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Abstract  

Background Conventional cardiovascular risk prediction models provide insights into 

population-level risk factors and have been widely adopted in clinical practice. However, these 

models have limited generalizability and flexibility. Large language models (LLMs) have 

demonstrated remarkable proficiency for use in various industries. 

Methods In this study, we have investigated the feasibility of Large Language Models (LLMs) 

such as ChatGPT-3.5, ChatGPT-4, and Bard for predicting 10-year cardiovascular risk of a 

patient. We used data from the UK Biobank Cohort, a major biomedical database in the UK, and 

the Korean Genome and Epidemiology Study (KoGES), a large-scale prospective study in Korea, 

for additional validation and multi-institutional research. These databases provided a wide array 

of information including age, sex, medical history, lipid profile, blood pressure, and physical 

measurement. Based on these data, we generated language sentences for individual analysis and 

input these into the LLM to derive results. The performance of the LLMs was then compared 

with the Framingham Risk Score (FRS), a conventional risk prediction model, using this real-

world data. We confirmed the model performance of both the LLMs and FRS, evaluating their 

accuracy, sensitivity, specificity, Positive Predictive Value (PPV), Negative Predictive Value 

(NPV), and F1 score. Their performance in predicting 10-year cardiovascular risk was compared 

through Kaplan-Meier survival analysis and Cox-hazard ratio analysis.   

Findings GPT-4 achieved performance comparable to the FRS in cardiovascular risk prediction 

in both the UK Biobank {accuracy (0·834 vs· 0·773) and F1 score (0·138 vs· 0·132)} and KoGES 

{accuracy (0·902 vs· 0·874)}. The Kaplan–Meier survival analysis of GPT-4 demonstrated 

distinct survival patterns among groups, which revealed a strong association between the GPT 

risk prediction output and survival outcomes. The additional analysis of limited variables using 
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GPT-3·5 indicated that ChatGPT’s prediction performance was preserved despite the omission of 

a few variables in the prompt, especially without physical measurement data  

Interpretation This study proposed that ChatGPT can achieve performance comparable to 

conventional models in predicting cardiovascular risk. Furthermore, ChatGPT exhibits enhanced 

accessibility, flexibility, and the ability to provide user-friendly outputs. With the evolution of 

LLMs, such as ChatGPT, studies should focus on applying LLMs to various medical scenarios 

and subsequently optimizing their performance.  
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Introduction 

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide, 

accounting for a considerable proportion of healthcare costs and posing a substantial public 

health risk1. The accurate and timely prediction of an individual’s risk of developing CVD can 

facilitate early intervention and prevention strategies, which reduces the incidence and impact of 

CVD2. Although conventional CVD risk prediction models, such as the Framingham risk score 

(FRS)3, American College of Cardiology/American Heart Association (ACC/AHA) Pooled 

Cohort Equations4, and the QRISK3 score5 provide insights into population-level risk factors and 

have been widely adopted in clinical practice, these models have several limitations. First, these 

models have limited generalizability to diverse populations with varying demographic, clinical, 

and genetic characteristics6. Second, conventional models may not incorporate novel risk factors 

or consider complex interactions between risk factors, leading to potential underestimation or 

risk overestimation7. Third, the implementation of conventional risk models can be challenging 

because of complex calculations and variable requirements, which hinders their use in clinical 

settings8. Finally, these risk models do not have adequate personalization and rely on population-

level data, which may not accurately capture individual-level variations in risk factors. This 

phenomenon limits their ability to provide tailored risk assessments for patients9. 

Advances in artificial intelligence (AI) can overcome these limitations10. Large language models 

(LLMs), particularly the generative pretrained transformer 4 (GPT-4) model developed by 

OpenAI, exhibit remarkable proficiency in producing human-like languages, and have potential 

for application in other industries11,12. However, despite their growing popularity, reliability 

concerns severely affect the use of LLMs in the medical field, which requires precise and 

accurate information. A potential problem with LLMs is “AI hallucination.” This phenomenon 
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occurs when AI confidently generates an impressive-sounding response that may not be justified 

by its training data or may even be factually incorrect13. The presence of AI hallucinations raises 

reliability and accuracy concerns on information produced by these models, particularly in 

domains such as medicine, which requires precise and trustworthy information. Although such 

problems have been reduced in GPT412,14, only a few studies have quantified or analyzed this 

topic. 

Although the use of language models in the medical field has attracted considerable attention, 

limited quantitative evaluation of their performance and accuracy has been conducted in specific 

medical tasks15. Therefore, we evaluated LLMs in predicting CVD risk for 10 years and 

compared their performance with that of conventional risk prediction models using UK Biobank 

and Korean Genome and Epidemiology Study (KoGES) data16,17. 

 

Methods 

Data source and outcome assessment 

We used data from the UK Biobank cohort, a large-scale biomedical database of UK general 

population. Established in 2006, the UK Biobank cohort is one of major international health 

resources that has collected extensive data and biological samples from approximately 500,000 

participants aged between 40 and 69 years at the time of assessment. We used the UK Biobank 

database to extract data pertaining to age, sex, diabetes diagnosed by a doctor, blood pressure 

medication, smoking status, total cholesterol, high density lipoprotein (HDL) cholesterol, low 

density lipoprotein (LDL) direct, triglycerides, systolic blood pressure, diastolic blood pressure, 

standing height, weight, date of attending the assessment center, and date of death 
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(Supplementary Table 1). We excluded cases with any missing values among these variables, 

except death date and ethnicity. After exclusion, 10,000 individuals were selected through 

random sampling. Additionally, individuals who previously experienced major cardiovascular 

adverse events (MACE) were excluded from the study (Fig. 1). 

The FRS was originally developed for predicting coronary heart disease (CHD) but has since 

been evolved for use in forecasting not only CHD but also cerebrovascular disease, peripheral 

artery disease (PAD), and heart failure (HF)3. Using this approach, we assessed patient outcomes 

using MACE, which represents the most fatal and predominant occurrence of CVD. MACE is 

defined as follows: it was defined by the earliest recorded event of myocardial infarction 

(International Classification of Diseases [ICD]9 codes 410, 411·0, 412, 429·79, or ICD10 codes 

I21, I22, I23, I24.1, I25.2 or UK Biobank Self Report field 20002 codes 1075) or ischemic stroke 

(ICD9 codes 434, 436 or ICD10 codes I63, I64 or UK Biobank Self Report field 20002 codes 

1583)18. The outcome was obtained through a category called an algorithmically defined 

outcome, which included information on the likely instances of specific health issues, derived 

from the algorithmic integration of coded data from the UK Biobank’s initial assessment data 

compilation (incorporating data from participants regarding their self-reported medical 

conditions, surgeries, and medications), in conjunction with associated data from hospital 

admissions (diagnoses and procedures) and death records. 

In addition to the UK Biobank dataset, we used KoGES data as an additional validation cohort. 

The KoGES is a large-scale prospective study designed to investigate the genetic and 

environmental factors contributing to chronic diseases in the Korean population16. We used 

baseline data from the KoGES cohort collected between 2001 and 2002 to extract variables 

analogous to those used in the UK Biobank. These variables included age, sex, diagnosis of 
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diabetes by a physician, blood pressure medication use, smoking status, total cholesterol, HDL, 

triglycerides, systolic blood pressure, diastolic blood pressure, height, and weight. LDL levels 

were calculated based on total cholesterol, HDL, and triglyceride levels (Supplementary Table 2). 

In this cohort, we defined patients as those who experienced a disease event (myocardial 

infarction or cerebrovascular disease) at least once during the 10-year follow up, resulting in 176 

patients. Detailed inclusion and exclusion criteria on KoGES population selection are described 

in Supplementary figure 1. 

 

Cardiovascular risk calculation—the conventional score (Framingham Risk Score, FRS) 

The FRS is a widely recognized and well-established algorithm that is used to estimate an 

individual’s 10-year risk of developing CVD.3 This score considered various factors, including 

age, sex, blood pressure, cholesterol levels, smoking status, and diabetes. The details are listed in 

Supplementary Table 1 and Supplementary Table 2. In this study, we used the FRS to calculate 

the cardiovascular risk percentage for each individual. Based on these percentages, we classified 

their risks into distinct categories (low, moderate, or high) to facilitate a comprehensive 

understanding of their potential for developing CVD. 

 

Cardiovascular risk calculation—LLMs (GPT-3·5/GPT-4/bard) 

To predict the incidence of CVDs using LLMs (ChatGPT and Bard), we reformatted the 

variables into a sentence structure, as detailed in Fig. 2, prior to feeding them into LLMs. The 

decision to use this conversion was based on the inherent language model nature of LLMs. This 

approach allowed us to specify our output to represent individual risk percentages rather than 

extensive text narratives. Furthermore, the approach enabled the systematic classification of risk 
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into low, moderate, and high categories within the provided output. Information on each 

participant (age, sex, diabetes, hypertension, smoking status, total cholesterol, LDL cholesterol, 

HDL cholesterol, triglycerides, systolic blood pressure, diastolic blood pressure, and body mass 

index [BMI, calculated from height and weight]) was provided to the LLMs, and the 10-year 

CVD risk percentage was extracted using regular expressions from the corresponding answers. 

Based on the 10-year CVD risk percentage, 10% or less was classified as low risk, 10%–20% as 

moderate risk, and > 20% as high risk. 

For GPT-3·5, we used the OpenAI ChatGPT API (GPT-3.5-turbo, March 23 version) in a Python 

environment to streamline the extraction of results. However, in the cases of GPT-4 and Bard, 

the lack of open-source APIs comparable to GPT-3·5 necessitated an alternative approach. GPT-

4 and Bard enable accounts operating in online environments to iteratively input data and 

generate output text for each new chat instance. 

 

Model comparison between scoring systems 

In the proposed methodology, the statistical significance of ChatGPT-3·5, ChatGPT-4, Bard, and 

FRS was investigated by calculating Pearson correlation coefficients. This numerical measure 

was used to assess the linearity between the output of these models and the observed data, 

providing an indication of both the strength and direction of these relationships. 

 

Performance evaluation 

To assess the performance of each model, we calculated sensitivity, specificity, positive 

predictive value (PPV), negative predictive value (NPV), and F1 score. Sensitivity details the 

ability of the model to correctly identify true-positive cases, whereas specificity evaluates the 
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accuracy of the model in identifying true-negative cases. PPV represents the proportion of true-

positive cases among predicted positives, whereas NPV denotes the proportion of true-negative 

cases among predicted negatives. The F1 score is the harmonic mean of sensitivity and PPV, 

which provides a single metric for model performance, particularly in situations with imbalanced 

class distributions. 

 

LLM model performance using limited information 

To evaluate the robustness of the LLMs in an environment where all input data cannot be 

investigated, we conducted additional experiments by constructing prompts using limited 

information and then querying GPT-3·5 with the UK Biobank cohort. This evaluation involved 

the use of an-omitting section, in which particular categories of patient data were excluded from 

the existing prompt. In the first experiment, data related to patient history (history of diabetes, 

blood pressure medication, and smoking) were excluded. In the second experiment, the data 

related to lipid profiles (total cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides) 

were excluded. In the third experiment, data related to physical measurements (blood pressure 

and BMI) were excluded. These defined groupings are the foundation for analyzing the model 

performance under various conditions. 

 

Statistical analysis 

To assess the statistical significance of differences in baseline characteristics among the risk 

groups, first, we performed a normality test using the Shapiro–Wilk method. After determining 

that our data did not satisfy the conditions of normality, we proceeded with nonparametric tests. 

We used the chi-squared test and Kruskal–Wallis test. By incorporating these tests into our 
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analysis, we evaluated the statistical significance of the differences in baseline characteristics 

among the risk groups. Here, P-value < 0·05 was considered as significant in all tests. 

The Kaplan–Meier method was applied to plot survival curves for the low-, moderate-, and high-

risk groups based on 10-year mortality data from the UK Biobank. Furthermore, we used the 

Cox proportional hazards model to compare the survival function associated with MACE within 

each risk group in both the LLMs and FRS. The predictors in the model were the risk categories 

(low, moderate, and high) derived from the scoring systems, with the low-risk group used as a 

reference. 

 

Results 

The UK Biobank study included 502,396 participants aged 40–69 years at the time of assessment, 

recruited between 2006 and 2010 (Fig. 1). A total of 103,817 participants with missing data were 

excluded. Of the remaining participants, after randomly selecting 10,000 participants, 274 

patients who had previously experienced MACE (Major Adverse Cardiovascular events) were 

excluded, leaving 9726 subjects for the analysis. 

 

Table 1 shows the baseline characteristics of the participants and the cardiovascular risk scores 

derived from the LLMs when grouped by GPT-4 category. Among a total of 9726 individuals for 

analysis, the participants had an overall median age of 58 years (IQR 50–63) with 4359 (44·8%) 

men and 331 (3·4%) experienced MACE within 10 years. When grouped by the GPT-4 category, 

4222 individuals were classified as low-risk, 3957 as moderate risk, and 1547 as high risk. The 

higher-risk group had older individuals, a higher proportion of men, higher incidence of 10-year 
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MACE, more diabetes mellitus, received more antihypertensive treatment, smoked more, more 

unfavorable lipid profiles, and higher blood pressure and BMI (all p < 0·001). 

 

Table 2 presents the performance comparison of the scores (derived from the GPT-4, GPT-3·5, 

Bard, and Framingham risk scores) in predicting 10-year MACE. The 10-year MACE 

performance prediction for people classified as high risk in each scoring system were detailed. In 

the UK Biobank cohort, theGPT-4 score had the highest accuracy of 0·834, specificity of 0·849, 

PPV of 0·084, and F1 score of 0·849, 0·084, and 0·138, respectively. The GPT-3·5 score had the 

highest sensitivity (0·598) and NPV (0·980). Overall, the performance of the GPT-4 score was 

comparable to that of the Framingham risk score, whereas the Bard score exhibited the worst 

performance. In the KoGES cohort, the GPT-4 score had the highest accuracy of 0·902 and 

specificity of 0·926. Table 3 details the clinical examples of the participants’ data, Framingham 

risk scores calculated using the data, and risk scores derived from LLMs. Table 4 shows the 

LLM model performance using limited information. GPT-3·5’s prediction performance was 

preserved despite omitting a few variables in the prompt, particularly without physical 

measurement data. 

 

Fig. 3 displays scatterplots and Pearson correlation coefficients (Pearson’s r) for the different 

scoring systems. GPT-4 had the highest correlation with the Framingham risk score (Pearson’s r 

= 0·753), followed by GPT-3·5 (Pearson’s r = 0·709), and Bard (Pearson’s r = 0·446). Pearson’s r 

between GPT-4 and GPT-3·5 was 0·626. 

 

Fig. 4 displays the Kaplan–Meier curves stratified by risk using the different scoring systems. All 
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pairwise comparisons (with or without Bonferroni correction) between curves using the log-rank 

test were statistically significant. Fig. 5 and Supplementary Table 3 show the hazard ratios (HRs) 

for 10-year MACE of the moderate- and high-risk groups compared to the low-risk group in each 

scoring system using the Cox proportional hazards model. The HRs of GPT-4 were comparable 

to that of the Framingham risk score (GPT-4 moderate risk HR 2·94, 95% CI 2·15-4·02, GPT-4 

high risk HR 6·81, 95% CI 4·96-9·36, Framingham moderate risk HR 3·17, 95% CI 2·27-4·45, 

Framingham high risk HR 6·96, 95% CI 5·05-9·60). The HRs of GPT-3·5 were 2·44 (95% CI 

1·70-3·50) for moderate risk and 5·05 (95% CI 3·64-7·00) for high risk, and the HRs of Bard 

were 1·80 (95% CI 1·32-2·47) for moderate risk and 2·84 (95% CI 2·09-3·87) for high risk. 

 

Discussion 

Summary of findings 

This study compared the performance of LLMs in cardiovascular risk prediction with that of the 

Framingham risk model and validated the output using real-world data. The findings of this 

study are as follows. GPT-4 achieved performance comparable to the FRS in cardiovascular risk 

prediction in both the UK Biobank {accuracy (0·834 vs· 0·773) and F1 score (0·138 vs· 0·132)} 

and KoGES {accuracy (0·902 vs· 0·874)}. The Kaplan–Meier survival analysis of GPT-4 

demonstrated distinct survival patterns among groups, which revealed a strong association 

between the GPT risk prediction output and survival outcomes. The additional analysis of limited 

variables using GPT-3·5 indicated that ChatGPT’s prediction performance was preserved despite 

the omission of a few variables in the prompt, especially without physical measurement data 

(Table 4).  
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Advantages for using LLM-based cardiovascular risk prediction 

Since its release, ChatGPT has attracted considerable attention worldwide because of its 

exceptional ability to generate plausible responses across various topics. In some cases, ChatGPT 

has outperformed existing prediction models, encouraging studies on the potential of ChatGPT 

for use in various applications11. For instance, in the financial sector, compared with 

conventional analysis methods, ChatGPT has demonstrated superior performance in predicting 

stock prices19. However, limited studies have been conducted on the use of language models in 

healthcare. To the best of our knowledge, this study is the first to reveal that ChatGPT exhibited 

performance comparable with the conventional risk score model in predicting cardiovascular risk 

using large real-world medical data. These findings provide insights into the potential 

applicability of ChatGPT in medical practice. 

Despite being a language-generation model, ChatGPT exhibits performance similar to the 

conventional model in predicting the cardiovascular risk of patients. Conventional prediction 

algorithms typically rely on multivariate regression of well-established CVD risk factors3,4, 

typically limiting the number of risk factors and assuming linear relationships between them with 

minimal or no interaction between various factors20. By contrast, ChatGPT, which derives its 

answers by learning from large amounts of textual datasets to generate the most probable human-

like responses rather than through mathematical calculations, achieves similar values and 

performances as linear computation-based regression models. Furthermore, conventional models 

frequently rely on old cohorts and have only been validated for specific cohort groups within 

individual countries, which limit their applicability to a broad population21. Furthermore, widely 

used calculators for renowned models such as the FRS have slightly distinct formulas based on 

different references, which results in heterogeneous prediction methods22–24. By contrast, 
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ChatGPT can learn from multiple guidelines and select the most suitable guideline for prediction, 

which enhances its generalizability across a diverse population. ChatGPT has achieved 

satisfactory performance in the UK Biobank, Western database, KoGES, and Asian database, 

which highlights the generalizability and robustness of the model in diverse populations. 

ChatGPT provides improved accessibility and flexibility compared with conventional prediction 

models. Users can easily access ChatGPT by visiting a website, without requiring any particular 

application. The model rapidly delivered satisfactory outcomes without strict input constraints by 

accepting numerous input formats. ChatGPT can understand the context and range of the input 

values, even when precise units are not provided25. Unlike conventional prediction models, 

ChatGPT provides answers with limited input data. Because ChatGPT is a model that learns 

existing texts and derives results from them, cardiovascular risk can be determined from existing 

text data that may not contain the patient’s blood test results, medical history, or physical 

measurements. Therefore, unlike existing models, GPT can train any combination of variables 

and produce outputs through various types of input combinations. Furthermore, by estimating 

risks without requiring physical measurements such as height, weight, or systolic blood pressure 

data, ChatGPT predictions could potentially decrease hospital visits, enhance convenience, and 

promote advancements in telemedicine. 

Conventional risk-stratification guidelines tend to be complex and require precise numerical 

values for each risk stratification, rendering the guidelines unsuitable for use in brief outpatient 

settings. However, with ChatGPT, users can request outputs in a specific format, which allows 

faster interpretation of medical records. For instance, users can rapidly access only the necessary 

information by asking ChatGPT to provide a patient’s cardiovascular risk score, utilized 

guidelines, and corresponding risk group. 
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Future impact on LLM-based research 

The potential benefits of ChatGPT, as demonstrated in the present analysis, may facilitate large-

scale and adaptable cardiovascular risk assessments in the general population in the near future. 

The findings of this study indicate that ChatGPT can compute cardiovascular risk with 

reasonable accuracy using only facts expressed in natural language, even in the absence of 

certain data. Consequently, this approach facilitates the monitoring of CVD risk in a larger 

population, which promotes earlier interventions and management of at-risk patients. 

Moreover, the features of ChatGPT observed in this study have considerable implications in both 

clinical practice and research. ChatGPT can enable the semantic extraction of targets of interest. 

The operational definitions for determining the study subjects vary across institutions and 

studies26. Therefore, selecting patients with consistent meanings from various institutions using 

conventional methods is challenging given the discrepancies in data formats and meanings. 

However, ChatGPT can function independently of data formats and adherence to standards. Thus, 

by converting existing data into text, semantically extracting the patients of interest becomes 

feasible. This approach facilitated the integration and analysis of disparate data from multiple 

institutions. For example, by leveraging the findings of this study, individuals with specific 

levels of cardiovascular risk can be promptly identified. 

 

Finally, this study has a few limitations. First, the unavailability of API for GPT-4 and Bard 

limited our analysis to a subset of 10,000 UK Biobank participants. However, this result was 

sufficient to validate the findings of this study. Second, the inner workings of GPT-4 remain 

challenging because the model and the code of ChatGPT have not been fully disclosed, and 
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because of the complex structure of LLM, fully explaining the working principle becomes 

difficult. Third, the performance of GPT-4 is yet to be extensively validated for various medical 

conditions, necessitating additional research to generalize our findings to other conditions such 

as diabetes or cancer. Studies are required to optimize the performance of GPT-4 through fine-

tuning and prompt engineering of specific tasks. 

 

LLMs, such as ChatGPT, can achieve performance comparable to conventional models in 

predicting cardiovascular risk. Furthermore, ChatGPT exhibits enhanced accessibility, flexibility, 

and ability to provide user-friendly outputs. With the continuous evolution of LLMs, such as 

ChatGPT, future studies should focus on applying the models to various medical scenarios and 

optimizing their performance. 
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Fig. 1 | Selection of study population. MACE: major adverse cardiovascular events. 
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Fig. 2 | Example of a ChatGPT prompt and response for risk stratification. Tabular data 

extracted from the UK biobank and KoGES were organized and queried into a sentence format 

like the example above. The 10-year CVD risk percentage was extracted using regular 

expressions from the corresponding answers. 
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Fig. 3 | Scatterplots and Pearson correlation coefficient for various scoring methods. GPT-4 

and Framingham risk score exhibit satisfactory correlation between each other. All pairs show 

statistically significant correlation. 
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Fig. 4 | Kaplan–Meier curves stratified by cardiovascular risk on LLMs and Framingham 

risk scoring models. GPT-4 demonstrated distinct survival patterns among the groups, which 

revealed a strong association between the GPT's risk prediction output and survival outcomes. 

All pairwise comparisons between curves in other models with the log-rank test were statistically 

significant. 
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Fig. 5 | Comparison of hazard ratio between different scoring systems using Cox 

proportional hazards model. The hazard ratios for 10-year MACE of moderate risk and high 

risk were compared with the low-risk group in each scoring system using the cox proportional 

hazards model. The HRs of GPT-4 were comparable to that of the Framingham risk score. 

MACE, major adverse cardiovascular event; HR, hazard ratio; CI, confidence interval. 

  

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.22.23289842doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.22.23289842
http://creativecommons.org/licenses/by-nd/4.0/


 

Table 1 | Baseline characteristics (grouped by ChatGPT-4.0 category) and derived cardiovascular risk scores 

from large language models (LLMs) 

 Low risk 

(n = 4222) 

Moderate risk 

(n = 3957) 

High risk 

(n = 1547) 

Overall 

(n = 9726) 

P-Value 

Age 52·0 [46·0-58·0] 60·0 [54·0-64·0] 63·0 [59·0-66·0] 58·0 [50·0-63·0] <0·001 

Sex      

Female 3015 (71·4%) 1835 (46·4%) 517 (33·4%) 5367 (55·2%) <0·001 

Male 

 
1207 (28·6%) 2122 (53·6%) 1030 (66·6%) 4359 (44·8%) <0·001 

Smoking status      

Current  3989 (94·5%) 3473 (87·8%) 1249 (80·7%) 8711 (89·6%) <0·001 

Previous, never 233 (5·5%) 484 (12·2%) 298 (19·3%) 1015 (10·4%) <0·001 

Height, cm 166·0 [161·0-173·0] 169·0 [162·0-176·0] 171·0 [164·0-177·0] 168·0 [162·0-175·0] <0·001 

Weight, kg 71·0 [62·5-81·5] 78·9 [69·6-89·2] 84·6 [74·6-96·2] 76·4 [66·5-87·5] <0·001 

BMI, mg/kg2 25·3 [22·9-28·2] 27·3 [24·9-30·3] 29·0 [26·1-32·9] 26·7 [24·1-29·9] <0·001 

Total cholesterol, 

mmol/L 
5·5 [4·9-6·2] 5·9 [5·1-6·7] 5·6 [4·6-6·6] 5·7 [5·0-6·5] <0·001 

HDL, mmol/L 1·5 [1·3-1·8] 1·4 [1·2-1·6] 1·2 [1·1-1·5] 1·4 [1·2-1·7] <0·001 

LDL, mmol/L 3·4 [2·9-3·9] 3·7 [3·1,4·3] 3·6 [2·8,4·3] 3·5 [3·0-4·1] <0·001 

Triglyceride, 

mmol/L 
1·2 [0·9-1·7] 1·6 [1·2,2·3] 1·9 [1·4,2·7] 1·5 [1·0-2·1] <0·001 

SBP, mm Hg 128·5 [118·5-138·5] 140·5 [130·0-152·5] 150·0 [137·5,163·5] 136·0 [124·5-149·0] <0·001 

DBP, mm Hg 79·0 [73·0-85·0] 84·0 [77·5-90·5] 86·5 [79·5-93·5] 82·0 [75·5-89·0] <0·001 

Antihypertensive 

treatment 
239 (5·7%) 904 (22·8%) 743 (48·0%) 1886 (19·4%) <0·001 

Diabetes mellitus 7 (0·2%) 89 (2·2%) 376 (24·3%) 472 (4·9%) <0·001 

10-year MACE 54 (1·3%) 147 (3·7%) 130 (8·4%) 331 (3·4%) <0·001 

ChatGPT-4 score 6·2 [4·1-8·3] 14·3 [11·9-16·4] 23·7 [21·4-27·4] 11·3 [6·8-16·8] <0·001 

Framingham      

Low risk 3327 (78·8%) 887 (22·4%) 41 (2·7%) 4255 (43·7%) <0·001 

Moderate risk 

 
814 (19·3%) 2039 (51·5%) 401 (25·9%) 3254 (33·5%)  

High risk 

 
81 (1·9%) 1031 (26·1%) 1105 (71·4%) 2217 (22·8%) 

 

Score 6·2 [3·9-9·4] 14·8 [10·5-20·4] 26·7 [18·9-35·1] 11·4 [6·4-19·1] <0·001 

ACC/AHA      

Low risk 3827 (90·6%) 1818 (45·9%) 191 (12·3%) 5836 (60·0%) <0·001 

Moderate risk 389 (9·2%) 1952 (49·3%) 835 (54·0%) 3176 (32·7%)  

High risk 

 
6 (0·1%) 187 (4·7%) 521 (33·7%) 714 (7·3%) 
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Score 2·4 [1·2-4·4] 8·1 [5·0-12·5] 16·3 [10·5-22·4] 5·7 [2·5-11·3] <0·001 

ChatGPT-3·5      

Low risk 2721 (64·4%) 764 (19·3%) 50 (3·2%) 3535 (36·3%) <0·001 

Moderate risk 1091 (25·8%) 1562 (39·5%) 303 (19·6%) 2956 (30·4%)  

High risk 

 
410 (9·7%) 1631 (41·2%) 1194 (77·2%) 3235 (33·3%) 

 

Score 7·6 [5·1-13·1] 17·4 [11·8-25·1] 27·9 [20·9-38·2] 14·3 [7·4-23·5] <0·001 

Bard 

 

    

 

Low risk 

 
2131 (50·5%) 767 (19·4%) 128 (8·3%) 3026 (31·1%) <0·001 

Moderate risk 1478 (35·0%) 1755 (44·4%) 605 (39·1%) 3838 (39·5%)  

High risk 613 (14·5%) 1435 (36·3%) 814 (52·6%) 2862 (29·4%)  

Score 10·0 [3·4-15·3] 16·4 [10·5-24·3] 20·6 [14·4-29·2] 13·7 [7·4-22·0] <0·001 

 

Data are median (IQR) or n (%). 

BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic blood pressure, MACE: major adverse 

cardiovascular events.  
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Table 2 | Performance comparison of Framingham, Bard, and ChatGPT Risk Score 

 Accuracy Sensitivity Specificity PPV NPV F1 score 

UK biobank       

GPT-4 0·834 0·393 0·849 0·084 0·975 0·138 

GPT-3·5 0·674 0·598 0·677 0·061 0·980 0·111 

Bard 0·702 0·447 0·711 0·052 0·973 0·093 

Framingha

m 
0·773 0·508 0·782 0·076 0·978 0·132 

KoGES       

GPT-4 0·902 0·153 0·926 0·062 0·972 0·088 

GPT-3·5 0·836 0·273 0·854 0·056 0·974 0·093 

Bard 0·779 0·307 0·794 0·045 0·973 0·079 

Framingha

m 
0·874 0·278 0·893 0·077 0·975 0·120 

 

PPV: positive predictive value, NPV: negative predictive value. Bold font indicates the highest value of the 

corresponding metric. 
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Table 3 | Examples of participants’ data and the scores derived from LLMs 

Age (years) 
DM 

 

Hyperte

nsion 
Smoker TC HDL LDL TG SBP DBP BMI 

10-year 

MACE 

Framing

ham 

GPT-4 GPT-3·5 Bard 

Men    
 

           

56 Yes Yes No 4·6 1·2 2·8 1·2 145·0 94·5 31·25 No 29·1 30·3 28·2 25·4 

60 Yes No No 4·5 1·4 2·6 1·9 148·0 83·5 36·7 No 23·8 25·9 24·6 27·4 

54 No Yes No 4·2 1·1 2·5 1·6 147 87·0 31·88 Yes 26·6 30·1 32·5 10·4 

60 No No No 5·5 1·4 3·6 0·8 122·5 70·5 21·55 No 12·4 7·1 7·6 4·0 

48 No No No 5·7 2·1 3·3 1·1 119·5 67·5 24·4 No 4·6 3·6 4·4 2·0 

Women                

61 No No No 6·7 1·6 4·4 1·5 200·5 84·0 24·76 No 27·2 24·8 21·6 20·8 

62 No Yes No 5·5 1·7 3·4 1·4 144·0 88·5 33·53 No 12·2 14·1 21·7 17·1 

54 No No No 6·4 1·4 4·3 2·0 136·0 80·0 28·91 No 8·1 16·2 17·3 27·4 

44 No No No 5·2 2·1 2·7 0·7 105·5 61·5 21·95 No 1·5 1·9 2·9 1·2 

61 No Yes Yes 5·7 1·3 4·0 1·0 132·5 78·0 30·45 No 15·1 15·3 19·1 24·2 

 

DM: diabetes mellitus, TG: total cholesterol, TG: triglyceride, BMI: body mass index, SBP: systolic blood pressure, 

DBP: diastolic blood pressure, MACE: major adverse cardiovascular events. 
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Table 4 | LLM model performance using limited information 

 Accuracy Sensitivity Specificity PPV NPV F1 score 

GPT-3·5 baseline 0·674 0·598 0·677 0·061 0·98 0·111 

Omitting       

Medical history 0·5 0·719 0·493 0·048 0·98 0·089 

Lipid profile 0·653 0·583 0·656 0·056 0·978 0·103 

Physical· 

measurement 
0·712 0·505 0·719 0·059 0·976 0·106 

 

“Medical history” in the omitting section is defined as a prompt that excludes a patient’s medical history information, 

such as smoking status, diabetes, and hypertension, from the existing prompt. “Lipid profile” is defined as a prompt 

that excludes the patient’s lipid profile from the existing prompt. “Physical measurement” is defined as a prompt 

that excludes a patient's physical measurements, such as blood pressure and BMI, from the existing prompt. PPV: 

positive predictive value, NPV: negative predictive value. 
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