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Abstract:  

Medical doctors frequently rely on assistance tools during the decision-making process or when 

determining suitable chemotherapy options. These tools can take the form of recommendation 

systems, online test calculators, or web-based applications. They provide support not only in 

making recommendations but also in conducting thorough profile investigations of patients. 

Previous researchers have developed web-based survival analysis tools in the cancer survival 

field. However, many of these tools provide only basic functionality and rely on simplistic 

models, offering only a superficial understanding of the data. In this study, we undertake a 

comprehensive analysis of risk profiles using survival clustering techniques applied to a real-

world dataset and developed an accessible online Shiny application to facilitate easier utilization 

of our findings. By leveraging survival clustering, we aim to uncover distinct subgroups based on 

survival patterns and identify unique risk profiles associated with breast cancer patients. Our 

online app provides a user-friendly interface for researchers and clinicians to explore the results, 

enabling them to gain valuable insights into the complex landscape of breast cancer risk profiles. 
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This interactive tool offers a more accessible means of understanding and utilizing the 

implications of our research in personalized medicine and clinical decision-making. 

Key words: Shiny, Web-based application, Survival, Breast Cancer, Machine Learning 

1. Introduction:  

Understanding the risk profile and survival outcomes of breast cancer remains a complex and 

intricate area of research. Despite significant advancements in the field, there are still numerous 

factors that contribute to the variability in breast cancer progression and patient outcomes. The 

interplay between genetic predisposition, lifestyle factors, tumor characteristics, and treatment 

response adds to the challenge of unraveling the intricacies of breast cancer risk profiles. 

Additionally, the heterogeneity within breast cancer itself further complicates the identification 

of clear-cut survival patterns. Consequently, there is a pressing need to delve deeper into the 

complexities of breast cancer risk profiles and survival to uncover new insights and potential 

avenues for improved diagnosis, treatment, and personalized care for patients. 

In this study, we undertake a comprehensive analysis of risk profiles using survival clustering 

techniques applied to the Molecular Taxonomy of Breast Cancer International Consortium 

(METABRIC) dataset [1]. An unsupervised learning approach was used to cluster patients based 

on their survival difference and other relevant clinical variables, by combining k-means 

clustering and Kaplan-Meier (K-M) curves, leveraging the significant risk factors identified 

through a Cox regression model.  Through a deeper exploration of survival clustering, we can 

discover heterogeneous subpopulations with varying survival characteristics including age, 

tumor stage and molecular subtypes etc., providing insights into the underlying heterogeneity of 

breast cancer and reveal potential biomarkers for risk stratification. Additionally, we have 
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developed an accessible online application using Shiny to facilitate easier utilization of our 

findings.  

 

Currently, there is a scarcity of web-based survival analysis tools available for medical 

researchers conducting survival studies and all previous web applications have primarily focused 

on Cox regression [2] or genetic analysis and other data structures [3-6]. Also, a lot of previous 

relevant studies used semi-supervised or self-supervised learning for medical multi classification 

problems but lack of survival information [7-8].  In contrast, our study fills an existing void by 

introducing a unique combination of unsupervised learning techniques and risk factor analysis on 

the clinician side, demonstrating the potential of survival clustering as a valuable tool in 

uncovering hidden structures based on distinct risk profiles. Overall, our online tool provides a 

user-friendly interface for researchers and clinicians to explore the results and derive valuable 

insights on breast cancer. The link for this app is: https://baran-shad.shinyapps.io/breastcancer 

2. Literature review 

Breast cancer is a complex disease with diverse clinical outcomes, making accurate prediction of 

survival crucial for personalized treatment and care. Over the years, various survival models 

have been developed to aid in understanding and predicting cancer survival rates, from various 

perspectives, such as increasing the prediction accuracy from the model aspect by using metrics 

like AUC and AUC-PR [9]. The most widely used classical approach is the Cox regression 

model, which assumes proportional hazard rate. Numerous studies have applied this model to 

identifying significant prognostic factors such as age, tumor stage, hormone receptor status, and 

lymph node involvement [10-11]. However, the Cox model relies on the proportional hazard 
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assumption, which may not always hold true, leading to potential bias in the estimation of 

survival probabilities. 

To address the limitations, researchers have explored alternative techniques, including machine 

learning algorithms, such as random forests, support vector machines, and neural networks, 

which have demonstrated promising results [12-15]. These models can handle complex 

interactions between variables and capture non-linear relationships, thus providing improved 

accuracy in survival prediction. However, their black-box nature often limits interpretability and 

understanding of the underlying biological mechanisms. 

Another noteworthy approach is the use of gene expression data. Gene expression-based models, 

such as using multi-omics neural networks to make the survival prediction, have shown the 

ability to provide deeper insight into which types of data are most relevant to improve prognosis 

[16-17]. These models provide valuable insights into the underlying biology of breast cancer and 

offer potential for personalized treatment strategies. However, their reliance on gene expression 

data may limit their application in clinical settings where gene expression profiling is not 

routinely performed. Other challenges and limitations exist in the data and visualization, our 

previous sickle cell disease studies also combined machine learning and survival model but 

without visualization interactive online tools [18, 19]. Issues like missing data, limited sample 

sizes, and the lack of accessible visualization tools for physicians and medical professionals with 

limited modeling expertise hinder the widespread utilization of the models.  

In our study, we address all above challenges by developing a user-friendly interface to uncover 

hidden structures within breast cancer data and identify unique risk profiles. This intuitive tool 

enables researchers and clinicians to easily explore and interpret the results of our analysis and to 
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gain valuable insights into the complex landscape of breast cancer risk profiles, bridging the gap 

between sophisticated modeling techniques and practical clinical applications. 

3. Methods 

3.1 Data  

The METABRIC dataset is a valuable and publicly accessible resource for researchers. It 

encompasses a total of 2,506 subjects and 34 variables, providing a comprehensive foundation 

for studying breast cancer. To ensure the reliability of our analysis, we diligently handled any 

missing data and performed thorough feature checks. A total of 528 subjects who lacked survival 

status information were excluded from the analysis. After removing the 528 subjects, other 

certain variables with limited variability, such as Sex that comprised all females, were also 

omitted from the dataset.  Following the above meticulous data preprocessing procedures, our 

final analysis dataset consists of 1,269 subjects and 23 variables without missing values. The 23 

variables are : Age at diagnosis, Subtype cohort (termed integrative clusters )[20], neoplasm 

histologic grade, number of lymph nodes examined to be positive, mutation count, Nottingham 

prognostic index (NPI), overall survival time in months, relapse free status in months, tumor 

size, tumor stage, cancer type, ER status, HER2 status, hormone therapy status, survival status, 

prior radiology status, menopausal status, integrative subgroup, chemotherapy, cellularity, 

Prediction Analysis of Microarray 50 (PAM50),  relapse status, and death reason. All analysis is 

built by R (v 4.3.0). The descriptive statistics, including means and 95% confidence intervals for 

continuous variables and count and proportions for categorical variables, for the 23 variables in 

each survival status group (living or decreased) are provided in the following Table 1. A t-test 

was used to compare the Age at diagnosis between the survival status groups (living versus 

decreased), and a Chi-Square test was used to examine the categorical variables between the 
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survival status groups (living versus deceased). The variables with p-value <0.05 suggest a 

statistically significant difference between the groups. 

 
Living(N=548) Deceased (N= 721) p-value 

Age.at Diagnosis** 
56 (26.72- 85.21) 66 (21.93- 96.29) 

<0.0001* 

Tumor Size 23 (1 - 100) 29 (1 - 180) <0.0001* 

Neoplasm Histologic Grade   <0.0001* 

1       55(10.04%) 46 (6.38%)  

2       228 (41.61%) 269(37.31)  

3      265 (48.36%) 406(56.31%)  

Lymph nodes examined 

positive 
1.15(0-25) 2.45(0-41) 

<0.0001* 

Mutation Count 4.9 (1-26) 5.9(1-46) <0.0001* 

Nottingham prognostic index 3.9(2-6.19) 4.3(2-6.36) <0.0001* 

Tumor Stage   <0.0001* 

1 227(41.42%) 193(26.77%)  

2 293 (53.47%) 443(61.44%)  

3 27(4.93%) 78(10.82%)  

4 1(0.18%) 7(0.97%)  

ER Status    0.54 

Negative 121(22.08%) 170(23.58%)  

Positive 427(77.92%) 551(76.54%)  

HER2 Status    0.037* 

Negative 494(90.15%) 622(86.27%)  

Positive 54(9.85%) 99(13.73%)  

Hormone therapy    0.39 

No 227(41.42%) 281(38.97%)  

Yes 321(58.58%) 440(61.03%)  

PR Status    0.023* 

Negative 242(44.16%) 365(50.62%)  

Positive 306(55.84%) 356(49.38%)  

Relapse Status    <0.0001* 

Not Recurred 479(87.41%) 255(35.37%)  

Recurred     69(12.59%) 466(64.63%)  
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Menopausal    <0.0001* 

Pre 171(31.20%) 122(16.92%)  

Post 377(68.80%) 599(83.08%)  

Integrative number 6.30(1-11) 6.32(1-11) 0.89 

Chemotherapy    0.12 

No 416(75.91%) 574(79.61%)  

Yes 132(24.09%) 147(20.39%)  

Cellularity    0.54 

Low 65 (12%) 76 (11%)  

Moderate 218(40%) 275(38%)  

High 265(48%) 370(51%)  

Pam50Claudin  3.80(1-7) 3.86(1-7) 0.35 

death reason   <0.0001* 

Living 548 (100%) 0 (0%)  

Died of Other Causes 0 (0%) 283 (39%)  

Died of Disease 0 (0%) 438 (61%)  

Table 1 Basic descriptive statistics. * p value denotes significant level when p<0.05 

** continuous variables are summarized by mean (min-max) 

 

3.2 Model  

The analysis of the breast cancer data encompassed three distinct phases. In the first phase, Cox 

regression with stepwise AIC selection was used to identify statistically significant risk factors. 

This approach allowed us to determine the variables that most significantly influenced breast 

cancer outcomes among the 23 variables. Following this, K-means clustering was conducted 

based on the selected risk factors from the Cox model in the first phase. By grouping similar 

individuals together, this clustering analysis provided insights into distinct subgroups within the 

dataset. In the final phase, a Kaplan-Meier model was constructed using the predicted clusters, 

enabling a deeper exploration of the risk profiles associated with each cluster. This 

comprehensive approach allowed for a thorough examination of the relationship between risk 
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factors, clustering patterns, and breast cancer outcomes, ultimately enhancing our understanding 

of the disease. 

The first phase is the Cox regression with stepwise AIC selection. Cox regression, assumes 

proportional hazards, is specifically designed for survival analysis, allows us to assess the impact 

of various variables on the time until death occurs. By using stepwise AIC selection, the model 

identifies the subset of variables that provide the best fit for the data, while controlling for the 

risk of overfitting. This approach considers the trade-off between model complexity and 

goodness of fit, selecting a parsimonious model that optimizes the AIC criterion.  

Once significant risk factors were identified, the next phase is the k-means clustering to group 

individuals based on those factors. To determine the optimal number of clusters, various methods 

such as the elbow method, Silhouette coefficient, and gap statistics were considered as the 

standard methods in previous research. However, because K-means clustering is unsupervised 

learning, without label information, the optimal number of clusters determination is often 

challenging and subjective. Choosing an inappropriate value for k can lead to very poor 

clustering results, for example, if a dataset contains some outliers which can significantly affect 

the position and size of the clusters, the above widely used methods may provide incorrect 

clustering assignments. In that case, preprocessing steps or outlier detection techniques may be 

needed to mitigate this issue, however, in survival data, one event outlier might be very 

informative compared to other normal data, indicating a person who has higher risk to get the 

event. Given that our ultimate objective was to examine the survival risk profile, in the final 

phase, we incorporated the Kaplan-Meier (KM) model, the log-rank test, to identify differences 

between survival curves among clusters. By leveraging the insights provided by the log-rank test, 
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we are able to select a different number of clusters and visualize the results. The visualized 

clusters were also presented in the web-app, allowing for interactive exploration.  

For each number of clusters, we conducted an analysis of the basic characteristics associated 

with the predicted clusters. By assessing these characteristics, we gained insights into the 

distribution and patterns within each cluster. For continuous risk variables, the mean values 

provided an indication of the average risk level within that cluster. Meanwhile, for categorical 

risk factors, the frequency analysis allowed us to identify the prevalence of specific risk factors 

within each cluster. This comprehensive examination of basic characteristics facilitated a deeper 

understanding of the distinct profiles. 

4. Results 

The Cox regression analysis with AIC selection identified several significant risk factors 

associated with breast cancer outcomes; the result is presented in Table 2.  

A total of 12 variables are statistically significant risk factors. Age at diagnosis (p = 0.002147) 

showed a significant positive relationship with death, suggesting that older age is associated with 

increased risk, subtype cohort (p-value < 0.001) was found to have a protective effect on breast 

cancer outcomes. Neoplasm Histologic Grade (p = 0.015), the presence of a positive number of 

lymph nodes (p = 0.018), and a higher Nottingham Prognostic (p = 0.031) Index were associated 

with increased hazard rates.  Longer relapse-free periods (p-value < 0.001), smaller tumor size 

(p-value < 0.001), and lower tumor stage (p-value < 0.001) were associated with decreased 

hazard rates. ER-negative status (p < 0.001) and experiencing a relapse event (p < 0.001) were 

strongly associated with lower hazard rates. And the cause of death (p < 0.001) also had a 

significant positive effect on hazard rates.  The model has a concordance of 0.937, demonstrating 
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a very strong discriminatory power to distinguish between individuals with different survival 

outcomes with a high degree of accuracy. 

In the next step, all the above significant risk factors are standardized by simply converting into a 

z-score and then used as the input variables into the k-means clustering, to ensure all input 

variables are on the same scale, preventing variables with larger magnitudes from dominating the 

clustering process. In this phase, K-means will be used to partition the dataset into K clusters. 

The algorithm assigns each data point to the cluster with the nearest mean value.  

 

 

 Survival model 

Predictors Estimates Confidence Interval p-value 

Age at diagnosis              1.01  1.00- 1.02  0.002 

Cohort 0.81 0.74-0.89 <0.001 

Neoplasm Histologic Grade 1.31 1.05-1.62 0.015 

Lymph nodes examined positive 1.03 1.01-1.06 0.018 

Nottingham prognostic index    0.85 0.73-0.98 0.031 

Relapse Free Status Months 0.97 0.97-0.97 <0.001 

Tumor Size 0.99 0.99-1.00 <0.001 

Tumor Stage 1.81 1.54-2.13 <0.001 

ER Status  0.50 0.41-0.61 <0.001 

Relapse Status  0.01 0.01-0.02 <0.001 

death reason                   29.38 20.49-42.13 <0.001 

Integrative number 0.97 0.95-1.00 0.050 

Table 2 Cox regression results 

Although traditional k-means is unsupervised learning without predefined labels or target 

variables, in our case, we improved it by incorporating a pseudo-supervised way, such as the K-

means survival difference. We used the survival difference between different clusters to visually 
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guide the selection of the appropriate number of clusters. This approach adds an extra layer of 

information beyond the traditional K-means, enabling the model to assess the quality of 

clustering based on survival differences.  

Suppose we assign K number of clusters to all observations and the k clusters are denoted 

𝐶𝑘 𝑤ℎ𝑒𝑟𝑒 𝑘 =  1. . . 𝐾, the log rank statistic is approximately distributed as a chi-square test 

statistic, and the following is the test formula (1):  

𝜒2  =  ∑
(∑ 𝑂𝑘𝑡−∑ 𝐸𝑘𝑡)

2

∑ 𝐸𝑘𝑡

𝐾
𝑘=1   (1)  

where ∑ 𝑂𝑘𝑡 represents the sum of the observed number of events in the 𝑘𝑡ℎ cluster over time, 

and ∑ 𝐸𝑘𝑡 represents the sum of the expected number of events in the 𝑘𝑡ℎ cluster over time.  

and the K-means cluster algorithm is by solving the following optimization problem (2): 

min
𝐶,{𝑚𝑘}1

𝐾
∑ 𝑁𝑘

𝐾
𝑘=1 ∑ ||𝑥𝑖 − 𝑚𝑘||2

𝐶(𝑖)=𝑘   (2)  

where 𝐶(𝑖)  = 𝑘 stands for assigning the ith observation to the 𝑘𝑡ℎ cluster C, 𝑚𝑘 is the mean 

value of 𝑘𝑡ℎ cluster. 𝑁𝑘 are the observations in the 𝑘𝑡ℎ cluster. The objective of the algorithm is 

to minimize the total dissimilarity by assigning N observations to K clusters in a manner that 

minimizes the average dissimilarity of the observations from their respective cluster means. The 

dissimilarity is calculated by the 2-norm stand for ||. ||2.  Our analysis and the web application 

are based on incorporating both (1) and (2) for different K assignments. The following Picture 1 

and 2 presents the clustering points and the survival curve difference by selecting k = 4 and 5, 

more other k choices are available in the web application.   
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Picture 1   4 clusters and the K-M curves              Picture 2   5 clusters and the K-M curves  

In Picture 1, four distinct clusters are discernible, each highlighted with a unique color (upper). 

The accompanying graph below represents the survival plot (below). The colors corresponding 

to clusters 1 to 4 are red, green, blue and purple. The sample sizes of these clusters vary, with 

367, 356, 155 and 391 from cluster 1 to 4. Significant survival differences can be observed when 

comparing clusters (1 and 4) to clusters (2 and 3). Additionally, within these groupings, minor 

survival differences are also evident between clusters 1 and 4, as well as between clusters 2 and 

3. However, in Picture 2, when we select k = 5, per reconfiguration, we now observe the colors 

for clusters 1 to 5 are red, yellow, green blue and purple, also clusters 1 and 5, very close to the 

former clusters 2 and 3 when k was set to 4. Notably, there is a significant survival difference 

between these two clusters (1 and 5) compared to the remaining three clusters (clusters 2, 3, and 

4).  In terms of sample size, clusters 1 through 5 consist of 121, 149, 280, 353, and 355 samples, 
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respectively. The p-values obtained from the log-rank test are both (k=4 and k=5) less than 

0.0001, as indicated in the accompanying survival plots. The median survival time, represented 

by the horizontal dashed line in the plots, is also added in the survival plots. 

Our final phase involves a comprehensive examination of the risk profiles across the different 

clusters. After assigning clusters, we can delve deeper into those 12 significant risk factors.      

Table 3 shows the details for continuous risk factors for 4 clusters when K=4. Picture 3 is the 

box plot for continuous risk factors by 4 clusters and this illustration provides more specific 

details in the web application. Furthermore, we also depicted the frequency distribution of each 

subgroup within categorical variables (e.g., recurrence vs. no recurrence for the 'Relapse Status') 

stratified by clusters in the following illustration (Picture 4). 

Cluster (n) Number 

of 

Events 

Median 

Survival 

time in 

months 

Age at 

diagnosis 

(range) 

Tumor Size 

(range) 

Nottingham 

prognostic 

index (range) 

mutation 

counts (range) 

number of 

positively 

examined lymph 

nodes (range) 

1 (n=367) 111 260.0 59.73 

(26.72-90.08) 

24.11 

(1-68) 

4.51 

(3.05-6.08) 

5.55 

(1-40) 

1.03 

(0-11) 

2 (n=356) 344 75.0 59.91 

(26.36-90.23) 

25.80 

(1-99) 

4.14 

(2.03-6.07) 

5.92 

(1-30) 

1.03 

(0-9） 

3 (n=155) 131 46.1 61.15 

(21.93-96.29) 

43.22 

(10-180) 

5.72 

(4.03-6.36) 

4.83 

(1-22) 

9.57 

(0-41) 
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4 (n=391) 135 251.2 61.08 

(33.76-90.43) 

21.52 

(1-100) 

3.12 

(2 - 5.06) 

5.27 

(1-46) 

0.44 

(0-4) 

Table: 3 Summary Statistics for continuous risk factor by 4 clusters 

 

Picture 3    Box plot for Tumor size group by 4 clusters  
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Picture 4   Categorical subgroup frequency group by 4 clusters 

upper left: Cohort, upper right: Tumor Stage, down left: Relapse Status, down right: Neoplasm Histologic Grade 

 

In the provided table and pictures, we observe that cluster 3 exhibits the shortest median survival 

time (Table 3) and the largest tumor size (Picture 3). Additionally, in the frequency plot of tumor 

stage, cluster 3 comprises the highest number of patients with stage 3 and above. Furthermore, 

the Neoplasm Histologic Grade in cluster 3 is also the highest compared to the other cluster 

groups. Cluster 2 also demonstrates a relatively lower survival rate compared to the other 
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clusters. From Picture 4, we can discern a pattern where cluster 2 has higher Neoplasm 

Histologic Grade and tumor stages compared to clusters 1 and 4. 

Upon setting K = 5, it can be observed that cluster 1 and cluster 5 exhibit lower survival rates in 

the following Table 4 and Picture 5. Moreover, these two clusters are characterized by relatively 

higher Neoplasm Histologic Grade compared to the other clusters. In terms of relapse status, 

cluster 1 comprises the majority of patients who have not experienced recurrence, whereas 

cluster 5 has the highest number of patients with recurrence. These findings indicate the need for 

further investigation from a clinical perspective to gain deeper insights. 

Cluster (n) Number 

of Events 

Median 

Survival 

time in 

months 

Age at 

diagnosis 

(range) 

Tumor Size 

(range) 

Nottingham 

prognostic 

index 

(range) 

mutation 

counts 

(range) 

number of 

positively 

examined 

lymph nodes 

(range) 

1 (n=121) 107 43.2 59.73 (26.72-

90.08) 

24.11 (1-68) 4.514 (3.05-6.08) 5.55 (1-40) 1.03 (0-11) 

2 (n=149) 33 282.8 59.91 (26.36-

90.23) 

25.8 (1 -99) 4.144 (2.03 – 

6.07) 

5.92 (1-30) 1.03 (0-9) 

3 (n=280) 91 298.0 61.15 (21.93 – 

96.29) 

43.22 (10-

180) 

5.719 (4.03- 6.36) 4.83 (1-22) 9.568 (0-41) 
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4 (n=353) 133 227.9 61.08 (33.76 – 

90.43) 

21.52 (1-

100) 

3.122 (2 -5.06) 5.274 (1-46) 0.43 (0-4) 

5 (n=366) 357 71.4 60.06 (26.36 – 

90.23) 

26.29 ( 1-99) 4.167 (2.03 – 

6.08) 

5.956 (1-30) 1.126 (0-10) 

Table: 4 Summary Statistics for continuous risk factor by 5 clusters 

 

Picture 5   Categorical subgroup frequency group by 5 clusters 
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upper left: Cohort, upper right: Tumor Stage, down left: Relapse Status, down right: Neoplasm Histologic Grade 

 

5. Conclusion and Future Work 

In conclusion, our comprehensive analysis consisting of three phases, which involved 

incorporating survival information into the unsupervised machine learning K-means clustering 

model and developing a web app, has showcased significant advantages, creativity, and 

contributions in the analysis of breast cancer data. Through a comprehensive three-phase 

approach, we have provided valuable insights into the risk factors, clustering patterns, and 

outcomes associated with breast cancer. Our advantage lies in using Cox regression with 

stepwise AIC selection as the first phase of analysis. The cox model identifies statistically 

significant risk factors for breast cancer with a very promising concordance value of 0.937. The 

second phase involves k-means clustering, which groups individuals based on the selected risk 

factors from the Cox model. By identifying similar individuals within the dataset, this clustering 

analysis reveals distinct subgroups and provides a deeper understanding of the data. We consider 

the optimal number of clusters by log rank test according to the KM model to explore the risk 

profiles associated with each cluster in the last phase. This in-depth examination enhances our 

knowledge of the distinct profiles and risk factors associated with each predicted cluster, 

ultimately contributing to our understanding of breast cancer. In summary, our web app 

empowers healthcare professionals and researchers to make informed decisions and advance 

their knowledge in the fight against breast cancer.  

However, additional research is necessary to achieve a broader application. The current app is 

designed specifically for this dataset and lacks a comprehensive investigation of generalizability. 

To enhance usability for medical professionals, it would be beneficial to develop a more 

convenient pipeline that allows users to import and download their own datasets and select their 
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own potential risk factors. Another limitation is the relatively small number of input variables in 

this dataset. Therefore, the development of additional models or tools capable of handling larger 

datasets should be considered for future endeavors. 

 

References  

[1] Christina Curtis, Sohrab P Shah, Suet-Feung Chin, Gulisa Turashvili, Oscar M Rueda, Mark 

J Dunning, Doug Speed, Andy G Lynch, Shamith Samarajiwa, Yinyin Yuan, et al. The genomic 

and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 

486(7403):346–352, 2012. 

[2] Lánczky A, Győrffy B. Web-based survival analysis tool tailored for medical research 

(KMplot): development and implementation. Journal of medical Internet research. 2021 Jul 

26;23(7):e27633.  

[3] Dwivedi B, Mumme H, Satpathy S, Bhasin SS, Bhasin M. Survival Genie, a web platform for 

survival analysis across pediatric and adult cancers. Scientific Reports. 2022 Feb 23;12(1):3069. 

[4] Yang J, Zhao S, Wang J, Sheng Q, Liu Q, Shyr Y. Immu-Mela: An open resource for 

exploring immunotherapy-related multidimensional genomic profiles in melanoma. Journal of 

Genetics and Genomics. 2021 May 20;48(5):361-8. 

[5] Zhao T, Wang Z. GraphBio: a shiny web app to easily perform popular visualization analysis 

for omics data. Frontiers in Genetics. 2022:2265. 

[ 6] Gu Y, Gong Y, Wang M, Jiang S, Li Z, Yuan Z. Enhancing Kidney Failure Analysis: Web 

Application Development for Longitudinal Trajectory Clustering. medRxiv. 2023:2023-05. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 21, 2023. ; https://doi.org/10.1101/2023.05.18.23290062doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.18.23290062


[7] Zhang D, Zhou F, Jiang Y, Fu Z. MM-BSN: Self-Supervised Image Denoising for Real-

World with Multi-Mask based on Blind-Spot Network. InProceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition 2023 (pp. 4188-4197). 

[8] Wang Z, Li T, Zheng JQ, Huang B. When cnn meet with vit: Towards semi-supervised 

learning for multi-class medical image semantic segmentation. InComputer Vision–ECCV 2022 

Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part VII 2023 Feb 12 (pp. 424-

441). Cham: Springer Nature Switzerland. 

[9] Wu J, Ye X, Mou C, Dai W. Fineehr: Refine clinical note representations to improve 

mortality prediction. In2023 11th International Symposium on Digital Forensics and Security 

(ISDFS) 2023 May 11 (pp. 1-6). IEEE. 

[10] Hajihosseini M, Faradmal J, Sadighi-Pashaki A. Survival analysis of breast cancer patients 

after surgery with an intermediate event: application of illness-death model. Iranian Journal of 

Public Health. 2015 Dec;44(12):1677. 

[11] Vahdaninia M, Montazeri A. Breast cancer in Iran: a survival analysis. Asian pacific journal 

of cancer prevention. 2004 Apr 1;5(2):223-5. 

[12] Tong L, Mitchel J, Chatlin K, Wang MD. Deep learning based feature-level integration of 

multi-omics data for breast cancer patients survival analysis. BMC medical informatics and 

decision making. 2020 Dec;20:1-2. 

[13] Cure-Cure CA, Cure P, Gu Y, Tian X, Patel T, Wu CO, Sviglin H, Sopko G, Csako G, Cody 

S, Dandi G. Predictors of all cause mortality and their gender differences in a hispanic 

population from barranquilla-colombia using machine learning with random survival forests. 

Circulation. 2018 Nov 6;138(Suppl_1):A16252-. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 21, 2023. ; https://doi.org/10.1101/2023.05.18.23290062doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.18.23290062


[14] Jiang S, Gu Y, Kumar E. Magnetic Resonance Imaging (MRI) Brain Tumor Image 

Classification Based on Five Machine Learning Algorithms. Cloud Computing and Data 

Science. 2023 May 11:122-33. 

[15] Chi CL, Street WN, Wolberg WH. Application of artificial neural network-based survival 

analysis on two breast cancer datasets. InAMIA annual symposium proceedings 2007 (Vol. 

2007, p. 130). American Medical Informatics Association. 

[16] Huang Z, Zhan X, Xiang S, Johnson TS, Helm B, Yu CY, Zhang J, Salama P, Rizkalla M, 

Han Z, Huang K. SALMON: survival analysis learning with multi-omics neural networks on 

breast cancer. Frontiers in genetics. 2019 Mar 8;10:166. 

[17] Yang J, Zhao S, Wang J, Sheng Q, Liu Q, Shyr Y. A pan-cancer immunogenomic atlas for 

immune checkpoint blockade immunotherapy.  

[18] Sachdev V, Tian X, Gu Y, Nichols J, Sidenko S, Li W, Beri A, Layne WA, Allen D, Wu 

CO, Thein SL. A phenotypic risk score for predicting mortality in sickle cell disease. British 

journal of haematology. 2021 Mar;192(5):932-41. 

[19] Sachdev V, Gu Y, Nichols J, Li W, Sidenko S, Allen D, Wu C, Thein SL. A Machine 

Learning Algorithm to Improve Risk Assessment for Patients with Sickle Cell Disease. Blood. 

2019 Nov 13;134:893 

[20] Mukherjee A, Russell R, Chin SF, Liu B, Rueda OM, Ali HR, Turashvili G, Mahler-Araujo 

B, Ellis IO, Aparicio S, Caldas C. Associations between genomic stratification of breast cancer 

and centrally reviewed tumour pathology in the METABRIC cohort. NPJ breast cancer. 2018 

Mar 7;4(1):5. 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 21, 2023. ; https://doi.org/10.1101/2023.05.18.23290062doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.18.23290062

