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Abstract 
Most genome-wide association studies (GWASs) assume an additive inheritance model, where 
heterozygous genotypes (HET) are coded with half the risk of homozygous alternate genotypes 
(HA), leading to less explained nonadditive genetic effects for complex diseases. Yet, growing 
evidence indicates that with flexible modeling, many single-nucleotide polymorphisms (SNPs) 
show nonadditive effects, including dominant and recessive, which will be missed using only the 
additive model. We developed Elastic Data-Driven Encoding (EDGE) to determine the HET to 
HA ratio of risk. Simulation results demonstrated that EDGE outperformed traditional methods 
across all simulated models for power while maintaining a conserved false positive rate. This 
research lays the necessary groundwork for integrating nonadditive genetic effects into GWAS 
workflows to identify novel disease-risk SNPs, which may ultimately improve polygenic risk 
prediction in diverse populations and springboard future applications to thousands of disease 
phenotypes and other omic domains to improve disease-prediction capability. 
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Introduction 
Although genome-wide association studies (GWASs) have identified hundreds of thousands of 
genotype-phenotype associations, the majority of explained variance for most complex diseases 
remains hidden. Since 2008, the majority of GWAS apply the additive genetic model, which 
assumes the heterozygous genotypes have half the risk of homozygous alternate1, thus limiting 
the discovery of the single-nucleotide polymorphisms (SNPs) with nonadditive inheritance 
patterns. Other genetic models, including the dominant and recessive, were used in the early days 
of GWAS along with additive encoding2, but only the additive encoding was widely adopted as a 
single common approach for GWAS to reduce the testing burden3–7. As expected, it is more 
powerful to study the SNP under distinctive inheritance patterns using corresponded genetic 
model7. Using the typical additive encoding is insufficient to identify the alleles with recessive 
effects7, even for common alleles8. Thus, using traditional encoding approaches to model genetic 
disease risk can limit the efficacy of GWAS using a multi-encoding-adjusted genome-wide 
significance at 1 × 10-8 (accounts for 5 tests for one SNP). Many other genetic models have 
recently been established to incorporate the additional risk of genetics in general; for example, 
the codominant encoding, which is a dummy encoding approach, allows heterozygous and 
homozygous alternate to bear full risk in a single genetic model9,10, and dominance deviance 
(DOMDEV) is another common method in which the deviation of dominance from additivity is 
determined11. However, the codominant encoding is unable to provide summarized statistics for 
post-GWAS analysis, including meta-analysis and polygenic risk score calculation. 
 
In the current study, we illustrated the use of Elastic Data-Driven Encoding (EDGE)12 in 
identifying the genotype-phenotype associations with SNPs functioning as an additive and 
nonadditive inheritance patterns. Previously, EDGE was applied to a gene-gene interaction in 
helping with identifying SNPs’ interactions with nonadditive inheritance patterns for common 
diseases12, but hasn’t been incorporated with a single variant association test. EGDE provided an 
opportunity to allow the assignment of a unique, flexible, and data-informed risk to the 
heterozygous genotype. It has broken down current barriers to modeling and identifying 
nonadditive SNPs in the interaction analysis and to counting their effects in post-GWAS analysis. 
Results demonstrate the advantage of using EDGE to detect the SNP-trait associations beyond 
the traditional encodings while the inheritance patterns of alleles are unknown and to flexibly 
encode SNPs based on their unique inheritance models in large-scale, cross-ancestry GWAS. 
 
Methods 
Elastic Data-Driven Encoding (EDGE) 
As previously described12, EDGE assigns a flexible calculated heterozygous to homozygous 
alternate ratio of risk, as α, to the heterozygous genotype based on the inheritance model each 
SNP represents in the α-calculation dataset using a codominant (dummy) encoding with 
covariates.  
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Simulated datasets 
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To ensure that EDGE assigns the expected heterozygous genotype value across different types of
underlying inheritance models, we simulated main effect SNPs with the following genetic
models using the Biallelic Model Simulator (BAMS)12 within the pandas-genomics: null
(NULL), recessive (REC), sub-additive (SUB), additive (ADD), super-additive (SUP), and
dominant (DOM) (1,000 simulated datasets for each model type) across varying minor allele
frequencies (MAFs) Figure 1). Within each simulation, one SNP demonstrated a main effect,
while another demonstrated a null effect with no interaction. To avoid overfitting, we simulated
two sets of data for 1) EDGE’s alpha calculation and 2) the application of alpha value to derive
p-values and effect estimates. The existing encodings, including the additive, recessive,
dominant, and dominance deviance (DOMDEV), were also applied to the second set of data for
average p-value and power comparisons to EDGE. A variety of parameters were considered for
mimicking the possible data structures with a combination of the following: MAF: 0.05, 0.1, 0.2,
0.3, and 0.4; sample size: 2000, 5000, 10000, 50000, and 100000; case-control ratio: 1:1 and 1:3,
and penetrance difference (the difference between the minimum and maximum probabilities in
the penetrance table): 0.05, 0.1, 0.175, 0.25, 0.33, and 0.4. 
 

Figure 1. Workflow of the simulation study to understand the performance of the EDGE
encoding compared to other encoding methods. 
 
In addition, we simulated two continuous confounder variables and two binary variables to
assess potential impact of these different types of covariates for cases and controls separately.
The simulated covariates and distributions were referenced from the National Diabetes Statistics
Report, 202013. The age was simulated for three groups, including 18 to 44 (Poisson distribution;
case: λ=31, k=14.4%, control: λ=31, k=50.7%), 45 to 64 (Poisson distribution; case: λ=54.5,
k=43.5%, control: λ=54.5, k=31.6%), and ≥ 65 (Poisson distribution; case: λ=82.5, k=42.1%,
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control: λ=82.5, k=17.7%). The body mass index (BMI) was simulated by considering the 
Gaussian distribution for case (μ=35,σ=7.5) and control (μ=26.5,σ=1.0) groups. Two binary 
covariates were generated as the sex (case female: 47.5%; control female: 51.9%) and Smoking 
status (case smokers: 64.0%; control smokers: 12.5%) by referencing the binomial distribution. 
To presume the population structure derived from the genotyping data, we simulated a genomic 
relationship matrix (G-matrix), a variance-covariance matrix, with all covariance at 0.25 for 
1000 SNPs and corresponding sample size for each simulation. The principal component 
analysis (PCA) was performed to calculate the first ten principal components (PCs), and those 
PCs were used as covariates to represent the relationships between individuals.  
 
To further evaluate the performance of EDGE for the rare variants, we simulated and ran EDGE 
with SNPs with MAFs at 0.025, 0.01, 0.005, and 0.001, varying the sample size (from 2000 to 
100000) with case to control ratio at 1:3, four preset covariates (age, sex, BMI, and smoking 
status), and six inheritance patterns (recessive, sub-additive, additive, super-additive, dominant, 
and heterozygous) for a thousand of replicates. The non-convergence rate was calculated by 
computing the ratio between the number of models that were not converged and the total number 
of replicates that could be finished.  
 
Genome-wide association studies (GWAS) 
We conducted GWAS analyses with a binary outcome using the logistic regression for simulated 
datasets under EDGE and other possible traditional encoding schemes with simulated covariates 
in age, BMI, sex, and smoking status, including the additive, recessive, dominant, and 
dominance deviance (DOMDEV), separately. Three different schemes were applied to the 
GWAS using simulated data, including genotyping only, genotyping with four designed 
covariates, and genotyping with four designed covariates and the first ten presumable PCs. The 
power was obtained for each combination of parameters. The false positive rate (FPR) was 
calculated from the simulation with null effect SNPs under every combination of encodings and 
parameters.  
 
Variable importance on power and α calculation 
Pairwise comparisons were performed to compare the power of each encoding using the 
simulated data. We only considered the simulated data with penetrance difference at 0.1 and 
sample size from 5000 to 50000 with all possible MAFs, case-control ratio, and all inheritance 
models. Overfitted random forest analyses were conducted to rank the importance of parameters 
regarding the power and α calculation using the RandomForest package in R v4.2.0. Variable 
importance was computed using the percentage of increase in mean squared error (MSE) and 
expressed relative to the maximum.  
 
Results 
EDGE detected common and rare variants for the greatest number of simulated models  
A total of 2.1 million SNPs were simulated in the study to assess the EDGE performance 
compared with other traditional encodings. We first found density distribution of α peaks 
corresponded to the simulated inheritance models (REC ≅ 0, SUB ≅ 0.25, ADD ≅ 0.5, SUP ≅ 
0.75, and DOM ≅ 1; Figure 2), demonstrating the efficacy of EDGE α to infer inheritance models 
for additive and nonadditive SNPs. We then contrasted the average power and significance of 
each encoding for SNPs with distinct desired inheritance patterns and MAF at 30% (Figure 3). 
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The MAF at 30% was considered by referencing the first reported associations for T2D with the 
E23K variant in KCNJ11 (MAF= ~30% for Europeans)19 and AMD with variants in CFH (MAF 
= 24.5% for Europeans)20. EDGE detected signals at genome-wide significance (5×10-8) for the 
most simulated models. No method identified the SNPs with recessive inheritance models; 
however, EDGE identified all other SNP inheritance models, unlike any other method, including 
additive. EDGE was also the top method for every inheritance model. While the codominant 
encoding was a close second to EDGE here, our previous studies showed that the codominant 
encoding suffers from model non-convergence for lower MAFs12. Regarding inflation, EDGE 
demonstrated a conserved false positive rate of 5.4%, which falls within Bradley’s liberal criteria 
of 2.5%-7.5%21 (Figure 4). 
 

 
Figure 2. Distribution of EGDE’s alpha values for SNPs with different inheritance patterns.  
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Figure 3. SNPs with MAF at 30% were simulated for 12500 cases and 37500 controls. The red 

dashed line represents the significance threshold at the genome-wide scale.  

 

Figure 4. Inflation of using EDGE and other five encodings. Dash line represents Bradley’s liberal 

criteria of 2.5%-7.5%.  

 
We also observed that the power increases with sample size and MAF increases. Using the 
EDGE or codominant encodings could achieve the desired power of analysis at 80% more 
rapidly as the increasing the sample size than other traditional encodings for SNPs with the 
lowest MAF at 5% (Figure 5). We compared the difference in median power across all 
combinations of parameters between EDGE and additive using the Kruskal-Wallis χ2 tests. 
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EDGE’s power was significantly higher than additive (p: 8.7×10-5; Figure 6). Especially, the
EDGE could help to identify the SNPs with recessive inheritance patterns and heterozygous
inheritance patterns that additive encoding fails to (Figure 7). Other traditional encodings suffer
from the deficient power to detect SNPs with one or more inheritance patterns, such as the SNPs
with recessive and sub-additive using dominant or DOMDEV encodings with limited samples.
EDGE encoding has the robust power to identify SNPs under any inheritance patterns, especially
the sub-additive and recessive ones that other encodings cannot with desired power. At low MAF
and sample size, EDGE has a higher analysis power than other encodings to capture the
associations between the SNPs and outcome. The additive encoding requires more than one
hundred thousand samples to attain the desired power for SNPs with lower MAF.  
 

 

Figure 5. Power of EDGE across all simulated models and parameters with the existing

encodings. Clockwise, the sample size increases from 2000 to 100000. In each sample size segment, the MAF increases left

to right from 0.05 to 0.4. Power increases as we move from the center of the plot outward.  
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Figure 6. Power comparison between Additive and EDGE considering all possible

inheritance models.  

 

 

Figure 7. Power calculation by inheritance patterns. 

 
We further estimated the convergence percentage for using EDGE in regression for SNPs as
common and rare variants varying MAF and sample size. The convergence rate for EDGE is
99.35% while testing the common SNPs with a low MAF at 0.05 of 2000 participants (Figure
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S1). We further simulated SNPs with extremely low MAF at 0.025, 0.01, 0.005, and 0.001 as
rare variants at varied sample sizes with designed covariates. The convergence rate dropped
below 50% for simulations with 2000 samples, while MAF achieved lower than 0.01. The rising
of the participants might overcome the non-convergence of using EDGE for rare variants.   
 
EDGE can find significance and retain the analysis power 
We sought to validate the aptitude of using the EDGE strategy to identify the significant results
with a small number of participants for SNP under a low MAF. EDGE can pinpoint more
significant results than other encoding methods, particularly for SNPs with heterozygous,
dominant, and super-additive inheritance patterns (Figure 8). The codominant encoding functions
are similar to the EDGE encoding, which both have a higher analysis power and a calculated
smaller p-value for the significant results. We restricted these analyses to only using codominant
and EDGE encoding to compare the results' significance. EDGE raises the likelihood of
revealing the significant results as more substantial than using codominant encoding with the
smallest MAF (0.05, Kruskal-Wallis χ2 = 34.24, p=4.87×10-9) and smallest samples (2000,
Kruskal-Wallis χ2 = 72.27, p=1.88×10-17) (Table 1). We also compared the performance of
EDGE and codominant encodings using covariates and PCs. EDGE can consistently assign more
significance to simulations with smaller MAF and sample sizes. 
 

Figure 8. Volcano plots for showing the distribution of odds ratio and p-values.  
 
Table 1. Comparison of the difference in assigning the significance using codominant and
EDGE encodings with and without introducing covariates.  

Parameter Scale 

SNP SNP + COVs 
Kruskal-
Wallis chi-
squared 

p-value 
Median of the p-value from 
GWAS 

Kruskal-
Wallis chi-
squared 

p-value 
Median of the p-value from
GWAS 

Codominant EDGE Codominant EDGE 

MAF 

0.05 34.24 4.87×10-9 8.92×10-12 8.04×10-12 82.86 8.81×10-20 9.03×10-12 8.84×10-12 
0.1 3.70 0.054 5.76×10-23 3.05×10-23 0.021 0.89 5.70×10-23 3.07×10-23 
0.2 0.59 0.44 3.09×10-42 3.72×10-42 0.0017 0.97 3.09×10-42 3.75×10-42 
0.3 0.08 0.77 1.91×10-55 2.39×10-54 1.24 0.27 1.94×10-55 2.39×10-54 
0.4 9.51 0.002 1.22×10-63 1.68×10-62 0.49 0.48 1.22×10-63 1.70×10-62 

Sample 
Size 

2000 72.27 1.88×10-17 4.54×10-6 4.06×10-6 82.86 8.81×10-20 4.55×10-6 4.17×10-06 
5000 0.031 0.86 2.24×10-13 1.08×10-13 0.021 0.89 2.24×10-13 1.07×10-13 
10000 0.00072 0.98 2.04×10-25 7.98×10-26 0.0017 0.97 2.06×10-25 7.87×10-26 
20000 1.24 0.27 2.70×10-49 1.81×10-49 1.24 0.27 2.66×10-49 1.81×10-49 
50000 0.50 0.48 1.61×10-119 5.84×10-119 0.49 0.48 1.56×10-119 5.72×10-119 
100000 2.14 0.14 9.82×10-237 6.87×10-235 2.12 0.15 9.84×10-237 7.26×10-235 
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We constructed three models to testify to the stability of the power and α-calculation for EDGE, 
including SNP, SNP with covariates, and SNP with covariates and pretend PCs as the population 
structure. We then executed two overfitted random forest paradigms to uncover the variable 
importance for the analysis power and α calculation. The sample size and penetrance difference 
influenced analysis power, followed by encoding methods, inheritance patterns of SNP, and 
MAF. α calculation was drastically affected by the MAF of the SNPs but not by their inheritance 
patterns. Both calculations were not altered by the changes in the case-control ratio and the 
covariates and PCs.  
 
We evaluated the distribution of α values under different combinations of MAF, penetrance 
difference, sample size, and case-to-control ratio. α value for the single SNPs was steadily 
estimated regardless of the numbers and types of covariates and population structures. We 
observed distinct density peaks aligned with the simulated inheritance patterns, signifying that 
the α values from EDGE reflect the inheritance patterns of SNPs. As the increases of MAF, 
sample size, and baseline risk, the density peaks were shrunk to the desired inheritance patterns 
of the SNPs and more divergent from each other for genetic models. The fewer samples with a 
lower MAF and baseline risk of SNPs would lead to the great variability of the calculated α 
values. 
 
Discussion 
We developed a novel encoding to flexibly encode each SNP according to the inheritance model 
a SNP exhibits for a given phenotype, thereby increasing the ability to identify novel, 
nonadditive SNP particularly, EDGE assists in revealing the inheritance patterns underlying 
SNP-disease associations with conservative analysis power while these inheritance patterns 
remain unknown on fore. These SNPs may be ignored by using additive encoding due to their 
potential nonadditive genetic architecture. Under the multi-encoding GWAS, the multiple-test 
correction would have yielded results insignificant. 
 
We noticed several limitations in our research. The regression model suffered from poorly fitting 
as a lack of convergence for rare variants (MAF < 0.001) with few participants. However, EDGE 
can provide a robust capability to cover the finding of common variants in the GWAS setting 
with an extremely small sample size. We also found that the sample size is suboptimal for the 
populations with smaller sample sizes (East Asian, South Asian, and Admixed American) for 
current datasets in the study. The consolidation of other available datasets of diverse ancestry is 
required to understand these diseases for different ancestry subgroups. Our current strategy for 
ancestry-based stratification combines individuals of Admixed Americans into one dataset and 
uses principal components as covariates. This may not model the diversity and richness of 
genetic risk profiles in this population. Therefore, additional approaches must be evaluated to 
overcome this limitation and include the full spectrum of diversity in our research.  
 
In conclusion, EDGE helps to identify the  SNPs with additive and nonadditive inheritance 
patterns. These results demonstrate that EDGE breaks down current barriers to identifying and 
modeling additive and nonadditive SNPs in GWAS, even for gene-environment interactions and 
polygenic risk score (PRS) research, by developing the methodological and computational 
developments necessary to make flexible SNP modeling accessible and commonplace in the 
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human genetics community. These innovations will enable improved prediction accuracy for 
diseases and complex traits and a refined understanding of the genetic architecture of these 
diseases across diverse populations with the potential for future applications to thousands of 
phenotypes.  
 
Supporting Information 
All data are available upon application from each biobank/consortium.   
The genetic analyses were performed by using publicly available software tools, including 
PLINK v2.0 (https://www.cog-genomics.org/plink/2.0/), pandas-genomics (BAMS) v0.11.0 
(https://github.com/HallLab/pandas-genomics), CLARITE v2.2.0 (https://clarite-
python.readthedocs.io/en/latest/), and PLATO v2.1.0 (https://ritchielab.org/plato). The sample 
codes for calculating the α from EDGE and applying the α are available at 
https://github.com/HallLab. The plots were generated by using R v4.2.0 and python v3.7.  
 
Supplement  

 

Figure S1. Convergence of using EDGE towards to the rare variants.  
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