the opposite corner at mid-height) or placed within the chamber (at a lower corner mounted

on a ring stand facing the opposite upper corner) (Fig. S1).

96

97 A typical experiment was conducted as follows. Prior to each experiment, the chamber was 98 flushed for several hours with 400 LPM clean air (NO_x<0.2 ppb; VOC < 50 ppb) from an AADCO 99 generator (Model 737-15A) (at slightly positive pressure, 1-2 Pa) and then topped off to 100 consistently reach the full volume (~21 m³) by filling until the differential pressure reached 3.5 101 Pa. The GUV lamp was then turned on either continuously (Fig. 1b) or on/off in steps (e.g., 120 102 minutes on, 45 minutes off, Fig. 1a) for several hours. O_3 formation was measured with a 103 Thermo Scientific 49i O₃ Analyzer. Later in the experiments while the GUV lamp was off, several 104 ppb of CBr₄ were added by placing the solid compound within a glass bulb and gently heating 105 with a heat gun while flowing UHP nitrogen gas (for ~2 minutes), and then mixing for 1 minute 106 with a Teflon-coated mixing fan (integrated in the chamber). The on/off operation allowed to 107 unequivocally attribute changes in the O_3 and CBr_4 mixing ratios to the GUV illumination, and to

108 quantify any other losses separately. CBr_4 was measured with Vocus (detected as CBr_3^+), which

109 was calibrated by adding a known quantity to the chamber.¹⁷ See Sections S2 and S3 for more

- 110 information on calibrations of the O₃ analyzers and Vocus.
- 111

112 Since a single lamp fixture was illuminating from one corner of the bag, the fluence rate is not

113 constant within the bag volume. However, on the timescales of the experiments (relative to the

114 production/decay of the measured compounds), the air within the chamber is relatively well

115 mixed. This is due to the continuous mixing that occurs in the absence of mechanical mixing,

116 with a timescale of ~10 minutes.¹⁶ This is apparent in the stepwise lamp illumination

117 experiments, by the relatively quick stabilization of CBr_4 and O_3 when the light is turned off (Fig.

118 1a).

Table 1. KrCl excimer lamps tested in the chamber experiments and key results. Also shown are the results of first-principles
 calculations with different lamp spectra.

Manufa cturer	Model	Spectrum or Lamp	Inside or Outside Teflon Bag?	Filtered?	Electrical power (W)	O ₃ generation rate (ppb h ⁻¹)	CBr₄ photolysis rate (h⁻1)	Ratio between the 2 rates (ppb)	O₃ generated per unit power µg h⁻¹ W⁻¹	Effective fluence rate (µW cm ⁻² s ⁻¹)
N/A		Theoretical calculation w/ narrow emission line at 222 nm ^a				14	0.11	130		2.1
N/A		Theoretical calc. w/ Ushio B1 (NIST- measured spectrum) ^a				22	0.097	230		2.1
N/A		Theoretical calc. w/ Ushio B1 (NIST spectrum, adding an estimated 190 nm band) ^b				88	0.097	910		2.2
Far UV	Krypton -36	Ushio B1	Inside	Yes	15	21	0.093	230	48	2.0
Far UV	Krypton -36	Ushio B1	Inside	No - removed by us	15	100	0.21	490	230	4.6
Far UV	Krypton -36	Ushio B1	Outside	No - removed by us		66				
Custom	N/A	Ushio B1	Inside	Yes	16	23	0.10	230	49	2.2
Custom	N/A	Ushio B1.5 (with diffuser)	Inside	Yes	11	8.5	0.051	170	26	1.1

Naomi Wu, China	N/A	GMY FAR-UVC 15 W	Inside	Yes	15	11	0.039	280	25	0.84
Naomi Wu, China (portabl e)	N/A	FIRST UVC HEXAGON - USB	Inside	Yes	5	2.0	0.0095	210	7	0.21
ERGO HealthT ech	X One	Not known	Inside	Yes	5	2.0	0.0081	250	13	0.18
Eden Park (A)	MobileS hield ²²²	Eden Park Microplasma Far- UVC	Inside	Yes	9	30	0.030	1000	110	0.65
Eden Park (A)	MobileS hield ²²²	Eden Park Microplasma Far- UVC	Inside	No - removed by us	9	70	0.040	1800	260	0.86
Eden Park (A)	MobileS hield ²²²	Eden Park Microplasma Far- UVC	Outside	No - removed by us		0.51				
Eden Park (B)	MobileS hield ²²²	Eden Park Microplasma Far- UVC	Inside	Yes	9	1.3	0.010	120	4.6	0.22
Eden Park (B)	MobileS hield ²²²	Eden Park Microplasma Far- UVC	Inside	No - removed by us	9	14	0.039	360	52	0.84

^a hypothetical case with a total UV intensity of 2.3x10¹² photons cm⁻² s⁻¹

124 ^b hypothetical case with the same 222 nm band as the NIST-measured Ushio B1 spectrum and an artificial 190 nm band, constructed from the

125 spectrum shown in ref.¹¹ (Fig. S2)

126 Office experiments

127

128 Experiments were also performed in a small university office, which measured 4.0x2.7x3.1 m

- 129 (LxWxH; vol. ~33 m³). It has an entrance door and two windows. A supply and a return vent are
- 130 located near the ceiling. To simulate a low-ventilation situation, the windows, gaps around utility
- 131 penetrations, and supply / return vents were sealed with plastic sheeting or tape (Fig. S3).
- 132

The ventilation rate was quantified by monitoring the decay of CO_2 after an injection (from a compressed gas cylinder) with an Aranet4 sensor (SAFTehnika, Latvia). A fan was turned on remotely for a few seconds after CO_2 injection to ensure homogeneity within the room. The ventilation / infiltration rate was estimated with an exponential fit to the CO_2 decay to be as low

- 137 as ~0.44 h⁻¹ (timescale of ~2.3 h, comparable to typical residences),¹⁸ but with some
- experiment-to-experiment variability. For this reason CO_2 was injected also during the O_3 decay or production experiments.
- 140

141 To quantify the O_3 decay to surfaces and to gas and aerosol chemistry in the room, the O_3

- decay in the room was measured with a 2B 205 analyzer. The decay was fit to an exponential,
 and the O₃ deposition rate coefficient was determined by subtracting the ventilation rate
- 144 coefficient (Fig. S4).
- 145

146 **3. Results**

147

148 Theoretical estimation of O₃ production and tracer decay

149

150 In this study, we tested lamps from different manufacturers (Table 1). The emission spectrum of the Ushio B1 lamp that is used by multiple lamp manufacturers is available from NIST (Fig. S2). 151 The absorption spectra of O₂ and CBr₄ are well-known.^{10,19} Their expected photolysis rates 152 153 under the Ushio B1 lamp irradiation can be calculated by integrating the product of UV fluence 154 rate and absorption cross sections of O_2 or CBr_4 over the wavelengths of interest. As 2 155 molecules of O₃ are produced per O₂ molecule photolyzed, the theoretical O₃ production rate for 156 the Ushio B1 lamp at a total UV fluence rate of 2.3x10¹² photons cm⁻² s⁻¹ is ~22 ppb h⁻¹. At the 157 same UV intensity, the theoretical CBr₄ photolysis rate is 0.097 h⁻¹. The ratio between them 158 $(P_{O3}/J_{CBr4} \sim 230 \text{ ppb})$, i.e. O_3 production through O_2 photolysis over a period for an e-fold decay 159 of CBr₄, is independent of UV fluence rate and is characteristic of a specific GUV222 lamp.

160

161 When unfiltered optically, the emission of KrCl excimer lamp also includes a band centered at 162 190 nm (Fig. S2).¹¹ If this band is added to the theoretical calculation (as a proxy of unfiltered 163 lamps), the O_3 generation rate is increased by a factor of ~4. Although the 190 nm band has 164 much lower intensity, the absorption cross section of O_2 is on average ~2 orders of magnitude 165 larger for the 190 nm band than for the 222 nm one. However, this band has little impact on

- 166 CBr_4 as its cross section below 200 nm is much lower. This results in a higher P_{O3}/J_{CBr} ratio
- 167 (~900 ppb) than for the filtered lamp spectrum.
- 168

169 **O**₃ production and CBr₄ in the chamber

- 170
- 171 Results of a typical chamber experiment (Ushio B1) are shown in Fig. 1a. O₃ increases
- approximately linearly with time when the lamp is on. When this lamp is on for an extended
- period (days), O₃ in the chamber can reach ppm levels (Fig. S5). At very high O₃
- 174 concentrations, the small loss rate coefficient of O₃ (mainly due to O₃ photolysis by the 222 nm
- band, Fig. S6) slightly reduces the rate of O_3 increase. An Ushio B1 lamp generates ~22 ppb O_3
- 176 per h, very close to the theoretical case shown above. The effective UVC fluence rate inferred
- from the CBr₄ photolytic decay rate ($\sim 0.1 \text{ h}^{-1}$, dilution corrected, Table 1) (Fig. 1b), is also very
- 178 close to the theoretical case value. P_{O3}/J_{CBr4} , a characteristic of the lamp, is almost the same as 179 the theoretical case value (Table 1).
- 180

The other devices tested in this study, with electrical power ranging from ~5 W (portable device) to ~15 W, also have P_{O3}/J_{CBr4} values in the range of 200-300 ppb, indicating similar spectral characteristics of their emissions. The exceptions are the lamps whose filters were removed for

- 184 our tests, two Eden Park lamps we tested, and an Ushio B1.5 lamp with a diffuser.
- 185

186 The Far UV device with filter removed has 4 times more O_3 production and >100% larger CBr₄

187 decay than when it has the filter, leading to about twice P_{O3}/J_{CBr4} of the device with the filter.

188 Without the filter, more photons of the 222 nm band are allowed out of the device, leading to 189 faster CBr_4 decay. The 190 nm band is also unfiltered, producing much more O_3 than the 222

- 190 nm band of the device without filter can produce.
- 191

The Eden Park lamp has almost the same emission spectrum as the Ushio B1 (Fig. S7). With its filter, the first Eden Park device tested (EP-A, Table 1) results in $\sim 1/3$ CBr₄ decay vs. Ushio B1,

while producing more O_3 . Most of this unexpectedly high O_3 production appears to be due to

- 195 electrical discharge within the electrical components of the device (but outside the lamp). We
- 196 arrive at this conclusion after additional tests: (i) low O₃ production by the EP-A in the chamber
- bag when located outside the bag, in contrast to the Ushio B1 module (Table 1). (ii) For O₃
- 198 measurement just outside the EP-A housing, but not in front of the light, the O₃ monitor detects
- 199 ppm-level O_3 (Fig. S8), implying very strong non-photochemical O_3 production inside the device. 200

In contrast, the other Eden Park device test (EP-B) did not produce an excessive amount of O_3 in its housing, implying no undesired electrical discharge there. It also only produces 1.3 and 14 ppb O_3 per h in the chamber with and without its filter, respectively, resulting in significantly

- lower P_{O3}/J_{CBr4} than the Ushio B1 lamps. The reasons for the lower P_{O3}/J_{CBr4} of the Ushio B1.5
- 205 module and EP-B lamp are unclear, as they have similar emission spectra to Ushio B1 (Fig.
- 206

S7).

medRxiv preprint doi: https://doi.org/10.1101/2023.05.13.23289946; this version posted May 17, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

Figure 1. Time series of (a) O_3 and (b) CBr_4 during chamber experiments with the 12 W Far UV lamp (Ushio B1 module). (c) Time series of O_3 in the office experiments, along with model results. (d) Comparison of O_3 formation rates in this study with previous literature.

215

216 O3 mass balance in an office

217

218 The Far UV lamp was repeatedly cycled on (3 h) and off (3 h) together with periodic CO₂ 219 injections (Fig. 1c and Fig. S9). O₃ rapidly rose once the lamp was turned on and reached an 220 approximate steady state (8-14 ppb, typically increasing ~6.5 ppb). After turning off the lamp, O_3 221 rapidly decreased, also guickly reaching a steady state. Background O_3 in the office, as 222 indicated by the steady-state O_3 level at the end of lamp-off periods, varied by ~4 ppb during the 223 experiment. It is affected by ventilation rate, deposition, as well as O_3 in outdoor/adjacent-room air infiltrating into the office. Ventilation rates ranged 0.62-0.96 h⁻¹ (Fig. S9). O₃ deposition rates 224 225 were more variable (range $0.5-2.3 h^{-1}$, average $0.78 h^{-1}$, Fig. S9).

226

 O_3 in the office was modeled with a chemical-kinetics simulator.²⁰ The model was constrained

- by the measured O_3 and CO_2 concentrations and decays (Section S4). The measured and
- modeled O_3 are in good agreement (Fig. 1c). The O_3 production rate of the Ushio B1 module in
- the office (Fig. S3) is estimated to be 8.6 ppb/h from the constrained model. This is ~39% of the
- value measured in the chamber, which is explained by the larger volume of the office (~32.9 vs.
- ~20.6 m³) and the shorter effective UV pathlength (~3.2 vs. ~4.5 m). Scaling results in a
- difference of 12%, thus showing agreement well within experimental uncertainties (Fig. S10).

234 Implications

235

236 Significant amounts of O_3 can be produced by GUV-222 lamps in both controlled-laboratory and real-world settings. Our results of 762 µg h⁻¹ for a 21 m³ chamber and 446 µg h⁻¹ for an office 237 238 with a shorter light path are summarized in Fig. 1d. Note that these results would be ~18% 239 higher at sea level due to the reduced ambient pressure in Boulder. For comparison, previous 240 reports for the same GUV222 module (or modules using the same electrical power) from the literature of 12,¹¹ 13 and 92,²¹ and 96 µg h⁻¹ ²² are also shown. These had been used to 241 242 conclude that O_3 generation from GUV222 is not a concern. On average, our results are an 243 order of magnitude larger than the literature. The discrepancy may arise because most prior 244 measurements were performed in small boxes, with very short optical pathlengths and high 245 surface/volume ratios that are not representative of real room applications. The former may lead 246 to smaller O₃ production rate, and the latter to substantial losses to the box surfaces, which 247 were not accounted for. Moreover, some of these measurements may have been made with 248 low-cost electrochemical O₃ sensors. We tested four sensors and found them to be 249 unresponsive to O₃ mixing ratios below 200 ppb, therefore such sensors are not useful for this 250 problem (Section S5).

251

O₃ itself is a major air pollutant with excess deaths observed at levels below those in
 occupational guidelines of 50-100 ppb.^{23,24} Critically, it can also lead to formation of other
 pollutants including particulate matter,¹² which has ~10-30 times higher excess death impacts
 on a mass basis (Section S6).^{23,25} O₃ production by GUV222 lamps thus can be a major
 concern, at least under low-ventilation conditions.

257

Our experiments have an average fluence rate of ~2.1 μ W cm⁻² s⁻¹, about ¹/₃ of the recentlyupdated ACGIH eye limit, and approximately consistent with a room installation that achieves the ACGIH limit at eye level (H. Claus, pers. comm.). ACGIH should consider reduced limits at low ventilation rates. Current literature estimates of the GUV222 disinfection rate coefficient for SARS-CoV-2 span a factor of 33.^{26,27} Future research should focus on narrowing down this range, which may allow high efficacy of GUV222 at lower fluences, thus reducing impacts on indoor air.

265

266 Acknowledgements

267

We thank the Balvi Filantropic Fund, the CIRES Innovative Research Program, and the Sloan
Foundation (grant 2019-12444) for support of this work. We thank Shelly Miller, Kenneth Wood,
Ewan Eadie, Catherine Noakes, Dustin Poppendieck, Michael Link, Mikael Ehn, Jesse Kroll,
Victoria Barber, John Balmes, and the larger GUV scientific and technical communities for
useful discussions. We are grateful to Holger Claus, Aaron Collins, Matthew Pang, Kristina
Chang, Scott Diddams and Naomi Wu for sharing data or materials and useful discussions.

275 References

- (1) Wells, W. F. Air Disinfection in Day Schools. *Am. J. Public Health Nations. Health* **1943**, 33
 (12), 1436–1443.
- 278 (2) Riley, R. L.; Mills, C. C.; O'grady, F.; Sultan, L. U.; Wittstadt, F.; Shivpuri, D. N.
 279 Infectiousness of Air from a Tuberculosis Ward. Ultraviolet Irradiation of Infected Air:
 280 Comparative Infectiousness of Different Patients. *Am. Rev. Respir. Dis.* 1962, *85*, 511–525.
- (3) Nardell, E. A. Air Disinfection for Airborne Infection Control with a Focus on COVID-19:
 Why Germicidal UV Is Essential[†]. *Photochem. Photobiol.* **2021**, *97* (3), 493–497.
- (4) Fitzgerald, G. *The Origins of Aerobiology and Airborne Disease Research in the United* States, 1930-1955. Intervals Podcast of the Organization of American Historians.
 https://rebrand.ly/m0uxwym.
- (5) Mphaphlele, M.; Dharmadhikari, A. S.; Jensen, P. A.; Rudnick, S. N.; van Reenen, T. H.;
 Pagano, M. A.; Leuschner, W.; Sears, T. A.; Milonova, S. P.; van der Walt, M.; Stoltz, A. C.;
 Weyer, K.; Nardell, E. A. Institutional Tuberculosis Transmission. Controlled Trial of Upper
 Room Ultraviolet Air Disinfection: A Basis for New Dosing Guidelines. *Am. J. Respir. Crit. Care Med.* 2015, *192* (4), 477–484.
- (6) Greenhalgh, T.; Jimenez, J. L.; Prather, K. A.; Tufekci, Z.; Fisman, D.; Schooley, R. Ten
 Scientific Reasons in Support of Airborne Transmission of SARS-CoV-2. *Lancet* 2021, 397, 1603–1605.
- Wang, C. C.; Prather, K. A.; Sznitman, J.; Jimenez, J. L.; Lakdawala, S. S.; Tufekci, Z.;
 Marr, L. C. Airborne Transmission of Respiratory Viruses. *Science* 2021, *373* (6558),
 eabd9149.
- (8) Morawska, L.; Tang, J. W.; Bahnfleth, W.; Bluyssen, P. M.; Boerstra, A.; Buonanno, G.;
 Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; Haworth, C.; Hogeling, J.; Isaxon, C.;
 Jimenez, J. L.; Kurnitski, J.; Li, Y.; Loomans, M.; Marks, G.; Marr, L. C.; Mazzarella, L.;
 Melikov, A. K.; Miller, S.; Milton, D. K.; Nazaroff, W.; Nielsen, P. V.; Noakes, C.; Peccia, J.;
 Querol, X.; Sekhar, C.; Seppänen, O.; Tanabe, S.-I.; Tellier, R.; Tham, K. W.; Wargocki, P.;
 Wierzbicka, A.; Yao, M. How Can Airborne Transmission of COVID-19 Indoors Be
 Minimised? *Environ. Int.* 2020, *142*, 105832.
- 304 (9) Jimenez, J. L. *GUV Cheat Sheet*. http://bit.ly/guv-cheat.
- 305 (10) J. B. Burkholder, S. P. Sander, J. Abbatt, J. R. Barker, C. Cappa, J. D. Crounse, T. S.
 306 Dibble, R. E. Huie, C. E. Kolb, M. J. Kurylo, V. L. Orkin, C. J. Percival, D. M. Wilmouth, and
 307 P. H. Wine. *Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies*;
 308 JPL Publication 19-5; Jet Propulsion Laboratory, Pasadena, 2019.
- (11) Claus, H. Ozone Generation by Ultraviolet Lamps†. *Photochem. Photobiol.* 2021, 97 (3),
 471–476.
- (12) Peng, Z.; Miller, S. L.; Jimenez, J. L. Model Evaluation of Secondary Chemistry due to
 Disinfection of Indoor Air with Germicidal Ultraviolet Lamps. *Environ. Sci. Technol. Lett.* 2023, 10 (1), 6–13.
- (13) Pagonis, D.; Price, D. J.; Algrim, L. B.; Day, D. A.; Handschy, A. V.; Stark, H.; Miller, S. L.;
 de Gouw, J.; Jimenez, J. L.; Ziemann, P. J. Time-Resolved Measurements of Indoor
 Chemical Emissions, Deposition, and Reactions in a University Art Museum. *Environ. Sci. Technol.* 2019, *53* (9), 4794–4802.
- (14) Liu, X.; Deming, B.; Pagonis, D.; Day, D. A.; Palm, B. B.; Talukdar, R.; Roberts, J. M.;
 Veres, P. R.; Krechmer, J. E.; Thornton, J. A.; de Gouw, J. A.; Ziemann, P. J.; Jimenez, J.
 L. Effects of Gas-wall Interactions on Measurements of Semivolatile Compounds and
 Small Polar Molecules. *Atmos. Meas. Tech.* **2019**, *12* (6), 3137–3149.
- (15) Liu, X.; Day, D. A.; Krechmer, J. E.; Brown, W.; Peng, Z.; Ziemann, P. J.; Jimenez, J. L.
 Direct Measurements of Semi-Volatile Organic Compound Dynamics Show near-Unity
 Mass Accommodation Coefficients for Diverse Aerosols. *Commun. Chem.* 2019, 2 (98), 1–

325 9.

- (16) Krechmer, J. E.; Day, D. A.; Ziemann, P. J.; Jimenez, J. L. Direct Measurements of
 Gas/Particle Partitioning and Mass Accommodation Coefficients in Environmental
 Chambers. *Environ. Sci. Technol.* 2017, *51* (20), 11867–11875.
- (17) Krechmer, J.; Lopez-Hilfiker, F.; Koss, A.; Hutterli, M.; Stoermer, C.; Deming, B.; Kimmel,
 J.; Warneke, C.; Holzinger, R.; Jayne, J.; Worsnop, D.; Fuhrer, K.; Gonin, M.; de Gouw, J.
 Evaluation of a New Reagent-Ion Source and Focusing Ion–Molecule Reactor for Use in
- 332 Proton-Transfer-Reaction Mass Spectrometry. *Anal. Chem.* 2018, *90* (20), 12011–12018.
 333 (18) Nazaroff, W. W. Residential Air-Change Rates: A Critical Review. *Indoor Air* 2021, *31* (2),
- 334 282–313.
- (19) Keller-Rudek, H.; Moortgat, G. K.; Sander, R.; Sörensen, R. *The MPI-Mainz UV/VIS* Spectral Atlas of Gaseous Molecules of Atmospheric Interest.
 http://satellite.mpic.de/spectral_atlas (accessed 2022-02-10).
- (20) Peng, Z.; Jimenez, J. L. KinSim: A Research-Grade, User-Friendly, Visual Kinetics
 Simulator for Chemical-Kinetics and Environmental-Chemistry Teaching. J. Chem. Educ.
 2019, 96 (4), 806–811.
- (21) Blatchley, E. R.; Brenner, D. J.; Claus, H.; Cowan, T. E.; Linden, K. G.; Liu, Y.; Mao, T.;
 Park, S.-J.; Piper, P. J.; Simons, R. M.; Sliney, D. H. Far UV-C Radiation: An Emerging
 Tool for Pandemic Control. *Crit. Rev. Environ. Sci. Technol.* 2023, 53 (6), 733–753.
- (22) Ma, B.; Burke-Bevis, S.; Tiefel, L.; Rosen, J.; Feeney, B.; Linden, K. G. Reflection of UVC
 Wavelengths from Common Materials during Surface UV Disinfection: Assessment of
 Human UV Exposure and Ozone Generation. *Sci. Total Environ.* 2023, 161848.
- (23) Turner, M. C.; Jerrett, M.; Pope, C. A., 3rd; Krewski, D.; Gapstur, S. M.; Diver, W. R.;
 Beckerman, B. S.; Marshall, J. D.; Su, J.; Crouse, D. L.; Burnett, R. T. Long-Term Ozone
 Exposure and Mortality in a Large Prospective Study. *Am. J. Respir. Crit. Care Med.* 2016, 193 (10), 1134–1142.
- (24) Bell, M. L.; Peng, R. D.; Dominici, F. The Exposure–response Curve for Ozone and Risk of
 Mortality and the Adequacy of Current Ozone Regulations. *Environ. Health Perspect.* 2006,
 114 (4), 532–536.
- (25) Weichenthal, S.; Pinault, L.; Christidis, T.; Burnett, R. T.; Brook, J. R.; Chu, Y.; Crouse, D.
 L.; Erickson, A. C.; Hystad, P.; Li, C.; Martin, R. V.; Meng, J.; Pappin, A. J.; Tjepkema, M.;
 van Donkelaar, A.; Weagle, C. L.; Brauer, M. How Low Can You Go? Air Pollution Affects
- Mortality at Very Low Levels. *Sci Adv* **2022**, *8* (39), eabo3381.
- (26) Ma, B.; Gundy, P. M.; Gerba, C. P.; Sobsey, M. D.; Linden, K. G. UV Inactivation of SARS CoV-2 across the UVC Spectrum: KrCl* Excimer, Mercury-Vapor, and Light-Emitting-Diode
 (LED) Sources. *Appl. Environ. Microbiol.* 2021, 87 (22), e0153221.
- 361 (27) Welch, D.; Buonanno, M.; Buchan, A. G.; Yang, L.; Atkinson, K. D.; Shuryak, I.; Brenner, D.
 362 J. Inactivation Rates for Airborne Human Coronavirus by Low Doses of 222 Nm Far-UVC
 363 Radiation. *Viruses* 2022, 14 (4). https://doi.org/10.3390/v14040684.

Supporting Information for

Significant Production of Ozone from Germicidal UV Lights at 222 nm

Zhe Peng,^{1,2} Douglas A. Day,^{1,2} Guy Symonds,^{1,2} Olivia Jenks,^{1,2} Harald Stark,^{1,2,3} Anne V. Handschy,^{1,2} Joost de Gouw,^{1,2} and Jose L. Jimenez^{1,2}

 Dept. of Chemistry, University of Colorado, Boulder, CO, USA
 Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
 Aerodyne Research, Billerica, MA, USA

Supporting Information Text Sections

Section S1. Selection and Application of CBr₄ a tracer of GUV fluence rate in air

A useful chemical tracer of GUV exposure should not react (or react slowly) with common atmospheric oxidants such as O_3 , OH, or the NO₃ radical at typical indoor air concentrations. O_3 and NO₃ typically react only with C=C double bonds, while OH can abstract hydrogens from most organic molecules.¹ A tracer should also have a high absorption cross section at the most common GUV wavelengths (222 and 254 nm), so that its decay is large enough and can be quantified over reasonable time scales despite instrumental noise. It should have high vapor pressure and low water solubility to reduce partitioning to room surfaces and tubing.^{2,3} It should not be highly toxic, and it should be detectable with high sensitivity with existing instrumentation, so that its mixing ratio can be kept low to minimize any unwanted effects on chemistry or human exposure concerns. After comparing a few candidate species, we selected CBr₄ as a tracer. We show that it has relatively fast decay under 222 nm irradiation and can be detected by a commonly-available Proton-Transfer-Reaction Mass Spectrometer with high sensitivity.

A search for species with these properties that can serve as a GUV fluence rate tracer at both main GUV wavelengths in use (222 and 254 nm) identified three candidates, shown in the table below. Other species considered (including CF_2Br_2 , CCI_3Br , CF_2I_2 , C_2F_5I , CF_3I , OCS, and diacetyl) had too low absorption cross section (σ) at one of the key GUV wavelengths. CBr_4 was selected due to having the highest σ (and thus the fastest photolysis rates), low reactivity with oxidants, and being detectable with the Vocus instrument with high sensitivity. This instrument is widely-available in air chemistry research laboratories. This molecule is an excellent tracer in particular for GUV222, as its absorption cross section is highest at that wavelength, and falls about an order of magnitude when 10 nm away on either side of the peak. The absorption cross sections of CBr_4 , O_2 and O_3 are shown in Fig. S6.

To quantify the sensitivity of the Vocus to CBr_4 , 20.10 mg CBr_4 was evaporated under clean nitrogen flow into the chamber (whose volume was measured by quantitatively injecting CO_2 and measuring the concentration). A teflon-coated fan was run for one minute following the

addition to ensure complete mixing. The concentration of CBr_4 in the chamber and measured ion counts per second (cps) for the CBr_3^+ ion were used to determine the sensitivity in cps ppb⁻¹.

As CBr₄ also absorbs at 254 nm, it can cause interferences in the Thermo Scientific 49i O₃ Analyzer, which uses absorption at 254 nm to measure O₃. We measured the apparent O₃ signal in the Thermo Scientific 49i O₃ Analyzer at several CBr₄ concentrations in the absence of O₃ in the chamber. Below 200 ppb CBr₄, the interference of CBr₄ is approximately linear with its concentration (Fig. S11). The O₃ signal due to CBr₄ interference is ~0.007 ppb per ppb CBr₄ in this CBr₄ concentration range, in which most of the experiments in this study were (usually on the range 1-10 ppb). At very high CBr₄ concentration (~500 ppb), the relationship between the concentration and the O₃ interference is no longer linear.

During the O_3 generation rate quantification experiments, CBr_4 (Sigma-Aldrich) was added to the chamber after the O_3 quantification was done. This order was followed because CBr_4 photolysis produces Br radicals that can catalytically destroy O_3 in a similar way as catalytic destruction of stratospheric O_3 by Cl.⁴ In the presence of CBr_4 and GUV irradiation (and hence Br atoms), a steady state for O_3 exists that is governed by Br concentration (and hence CBr_4 and GUV fluence rate). Fig. S12 shows the O_3 -CBr₄ relationship during a long CBr₄ decay experiment with the Far UV fixture (with filter). CBr_4 decay was relatively slow. Therefore, O_3 concentration responded to CBr_4 relatively rapidly and could be regarded as steady-state concentration.

Table S1. key properties of potential GUV average fluence rate tracers. (*): Lifetimes are estimated for typical indoor GUV intensities of 2.61 x 10^{12} and 1.06×10^{14} photons cm⁻² s⁻¹ at 222 and 254 nm, respectively, and for an OH concentration of 1.5×10^{6} molec. cm⁻³. (**): no specific exposure limit, hazard information available at <u>https://pubchem.ncbi.nlm.nih.gov/</u>.

Species	CBr₄	CHBr₃	BrCOC OBr	CF ₂ Br ₂	CCl₃Br	CF ₂ I ₂	C₂F₅I	CF₃I
σ at 222 nm	2.85E-18	1.36E-18	2.00E-18	3.68E-19	4.60E-19	1.12E-18	4.73E-19	4.26E-19
σ at 254 nm	1.32E-17	5.78E-18	7.00E-18	2.44E-18	4.80E-19	6.00E-19	2.48E-20	2.06E-20
OH rate coeff.	-	2.70E-13	-	-	-	-	-	-
GUV-222 lifetime* (h)	8.0	18.4	15.2	43.5	221.4	177.0	4284	5158
GUV-254 lifetime* (h)	0.9	1.9	1.3	7.1	5.7	2.3	5.6	6.2
OH lifetime* (h)	-	686	-	-	-	-	-	-
Exposure limit (ppb)	100	500	**	10 ⁵	**	**	**	**

Section S2. Selection of acetone as a tracer of Vocus sensitivity

A Vocus sensitivity tracer was useful for some experiments with weak lamps, e.g. the Naomi Wu (portable) and Eden Park (B) devices (Table 1), where the CBr_4 photolytic decay was small (~0.01 h⁻¹) and the Vocus sensitivity drift could be of a comparable magnitude.

Acetone was selected as a tracer of Vocus sensitivity because of the following properties. First, the Vocus instrument detects acetone with high sensitivity.⁵ Besides, its absorption cross section drops by orders of magnitude between 195-200 nm and is 3-4 orders of magnitude lower than that of CBr₄ (Fig. S6), leading to little photolysis by the GUV band centered at 222 nm. Moreover, it is unreactive with O_3 , and its reaction with OH is negligible under the conditions in this study. After injection into the chamber, the acetone signal can serve to continuously quantify small variations in Vocus sensitivity, for the experiments where the GUV device has the optical filter that filters the 190 nm band.

Section S3. Calibration of O₃ analyzers used for chamber and office experiments

 O_3 formation in the chamber was always measured with a Thermo Scientific 49i O_3 Analyzer. That analyzer was calibrated using actinometry within the experimental chamber, where ~40 ppb of NO₂ was injected into the dry chamber, and the UVA lights are stepped through four discrete levels (between 10-100% of total UVA power). Equal amounts of NO and O_3 are generated, which are monitored with the O_3 analyzer and a Thermo Scientific 42i-TL NO-NO₂-NO_x Analyzer. The NO_x analyzer was calibrated using a NIST-certified (±2%) calibration standard (gas cylinder with NO in N₂) and Thermo Scientific Multi-Gas Calibrator (146i). We estimate that this method provides a calibration accuracy of ±5% for the O_3 analyzer.

 O_3 decay rates and concentrations in the office experiments were always measured with a 2B Model 205 analyzer, which was cross-calibrated with the Thermo analyzer used in the chamber experiments, with its zero calibrated with zero air (resulting accuracy of ±7%, and zero uncertainty of ± 0.5 ppb).

Section S4. Data analysis and kinetic modeling for the office O₃ production experiment

Characterization Tests

In characterization tests (without a GUV lamp), the ventilation rate was measured as 0.52-0.61 hr^{-1} (τ : 1.6-1.9 h) using CO₂ decay. For initial characterization of O₃ decay, ~400-500 ppb O₃ were generated with an unfiltered low-pressure Hg lamp with partial emission at 185 nm (BHK 82-9304-03) (Fig. S3), together with CO₂ injection. As expected, the decay of O₃ generated by the Hg lamp was faster than CO₂ decay (Fig. S4), because of other O₃ losses than ventilation (dry deposition, reactions with VOC emitted indoors etc.). Subtracting the two rate coefficients yields an O₃ deposition coefficient of 0.76-1.1 h^{-1} (τ : 0.93-1.3 h), and the overall O₃ decay rate as 1.3-1.7 hr^{-1} (τ : 0.59-0.78 h).

Given the variability in these experiments, the CO_2 and O_3 decay rates were measured after each period in which the GUV lamp was turned on, as described in the main paper.

Modeling

To quantify the O_3 production rate from the GUV lamp, all relevant parameters affecting O_3 concentration in the office were modeled in KinSim. The first-order ventilation rate, first order deposition rate coefficient (implicitly including gas and aerosol reactions), and the approximate mixing ratio of O_3 entering the room from outside the room had to be measured or estimated.

The ventilation rate was directly measured using CO₂ pulse injection experiments discussed in the main paper, and the deposition rate was estimated by subtracting the ventilation rate from the first-order overall O_3 loss rate coefficient (green fit lines in Fig. S9). From here, the effective value for the O₃ mixing in from outside the room was approximated through tuning of the model when the lamp was off (blue points in Fig. S9). Finally, across 5 of the 8 peaks the production rate was tuned individually until it matched with each peak, and then the average was used as a constant production rate (individual values shown in Fig. S9 and used as a metric of uncertainty). Peaks 3, 7, and 8 were excluded due to rapidly changing O₃ background levels. As it was found that the estimated O_3 deposition rate varied substantially for the different light cycles, it was assumed to be constant for the model and the average value was used as an input (and computing "outside" O_3). This choice was made since, given the relative invariability of the ventilation rate and lack of activity in the room, it seemed unlikely that actual O_3 deposition rate coefficient would change all that much. More likely, the variability was more driven by a combination of uncertainty in changing ventilation rates and "outside" O₃ on timescales faster than these parameters could be guantified, as well as the uncertainties associated with fitting and subtracting decay and ventilation rates. Figure S9 displays all of these parameters in the first "variable deposition" scenario as well as the second "constant deposition scenario". The O_3 production rate for the GUV lamp was only calculated for the second scenario.

As seen in Fig. S10, The O_3 production rate for the conference room is slightly lower than that of the chamber due to the size of the room (~32.9 vs. ~20.6 m³) and effective UV pathlength (~3.2 vs. ~4.5 m). However, the results are within error bars when these differences are taken into account. The effective path length is shorter in the conference room both because of the shorter length of the room (3.8 m), and the combination with the narrowness of the room and furniture obstructions, which we estimate to reduce effective pathlength by ~15%.

Section S5. Evaluation of handheld electrochemical O₃ monitors

Three low-cost (~\$100) handheld electrochemical O₃ monitor models were compared with our research-grade UV absorption Thermo Scientific Model 49i Ozone Analyzer. Table S2 lists all three monitors with their relevant information and specs. Two identical monitors were tested for the Shenzhen Dienmern model.

Company and cost	Name, Model, and Principle of Operation	Advertised Specifications	Resolution of Monitor Display	
Shandong Renke Control Technology Co., Ltd. \$114	"Portable Accurate O3 Sensor" Model: RS-MG41-O3 Electrochemical sensor	0~10.00 ppm Accuracy: ±6%FS(@5ppm,25°C,50% RH) Zero drift: ≤±1ppm Duplicate Value: ≤2% From listing on Renke's website: https://www.renkeer.com/product/portab <u>le-ozone-meter/</u>	0.01 ppm (10 ppb)	
Shenzhen Dienmern Testing Technology Co., Ltd \$55	"Portable O3 handheld gas analyzer" Model: DM509-O3 model Electrochemical sensor	O ₃ (0-5 ppm) From listing on Alibaba.com: https://dienmern.en.alibaba.com/produc t/160/275994341-910743044/Portable Ozone Analyzer Hing accurate O3 O zone sensor Air Detector Intelligent Sensor Ozone Meter Air Quality Poli ution Monitor.html?spm=a2700.shop i ndex.111720.3.55b15bceN6NeQC	0.001 ppm (1 ppb)	
Shenzhen YuanTe Technology Co., Ltd \$815	"Portable Gas Detector" Model: SKY2000 Electrochemical sensor	0-10 ppm Accuracy: ≤±3% F.S. Repeatability: ≤±1% Linearity Error: ≤±1% Zero Shift: ≤±1% (F.S./year) https://siafa.com.ar/media/src/sky2000- catalogue-with-datasheetam.pdf https://siafa.com/portable-o3-gas-de tector?affiliate=shopping&aclid=CiwKC Alwx_eiBhBGEiwA15gLN6lkKK3nanBn 52Azfd.5ereOHcj0LdUMcFdanBn 52Azfd.5ereOHcj0LdUMcFdanBn 52Azfd.5ereOHcj0LdUMcFdanBn 52Azfd.5ereOHcj0LdUMcFdanBn 52Azfd.5ereOHcj0LdUMcFdanBn	0.01 ppm (10 ppb)	

Table S2. Specifications for all low-cost O₃ monitors tested in the chamber instrument

The set up for these monitors in the chamber can be seen in Fig. S13. O_3 was injected into the chamber with a commercial O_3 generator (BMT 802N) periodically, followed by mixing with a fan, in order to generate constant concentration O_3 "steps". The Thermo O_3 concentrations were logged continuously and the concentrations of the hand-held O_3 monitors were manually read and recorded for each step. The results of this comparison can be seen in Figs. S14 and S15.

Performance is very poor at the relevant levels for typical indoor O_3 and the levels expected when GUV222 is applied at e.g. ACGIH limits (i.e. no response for $O_3 < 150-400$ ppb). At higher levels > 200 ppb, the Shenzhen YuanTe monitor eventually quantifies O_3 with good accuracy, while the other two models continue to be low by a factor of ~8. The Shenzhen YuanTe monitor is also distinct from the other two as it is a factor of ~10 more expensive. According to the information that we could find (see Table S2), two of these monitors appear to have failed their accuracy and/or zero drift specifications. For the other one, the only specs that we found were the measurement range and statements that it has high accuracy. To the best of our current knowledge, the lowest cost monitors capable of accurate O_3 measurements at single-digit or tens of ppb-level concentrations are based on UV absorption, and cost at least \$6000.

Section S6. Comparison of the health effects (premature death) for O₃ and fine PM.

The mortality due to long-term exposure to O_3 (per unit mass of O_3) can be estimated from the literature. Turner et al. (2016)⁶ is considered the best study to date on this topic (J. Balmes, UCSF, pers. comm., 2023). This study reports an increase in all-cause mortality of 2% per 10 ppb increase in O_3 . 10 ppb are equivalent to 19.7 µg m⁻³ at 1 atm and 298 K. Thus, we can estimate the risk per unit mass of O_3 as 2% / 19.7 = 0.10% per µg m⁻³.

For comparison, the mortality due to long-term exposure to $PM_{2.5}$ can be estimated from Figure 2a of Weichenthal et al. $(2022)^7$. For their updated exposure function, the increased relative risk of mortality per unit increase in $PM_{2.5}$ (i.e. the slope of the curve) is highest between 2.5-4 µg m⁻³, at about 3.2% per µg m⁻³. At concentrations around the US $PM_{2.5}$ average of ~7 µg m⁻³, this value is 1% per µg m⁻³ for their updated function, and 0.95% per µg m⁻³ for the prior literature function.

Thus depending on the estimate used for $PM_{2.5}$ risk, the all-cause mortality risk of $PM_{2.5}$ is 9.5-32 times larger than for O_3 .

References:

- (1) Atkinson, R.; Arey, J. Atmospheric Degradation of Volatile Organic Compounds. *Chem. Rev.* **2003**, *103* (12), 4605–4638.
- (2) Pagonis, D.; Price, D. J.; Algrim, L. B.; Day, D. A.; Handschy, A. V.; Stark, H.; Miller, S. L.; de Gouw, J.; Jimenez, J. L.; Ziemann, P. J. Time-Resolved Measurements of Indoor Chemical Emissions, Deposition, and Reactions in a University Art Museum. *Environ. Sci. Technol.* **2019**, *53* (9), 4794–4802.
- (3) Liu, X.; Deming, B.; Pagonis, D.; Day, D. A.; Palm, B. B.; Talukdar, R.; Roberts, J. M.; Veres, P. R.; Krechmer, J. E.; Thornton, J. A.; de Gouw, J. A.; Ziemann, P. J.; Jimenez, J. L. Effects of Gas–wall Interactions on Measurements of Semivolatile Compounds and Small Polar Molecules. *Atmos. Meas. Tech.* **2019**, *12* (6), 3137–3149.
- (4) Seinfeld, J. H.; Pandis, S. N. *Atmospheric Chemistry and Physics: From Air Pollution to Climate Change*; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; p 1232.
- (5) Pagonis, D.; Sekimoto, K.; de Gouw, J. A Library of Proton-Transfer Reactions of H3O+ lons Used for Trace Gas Detection. *J. Am. Soc. Mass Spectrom.* **2019**, *30* (7), 1330–1335.

- (6) Turner, M. C.; Jerrett, M.; Pope, C. A., 3rd; Krewski, D.; Gapstur, S. M.; Diver, W. R.; Beckerman, B. S.; Marshall, J. D.; Su, J.; Crouse, D. L.; Burnett, R. T. Long-Term Ozone Exposure and Mortality in a Large Prospective Study. *Am. J. Respir. Crit. Care Med.* **2016**, *193* (10), 1134–1142.
- (7) Weichenthal, S.; Pinault, L.; Christidis, T.; Burnett, R. T.; Brook, J. R.; Chu, Y.; Crouse, D. L.; Erickson, A. C.; Hystad, P.; Li, C.; Martin, R. V.; Meng, J.; Pappin, A. J.; Tjepkema, M.; van Donkelaar, A.; Weagle, C. L.; Brauer, M. How Low Can You Go? Air Pollution Affects Mortality at Very Low Levels. *Sci Adv* 2022, *8* (39), eabo3381.
- (8) Claus, H. Ozone Generation by Ultraviolet Lamps†. *Photochem. Photobiol.* **2021**, 97 (3), 471–476.
- (9) Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H. High Resolution Absorption Cross Sections in the Transmission Window Region of the Schumann-Runge Bands and Herzberg Continuum of O2. *Planet. Space Sci.* **1992**, *40* (2), 185–192.
- (10) Burkholder, J. B.; Sander, S. P.; Abbatt, J. P. D.; Barker, J. R.; Cappa, C.; Crounse, J. D.; Dibble, T. S.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Others. *Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies; Evaluation Number 19*; Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space ..., 2020. https://trs.jpl.nasa.gov/handle/2014/49199.

Supporting Information Figures

Figure S1. Pictures showing the FarUV GUV222 lamp mounted inside the Teflon chamber. Other lamps were tested in the same physical configuration. All tests were performed with the visible lights off, as in the last picture.

Figure S2. (Top) photolysis spectra and rates from O_2 (left) and CBr_4 (right) for NIST-measured Ushio lamp spectrum. (Bottom) results for the same lamp with an additional peak of 5.3% of the peak intensity manually added centered at 190 nm, estimated from Claus (2021).⁸ These results were generated with the CU-Boulder photolysis calculator.

Figure S3. Experimental setup in the test office. The O_3 sampling tube and CO_2 injection tube were placed in the middle of the room on a ring stand (left). The GUV lamp was placed high in the room against the West wall of the room (right). The path of the light was interrupted by the furniture and walls, and the effective pathlength in the main paper was estimated to account for those obstructions.

Figure S4. Decays of O_3 and CO_2 in the office experiments, along with the approximate decay first-order rate coefficients for 2 experiments on 2 different days. Measurements from a handheld low-cost O_3 detector are also shown, which underestimated the O_3 concentration by about an order-of-magnitude (see Section S5).

Figure S5. O_3 concentration vs. time in the chamber when the custom lamp with an Ushio B1 module was turned on for an extended period.

Figure S6. Absorption cross sections vs. UV wavelength for O₂, O₃, acetone and CBr₄.^{9,10}

Figure S7. Measured emission spectra of the Far UV (Ushio B1), Ushio B1.5, and Eden Park (A) and (B) lamps. All spectra were measured with their original filters in place.

Figure S8. Picture of the setup for O_3 measurement just outside the electronics compartment of the Eden Park (A) device (black box held with right hand). The light emission surface points down into the table. The 2B O_3 analyzer displays a measured O_3 concentration of 12.6 ppm. Similar readings were observed for a period of several minutes.

Figure S9. (Top): O_3 concentration in the office as the GUV lamp was cycled on and off in 3-hour increments over 8 total cycles with corresponding CO_2 pulses to measure ventilation rate. (Middle and Bottom): relevant parameters for modeling O_3 concentrations in the office experiments with the KinSim model, plotted vs. time. The middle graph shows the scenario where deposition varies over time. The bottom graph shows the scenario where deposition is assumed to be constant.

Figure S10. The production rates of O_3 compared between the conference room and chamber along with the value expected for the conference room by scaling the chamber results with the relative room volume and effective GUV light pathlengths.

Figure S11. Apparent O_3 signal measured in the chamber due to CBr_4 interference at different CBr_4 concentrations.

Figure S12. Evolution of O_3 and CBr_4 concentrations during a CBr_4 photolysis experiment with the Far UV lamp (Ushio B1) lasting 12 h.

Figure S13. Set up with three handheld O_3 monitors inside of the chamber. The Shandong Renke model is on top, the Shenzhen Dienmern model is in the middle, and the Shenzhen YuanTe model is on the bottom.

Figure S14. Comparison of the three portable O_3 monitors against the research-grade Thermo O_3 instrument.

Figure S15. Comparison of the three portable O_3 monitors against the research-grade Thermo O_3 instrument, zoomed in the range of 0-100 ppb. A second and identical model Shenzhen Dienmern was also tested and shown in the gray line. This test was repeated once and none of the monitors showed appreciable differences, even the Shenzhen YuanTe still registered 0.00 ppm O_3 (while being exposed to values in the range of this graph) after a zero calibration inside the clean O_3 -free chamber.