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Abstract 20 
Background: Residents in long-term care (LTC) homes, who tend to be of advanced 21 
age and frail, are at increased risk of respiratory infections. The respiratory microbiota 22 
is known to change with age, but whether these changes contribute to the risk of 23 
infection is not known. Our goal was to determine how the nasal microbiota of frail 24 
older adults changes during symptoms of influenza-like illness (ILI) and how this may 25 
be impacted by enrollment in a placebo-controlled trial testing the feasibility of 26 
administering a Lactobacillus rhamnosus GG probiotic to prevent respiratory infection 27 
(2014 - 2017). The microbiome of the nasal (mid-turbinate) of 150 residents of LTC 28 
homes was interrogated using 16S rRNA gene sequencing. 29 
Results: We identified a diverse and individualized microbiota which could be 30 
separated into 9 distinct clusters based on Bray Curtis distances. Samples collected 31 
during symptoms of influenza-like illness (ILI) differed statistically from those collected 32 
pre- and post-cold and influenza season, and we observed decreased temporal 33 
stability – as measured by movement between clusters – in individuals who 34 
experienced ILI compared to those who did not. 35 
Conclusions: The use of probiotics decreased ILI-induced changes to the microbiota; 36 
however, it is not clear whether this decrease is sufficient to prevent respiratory illness. 37 
 38 
Keywords: aged; microbiome; 16S rRNA gene sequencing; respiratory tract 39 
infections 40 
 41 
Background 42 
The burden of respiratory infections in long-term care (LTC) residents is high1, and the 43 
devastating mortality and frequent outbreaks that occurred during the SARS-CoV-2 44 
pandemic were a painful reminder that systemic features of care homes such as 45 
staffing patterns, ventilation, and crowding can be major factors in infection rates2, 3. 46 
Independent of the increase in risk associated with LTC homes, residents are still 47 
vulnerable to infection due to their advanced age, frailty, and chronic health conditions. 48 
In fact, frailty is a better predictor of infection risk and poor outcomes than chronologic 49 
age4, 5 likely due to the systemic inflammation and immune remodelling that occurs in 50 
frail individuals6. 51 
 52 
Carriage rates of common pathogens like Streptococcus pneumoniae are 53 
counterintuitively reported to decrease with age, despite the fact that susceptibility to 54 
pneumococcal infection increases with age7, 8. It is believed that this is because 55 
pneumococcal carriage stimulates anti-bacterial immunity in the lungs; alveolar 56 
macrophages from individuals who are experimentally colonized have enhanced 57 
killing of both pneumococcus and other respiratory pathogens9. Age-related changes 58 
in other members of the airway microbiota have also been reported, and these may 59 
contribute to susceptibility to both bacterial and viral infections. As an example, 60 
individuals who are colonized with Corynebacterium spp. are less likely to naturally 61 
carry or be experimentally colonized with pneumococcus10, 11. Lower relative 62 
abundance of both Moraxella spp., and Dolosigranulum pigrum have been reported in 63 
children hospitalized for serious respiratory infections, but whether these are truly 64 
associated with protection from infection or whether they decrease in abundance 65 
during the course of infection is unclear12, 13. Similarly, older patients with pneumonia 66 
have outgrowth of some microbes in the upper respiratory tract microbiota14 but the 67 
degree to which this contributes to infection is not known. Age, frailty, LTC home, 68 
specific health conditions, and immune senescence have been previously shown to 69 
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be associated with age-associated changes in the gut microbiota15, 16 but whether 70 
these factors influence the upper respiratory tract is not known. Understanding if 71 
members of the upper respiratory tract microbiota can protect against infection may 72 
provide novel preventative strategies in older, frail individuals who are the most likely 73 
to have poor outcomes resulting from respiratory infection. 74 
 75 
In order to understand the role of the microbiota in respiratory infection in frail older 76 
adults, we analyzed samples from 150 residents of LTC homes who had been enrolled 77 
in a randomized, double-blinded, placebo-controlled clinical trial testing the feasibility 78 
of probiotics to prevent respiratory infection17. Samples were collected from individuals 79 
not experiencing respiratory illness at the onset of cold and influenza season (Nov-80 
Dec), whenever a resident experienced an influenza-like illness (ILI) event, and after 81 
cold and influenza season in the absence of illness (May-June). We investigated 82 
whether frailty, health conditions, and systemic inflammation altered the composition 83 
of the nasal microbiota and whether there were features of the microbiota that 84 
predicted susceptibility to ILI. We found a diverse microbiota that could be divided into 85 
9 clusters. The microbiota of samples collected during ILI was statistically distinct from 86 
those collected outside of illness, and – when examined longitudinally – individuals 87 
who experienced symptoms of respiratory infection experienced decreased temporal 88 
stability of their nasal microbiota then those who did not. These affects appear to be 89 
mitigated with the use of probiotics, however a larger follow up study is warranted to 90 
reach a definitive conclusion. 91 
 92 
Methods 93 
Participant recruitment and sample collection 94 
Samples were collected from individuals (n=150) as part of a multi-site, randomized, 95 
placebo-controlled trial on the feasibility of administering probiotics to prevent 96 
respiratory tract infections in long-term care (LTC) residents17. Residents from 12 LTC 97 
homes in Ontario, Canada who were ³ 65 years old were recruited over a 4-year period 98 
(2014-2017). Here, we sampled the nasal microbiota of samples collected from the 99 
later 3 years of the pilot study (Sup Fig 1). Participants provided a flocked nasal (mid-100 
turbinate) swab in universal transport medium (Copan Italia, Brescia Italy) prior to cold 101 
and influenza season (Nov-Dec), when they had symptoms consistent of an influenza-102 
like illness (ILI; as determined by a trained nurse; cough, nasal congestion, sore throat, 103 
headache, sinus problems, muscle aches, fatigue, earache or infection, chills) and 104 
following the end of cold and influenza season (May-June). Exclusion criteria included 105 
residents on immunosuppressive drugs, who had hematological malignancy, 106 
structural heart disease, gastroesophageal or intestinal injury, or individuals who were 107 
at high risk of an endovascular infection. Participants were randomized to receive a 108 
probiotic (2 capsules of Lactobacillus rhamnosus GG (Culturelle, CH Hansen, 109 
Hoersholm, Denmark; estimated 10 billion colony forming units (CFUs) per capsule) 110 
daily or a placebo (calcium carbonate) for 6 months. Details of probiotic administration 111 
have been previously published17. There were no differences in participant 112 
demographics between the placebo and probiotic groups (Sup Table 1; reference 17). 113 
 114 
Informed consent was received by the participants or their substitute decision makers. 115 
All protocols were approved by the Hamilton Integrated Research Ethics Board. 116 
 117 
Of the collected samples, 334 from 150 individuals (n=150 pre-cold and influenza 118 
season, 57 ILI, 127 post-cold and influenza season) passed stringent quality control 119 
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measures including verification of the 16S rRNA gene PCR product on an agarose 120 
gel, quantification of 16S rRNA gene DNA load, and a minimum number of high-quality 121 
DNA sequencing reads (see below for more detail). 122 
 123 
DNA extraction and amplification of the 16S rRNA gene 124 
DNA extraction was performed as previously described18. 300 µl of sample was 125 
resuspended in 800 µl of 200 mM NaPO4, 100 µl of guanidine thiocyanate-126 
ethylenediaminetetraacetic acid-Sarkoyl, and together homogenized using 0.2g of 0.1-127 
mm glass beads (Mo Bio, Carlsbad, CA). 50 µl of lysozyme (100 mg/ml), and 10 µl 128 
RNase A (10 mg/ml) were added to the sample and incubated at 37°C for 1 hour to 129 
enzymatically lyse the sample. Following, 25 µl of 25% sodium dodecyl sulfate, 25 µl 130 
proteinase K, and 62.5 µl 5 M NaCl were added and incubated at 65°C for 1 hour. 131 
Samples were then subject to centrifugation at 12,000 x g. The supernatant was 132 
subsequently removed to a new microcentrifuge tube to which an equal volume of 133 
phenol-chloroform-isoamyl alcohol was added and the sample again centrifuged. The 134 
solution with the lowest density was transferred to a new microcentrifuge tube and 200 135 
µl of DNA binding buffer (Zymo, Irvine, CA) added. The solution was then transferred 136 
to a DNA column (Zymo), washed, and DNA eluted using ultrapure H2O. 137 
 138 
Following, amplification of the 16S rRNA gene variable 3 (v3) region was performed 139 
as previously described19 with some modifications. 341F and 518R 16S rRNA gene 140 
primers were adapted to the Illumina (San Diego, CA) platform with the inclusion of 141 
unique 6-base pair barcodes to the reverse primer to allow for multiplex amplification19. 142 
A 50 µl PCR reaction was performed in three equal volume reactions, collectively 143 
containing 5 pmol of each primer, 200 µM of each deoxynucleoside triphosphate 144 
(dNTP), 0.4 mg/mL BSA, 1.5 mM MgCl2, and 1 U Taq polymerase (Life Technologies, 145 
Carlsbad, CA). The PCR reaction was subject to an initial denaturation step at 95°C 146 
for 5 min followed by 35 cycles of 95°C for 30 sec, 50°C for 30 sec, and 72°C for 30 147 
sec; the incubation ended with an extension step at 72°C for 7 min. The presence of 148 
a PCR product was verified by electrophoresis (2% agarose gel) and only those 149 
samples with visible bands were sent for normalization using the SequelPrep kit 150 
(ThermoFisher, #A1051001) and DNA sequencing on the Illumina MiSeq platform. A 151 
positive control sample of known community composition sequenced in parallel to 152 
these data contained the same 50 ASVs in similar proportions as the positive control 153 
samples run on prior and subsequent MiSeq runs. Four negative controls – including 154 
DNA extraction and PCR controls – resulted in <1520 bacterial reads per sample, 155 
none of which were consistently assigned to the same ASVs. All raw sequencing data 156 
is available on NCBI’s SRA PRJNA858212. 157 
 158 
Processing of 16S rRNA gene sequencing data 159 
Raw reads were initially processed with Cutadapt20 to trim the adapter and PCR primer 160 
sequences and filter to a minimum quality score of 30 and a minimum length of 100bp. 161 
DADA221 was used to resolve sequence variants for results from each separate 162 
Illumina run prior to merging data from all runs together. Amplicon sequence variants 163 
(ASVs) were then filtered for bimeras; taxons were classified using the SILVA 164 
database version 1.2.822. 165 
 166 
 167 
 168 
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Quantification of 16S rRNA gene DNA load via qPCR 169 
Because samples from the nose have low microbial concentrations, we assessed the 170 
extracted DNA via qPCR in order to quantify the number of copies of 16S rRNA gene 171 
present in each sample. The protocol was adapted from23; briefly, reactions were 172 
carried out in a 96-well plate in a 20 µL mixture containing 10 pmol of forward (926F 173 
AAA CTC AAA KGA ATT GAC GG) and reverse (1062R CTC ACR RRC ACG AGC 174 
TGA C) primer24, 1 µL of extracted swab DNA, 10 µg of bovine serum albumin, water, 175 
and Eva SsoFast EvaGreen supermix (Bio-Rad, Canada). Samples were placed in a 176 
Bio-Rad CFX96 Thermocycler (Bio-Read, Canada) and were subject to an initial 177 
denaturing step (98C for 2 minutes), followed by 40 cycles of 5 seconds at 98C and 5 178 
seconds at 60C. Melt curve analysis was generated by 0.5C increments for 5 seconds 179 
from 65C to 95C to ensure the generation of a single PCR product. Each reaction was 180 
performed in triplicate, with cycle thresholds converted to copies of 16S rRNA gene 181 
via standard curve of known quantities of Escherichia coli DNA within each qPCR 182 
plate.12 samples which had <103 copies of 16S rRNA gene sequence per sample were 183 
removed from all subsequent analyses. 184 
 185 
Statistical analyses of 16S rRNA gene sequencing data 186 
The above quality control measures resulted in a total of 334 samples included in 187 
microbiome analyses. 39 metadata data points were collected; to avoid over-188 
interpreting any correlations of such data with microbial composition, metadata 189 
variables were only considered if: (a) £15% of the data points were unknown/missing; 190 
(b) for binary variables, there was ³10% variation; (c) for non-binary discrete variables, 191 
each value accounted for >3% of the overall variation (otherwise, the value was 192 
omitted). All continuous variables were included. 193 
 194 
To identify any possible correlations between metadata variables and avoid reporting 195 
any indirect associations between metadata and microbial composition, each pair of 196 
variables were investigated using a chi-squared or aov test (depending on the data 197 
type). When the statistical test resulted in a p-value <0.05, we rejected the null 198 
hypothesis that the variables tested were independent. A list of all correlating variables 199 
is included in Sup Table 2. 200 
 201 
All statistical analyses were performed in R v3.6.125 primarily using the phyloseq 202 
v1.28.026 and vegan v2.5.627 packages. Alpha diversity was calculated using the 203 
Shannon index. Beta diversity was determined using both Bray Curtis and Aitchison 204 
distances (using R’s microbiome package v1.14.028 in addition to phyloseq); to 205 
calculate Bray Curtis distances, the dataset was rarefied to the minimum number of 206 
reads per sample in the dataset (n=1268). The composition of microbiome 207 
communities in relation to included metadata variables was interrogated using a 208 
permanova statistical test (adonis function of the vegan package v2.5.627). 209 
Differentially abundant ASVs were determined using ANCOMBC29. Networks of 210 
cluster movement between pre-C&F, ILI, and post-C&F clusters were determined 211 
using R’s igraph v1.2.6 and visualized using Gephi30. R packages ggplot231 and 212 
patchwork (https://github.com/thomasp85/patchwork) were used to generate visuals. 213 
All code is provided as a supplemental R markdown file (Sup File 1). 214 
 215 
Clustering of samples via hierarchical clustering 216 
The Silhouette method, encoded in R’s factoextra v1.0.7 package32, was used to 217 
determine the optimal number of clusters for complete hierarchical clustering based 218 
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on the Bray Curtis distance between samples and associated PCoA scores. Using this 219 
method, the optimal number of clusters was determined to be 10; of these, one cluster 220 
had a size of n=1 and was thus excluded from future analyses. Hierarchical clustering 221 
was performed using R's cluster v2.1.0 package33. The resulting 9 clusters containing 222 
334 samples were tested with the vegan package for statistically significant dispersion 223 
(betadisper27; p=<2.2e-16), differences between cluster centroids (adonis27; p=0.001), 224 
and to be significantly different in an analysis of similarity (anoism27; R=0.726, 225 
p=0.001), indicating that subsetting the data in this way generated statistically 226 
significant clusters. A dendrogram of all samples was split into 9 clusters with 227 
dendextend v1.15.125 and visualized with ggtree v3.0.334. 228 
 229 
Results 230 
Participant demographics 231 
Mid-turbinate samples of the nose were collected from 150 individuals residing in LTC 232 
homes in Ontario, Canada (see Methods). Participants were predominantly female, 233 
with a median age of 86.5 years (Table 1). Individuals were on a median of 9 234 
medications and had a median of 9 co-morbidities. Participant’s Barthel scores – an 235 
index between 0 and 20 used to describe performance in daily living35 – were diverse, 236 
ranging from 0 to 20 with a median value of 7 (Table 1). 34.0% of study participants 237 
reported symptoms of influenza-like illness (ILI), with 44 participants experiencing 1 238 
event and 7 participants experiencing 2 events. Participants in this trial were split into 239 
daily probiotic and placebo arms of this study (Table 1) which were evenly matched 240 
for all participant characteristics (Sup Table 1). 241 
 242 
Table 1: Participant (n=150) characteristics.  243 
Characteristic Properties 
Sex 103 Female (68.7%) 
Median age (± standard deviation; sd) 86.5 (±7.1) 
Smoker 5 Yes, 71 No, 73 Prior (1 Unknown) 
Median # of medications (± sd) 9 (±3.6) 
Median # of co-morbidities (± sd) 9 (±3.2) 
Median Barthel score (± sd) 7 (±5.78) 
Num. of Individuals reporting Respiratory 
Events 

51 (34.0%) 

Mean # of events per individual 1.12 
Probiotic Group 77 Active (51.3%), 73 Placebo (48.7%) 

 244 
The composition of the nasal microbiota of long-term care residents 245 
The nasal microbiota of LTC residing older adults is highly variable (Fig 1A-B). Within 246 
the 334 mid-turbinate samples analyzed, we observed 720 genera, of which 662 had 247 
a cumulative relative abundance of ³0.01%, and 122 of which were observed at ³1% 248 
relative abundance in ³1 sample. On average, an individual sample contained 56 249 
genera; however, this ranged from 7 to 146 (sd: ±27.4). Corynebacterium is the most 250 
abundant and most prevalent genera, with a mean relative abundance of 37.9% 251 
(median: 32.0%, range 0.04-98.7%) and being present in 332 of the 334 samples. 252 
Other abundant genera include Moraxella (mean relative abundance 1.18%, range 253 
0.002-99.8%), Staphylococcus (mean relative abundance 1.17%, range 0.01-254 
99.77%), and Dolosigranulum (mean relative abundance 1.11%, range 0.004-255 
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81.49%). The variability between individuals was large, as evidenced by a mean Bray 256 
Curtis distance of 0.80 (median: 0.87). 257 
 258 
Because of the observed inter-individual variability, we applied hierarchical clustering 259 
on the composition of the microbiome which identified 9 clusters in our dataset (Fig 260 
1A) which were verified using multiple statistical tests (see Methods; Sup Fig 2A-C). 261 
Samples from each cluster separate in a PCoA analysis across multiple axes (Fig 1E; 262 
Sup Fig 2D-G), and have more similar Bray Curtis distances within clusters than 263 
comparisons across clusters (Sup Fig 2C,H). The median number of samples per 264 
cluster is 34, ranging from n=7 (cluster 5) to n=86 (cluster 9). All but one cluster is 265 
associated with a dominant taxon (>35% relative abundance in >70% of samples; Fig 266 
1B,F). For example, clusters 6 and 4 are associated with a high mean relative 267 
abundance of Staphylococcus and Dolosigranulum, respectively. There are 3 clusters 268 
(clusters 1,3,9) in which Corynebacterium is the dominant genera, but each is 269 
associated with a unique ASV (Fig 1C). Similarly, Moraxella is the dominant genera 270 
of clusters 5,7, and 8 and each cluster is associated with a particular profile of ASVs 271 
(Fig 1D). 272 
 273 
Uniquely, cluster 2 is not associated with a particular dominant taxon (Fig 1F) and is 274 
the most diverse (Shannon index, Fig 1G), and shared the least Bray Curtis similarity 275 
across samples (Sup Fig2H). We hypothesized that the absence of a dominant taxon 276 
might mean a decrease in the total bacterial load. When we quantified total microbial 277 
DNA by qPCR, we did not find a statistically significant difference in bacterial DNA 278 
between clusters although the median value was lower in cluster 2 than in any other 279 
cluster (Fig 1H). However, when we investigated whether bacterial load significantly 280 
correlated with any particular ASV(s), we did not find a correlation with any dominant 281 
taxa. Instead, decreasing microbial load was associated with increased levels of other 282 
organisms also commonly associated with the microbiome of the oral cavity and skin 283 
(e.g., Streptococcus and Cutibacterium, respectively; Sup Fig 3). We hypothesize that 284 
this may mean that in samples with a low bacterial load, the unique biogeography of 285 
the mid-turbinates is lost as we have previously shown in the nasopharyngeal 286 
microbiome of frail older adults18. 287 
 288 
 289 
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 290 
 291 
Figure 1: The nasal microbiota of frail older adults groups into 9 distinct clusters. A. A 292 
dendrogram based on hierarchical clustering of Bray Curtis distances between samples. Coloured and 293 
numbered bars indicate the 9 clusters determined by hierarchical clustering. B. Taxonomic summaries 294 
ordered according to the sample order in the dendrogram accompanied by a legend of the most 295 
abundant 30 genera. C-D. The relative abundance of each amplicon sequence variant (ASV) within 296 
Corynebacterium (C) and Moraxella (D). Each ASV is coloured a different shade of orange/blue; grey 297 
bars indicate relative abundances of other taxa E. A PCoA plot of the Bray Curtis distances of all 298 
samples within the dataset coloured by cluster membership. Colours of each cluster match those used 299 
in panel A. F. The mean relative abundances of the 4 most abundant taxa separated by cluster. Colours 300 
of each taxa match those used in panel B. (Corynebacterium: orange, Moraxella: dark blue, 301 
Staphylococcus: purple, Dolosigraniulum: light blue). G. The median Shannon diversity metric differs 302 
significantly between clusters (p=0.04962; Levene's test); H. however, the median qPCR 303 
concentrations do not (p=0.08108, Levene's test). 304 
 305 
 306 
 307 
 308 
Participant characteristics and relationship to the composition of the airway microbiota 309 
We tested 30 metadata variables (Table 2), 5 of which (sex, LTC home site, time of 310 
collection, frailty, cardiovascular disease) were significantly correlated with the 311 
composition of the mid-turbinate microbiota against either of two b-diversity metrics 312 
employed (p£0.05, PERMANOVA using either Bray Curtis or Aitchison distance; Table 313 
2 see Methods). However, none of these 5 variables were significant across both b-314 
diversity distance metrics and could each only explain <5% of the observed variance 315 
in the data (Table 2); in contrast 68.84% of the variability in the dataset was explained 316 
by inter-individual differences. 317 
 318 
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Biologic sex significantly correlated with the composition of the microbiome (p=0.047, 319 
R2=0.013, PERMANOVA using Bray Curtis); however, there was no association of b-320 
diversity or cluster membership with age. In contrast, frailty (as measured by the 321 
Barthel score) correlated with microbiota composition (p=0.003, R2=0.011, 322 
PERMANOVA using Aitchison). Because chronic inflammation (‘inflamm-aging’) is 323 
associated with both frailty and immune dysfunction, we investigated whether there 324 
were any relationships with circulating inflammatory mediators, specifically TNF, IL-325 
1β, and IL6 and chronic health conditions such as cardiovascular disease, dementia, 326 
and chronic obstructive pulmonary disease (COPD). Although there were no 327 
associations with inflammatory cytokines, community composition in individuals with 328 
cardiovascular disease was significantly different (p=0.017, R2=0.015, PERMANOVA 329 
using Bray Curtis). 330 
 331 
 332 
Table 2: p- and R2 values of anova statistical test of association between 333 
metadata variables and the composition of the microbiome. 334 
Characteristic By sample distance 

metrics (Bray Curtis p-value 
(R2 value)/Aitchison p-value (R2 

value) 

By cluster membership 
(test statistic in brackets) 

Age at enrolment 0.224(0.008)/0.821(0.006) 0.295 (aov) 
Sex 0.047*(0.013)/0.149(0.008) 0.253 (aov) 
LTC home site 0.033*(0.082)/0.084(0.068) 0.616 (chisq) 
Month 0.699(0.018)/0.001***(0.034) 0.745 (chisq) 
Season 0.966(0.003)/0.004**(0.011) 0.747 (aov) 
Year 0.204(0.017)/0.001***(0.032) 0.650 (aov) 
Clinical trial treatment 
group (i.e., probiotics or 
placebo) 

0.921(0.004)/0.439(0.007) 0.832 (aov) 

Had respiratory event 0.402(0.007)/0.079(0.008) 0.120 (aov) 
Smoker 0.782(0.017)/0.367(0.021) 0.390 (aov) 
Medications (number of) 0.346(0.007)/0.859(0.006) 0.674 (aov) 
Influenza vaccination 
(current season) 

0.837(0.004)/0.307(0.007) 0.703 (aov) 

Influenza vaccination 
(previous season) 

0.261(0.015)/0.358(0.014) 0.399 (aov) 

Influenza vaccination 
(ever) 

0.095(0.019)/0.175(0.015) 0.339 (aov) 

Pneumococcal 
vaccination (ever) 

0.689(0.006)/0.586(0.007) 0.901 (aov) 

Shared room (yes/no) 0.480(0.006)/0.370(0.007) 0.490 (aov) 
Barthel total 0.121(0.01)/0.003**(0.011) 0.653 (aov) 
COPD 0.059(0.011)/0.441(0.007) 0.911 (aov) 
CHF 0.365(0.007)/0.825(0.006) 0.651 (aov) 
CVD 0.017*(0.015)/0.083(0.009) 0.477 (aov) 
Anemia 0.923(0.003)/0.673(0.006) 0.977 (aov) 
Dementia 0.912(0.004)/0.597(0.006) 0.449 (aov) 
Stroke 0.074(0.011)/0.449(0.007) 0.203 (aov) 
Diabetes mellitus  0.108(0.01)/0.191(0.007) 0.104 (aov) 
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Hypothyroid 0.957(0.003)/0.863(0.006) 0.998 (aov) 
Comorbidities (number 
of) 

0.765(0.005)/0.337(0.007) 0.891 (aov) 

Seizures 0.555(0.006)/0.609(0.006) 0.822 (aov) 
Cancer 0.531(0.006)/0.422(0.007) 0.385 (aov) 
IL-1β 0.887(0.004)/0.830(0.005) 0.483 (aov) 
IL6 0.866(0.004)/0.921(0.005) 0.831 (aov) 
TNFA 0.652(0.006)/0.990(0.004) 0.177 (aov) 

COPD: chronic obstructive pulmonary disease, CHF: congestive heart failure, 335 
CVD: cardiovascular disease. 336 
 337 
 338 
 339 
 340 
The composition of the microbiome differed between the 10 LTC facilities (p=0.033, 341 
R2=0.082, PERMANOVA using Bray Curtis), consistent with previous studies of the 342 
gut microbiota16. 9 ASVs with a mean relative abundance >0.1% were differentially 343 
abundant across LTC sites (ANCOMBC); many of these ASVs correspond to the 344 
dominant taxa in the dataset – including Moraxella, Corynebacterium, and 345 
Dolosigranulum (Sup Fig 4A-C). There were 8 metadata variables that correlated with 346 
LTC home site including those associated with the time of collection (i.e., month, 347 
season, and year of collection) and other variables that likely reflect differences in LTC 348 
home practices (e.g., influenza and pneumococcal vaccination, whether the resident 349 
was in a shared or private room; Sup Table 2). Of these, the time of sample collection 350 
also significantly correlated with microbiome composition (Table 2). 5 ASVs with 351 
>0.1% relative abundance were differentially abundant by month of sample collection, 352 
including the same Moraxella ASV which was differentially abundant by LTC home 353 
site (Sup Fig 4D). Collectively these data demonstrate that seasonality and LTC home 354 
site may have some effect on the mid-turbinate microbiota. 355 
 356 
The effect of influenza like illness (ILI) on the composition of the nasal microbiota 357 
We compared the composition of the nasal microbiota when individuals had symptoms 358 
of ILI and when they did not. We found that the microbial community significantly differs 359 
between samples collected pre-/post-cold and influenza (C&F) season compared to 360 
during ILI (p=0.003, R2=0.05 (Bray Curtis); p=0.011, R2=0.04 (Aitchison) 361 
PERMANOVA; Fig 2A). These results are supported by another recent comparison of 362 
the effect of ILI on the frail, aged nasopharyngeal microbiota36. Alpha diversity, total 363 
bacterial load, and cluster membership were not altered between ILI and non-ILI 364 
samples (p=0.297, Levene’s test, Fig 2B; p=0.120, Levene's test, Fig 2C; p=0.148, 365 
chi-squared test, Sup Fig 5). Further, there was no difference in the composition or 366 
cluster membership of the pre-C&F microbiota between those who went on to 367 
experience ILI and those who did not (p=0.378, R2=0.007 (Bray Curtis); p=0.095, 368 
R2=0.008 (Aitchison) PERMANOVA; Sup Fig 6A; p=0.121349, chi-squared test; Sup 369 
Fig 6B) indicating that we cannot predict who will get an infection based on the 370 
composition of the microbiota alone. 371 
 372 
Given that the composition of the microbiome changes with ILI, we next investigated 373 
whether this change could be attributed to specific ASVs. Using ANCOMBC29, we 374 
identified 8 ASVs which were differentially abundant between the pre-C&F season, ILI, 375 
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and post-C&F season; however, none of these has a mean relative abundance >0.1% 376 
(Sup Fig 7). 377 
 378 
 379 

 380 
 381 
Figure 2: The composition, but not the a-diversity or bacterial load, of the frail older adult nasal 382 
microbiota is significantly altered during ILI events. A. Community-wide, the microbiome 383 
composition changes significantly between samples collected during ILI versus times of relative health 384 
(p=0.003/0.0011, permanova with Bray Curtis and Aitchison distances). B-C. However, there is no 385 
significant change in a-diversity (as measured by the Shannon metric; B) or bacterial load (as measured 386 
by qPCR Concentration; C) when samples collected during ILI were compared to those collected pre- 387 
and post-cold and flu season. pre-C&F = pre-cold and flu season; ILI = influenza like illness; post-C&F 388 
= post-cold and flu season. 389 
 390 
 391 
 392 
 393 
A decrease in temporal stability of the nasal microbiota with ILI 394 
Having determined that ILI affects the microbiome composition during illness, we next 395 
asked what effect ILI has following illness. Of those participants who reported 396 
symptoms of ILI during the study period, the composition of their microbiome before 397 
(pre-C&F) and after (post-C&F) ILI differed statistically from each other based on 398 
Aitchison (p=0.002, R2=0.015) but not Bray Curtis (p=0.267, R2=0.009) distance or 399 
cluster membership (p=0.528, chi-squared test). When the post-C&F composition of 400 
individuals who did and did not experience ILI were compared, the composition of the 401 
microbiome did not differ significantly (Aitchison, p=0.186, R2=0.009; Bray Curtis, 402 
p=0.095, R2=0.012; cluster membership, p=0.133, chi-squared test). Together, these 403 
results indicate that there is some effect of ILI on the microbiota following illness at the 404 
community level but that this effect is not consistent enough to distinguish between 405 
individuals who had and had not experienced these respiratory events. 406 
 407 
When we analysed each individual – as opposed to focusing on community-wide 408 
metrics – we observe substantial changes to the microbiome during and following ILI. 409 
We tracked each individual's microbiota across PCoA space and asked whether the 410 
rate of movement between clusters is affected by ILI. As shown previously, the dataset 411 
separates by cluster in a PCoA analysis; examining the chronological sampling of each 412 
individual, we see within individual movement across PCoA space (Fig 3A). By 413 
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focusing on individuals who experienced ILI (n=51), we define 4 movement categories: 414 
(1) individuals who stay in the same cluster before, during, and after ILI (Fig 3B); and 415 
individuals who move between clusters: (2) with ILI but later returning to the pre-ILI 416 
cluster (Fig 3C); (3) with ILI but not returning to the pre-ILI cluster (Fig 3D); and (4) 417 
following – but not during – ILI (Fig 3E). These categories do not correlate with 418 
collected metadata (Sup Table 3); however, the within individual mean Bray Curtis 419 
distance are increased in categories which resulted in a permanent change in cluster 420 
membership (3-4) when compared to individuals who did not change clusters 421 
(category 1; Sup Fig 8), indicating the increased diversity between samples from 422 
individuals who experience significant cluster movement. 76.2% of individuals who 423 
experienced ILI moved between clusters, with 87.5% not returning to their original 424 
cluster by the end of the study period (categories 3-4; Fig 3F). Importantly, individuals 425 
who experienced ILI were statistically more likely to move between clusters when 426 
compared to those who did not have respiratory infection (76.2 vs. 48.7% of 427 
individuals; p=0.006, chi-squared test; Fig 3G). Movement between clusters was not 428 
predictable (e.g., there was no preference for a sample in a particular cluster to move 429 
to another at the next timepoint; Sup Fig 9). Together, these results indicate a 430 
significant legacy of change to the nasal microbiota associated with ILI events. 431 
 432 
 433 

 434 
 435 
Figure 3: The longitudinal effect of ILI on the frail older adult nasal microbiota. A. The PCoA of 436 
all samples coloured by cluster with lines connecting longitudinal samples of each individual. Examples 437 
of individuals which stay in the same cluster throughout sampling (B, category 1), change cluster upon 438 
ILI but return to their pre-ILI cluster upon resolution (C, category 2), change cluster upon ILI but do not 439 
return to their original cluster (D, category 3), and change cluster following an ILI (E, category 4). Counts 440 
of individuals who fall into each of these cluster movement categories are quantified (F) and the 441 
frequency of cluster movement is compared to that of individuals who did not experience respiratory 442 
events (G; p=0.006, chi-squared test). 443 
 444 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.02.23289167doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.02.23289167
http://creativecommons.org/licenses/by-nc-nd/4.0/


 445 
 446 
 447 
The impact of probiotic use on ILI 448 
The number of individuals experiencing ILI and the mean number of reported ILI 449 
events per individual did not differ statistically between the active and placebo arms of 450 
this study, as previously reported17 (p=0.092, chi-squared test, Fig 4A; p=0.589, t-test, 451 
data not shown). Neither the microbial composition nor cluster membership of 452 
individuals experiencing ILI differed statistically between probiotic and placebo 453 
treatments (p=0.438, R2=0.018 (Bray Curtis); p=0.529, R2=0.017, (Aitchison) 454 
distances; p=0.220, chi-squared test). Similarly, the post-C&F microbiota did not differ 455 
statistically with probiotic use (p=0.458, R2=0.008 (Bray Curtis); p=0.809, R2=0.007 456 
(Aitchison) distances; p=0.178, chi-squared test). Cluster membership nor microbiome 457 
composition were affected by the probiotic itself (Sup Fig 10). Collectively, this 458 
indicates that probiotic use does not affect the microbial composition of the nose 459 
during or following ILI in community-wide analyses. 460 
 461 
In contrast, individuals who experienced ILI whilst receiving probiotic were less likely 462 
to move between clusters compared to those experiencing ILI on placebo treatment 463 
(Fig 4B); 24 (85.7%) of individuals on placebo treatment moved between clusters in 464 
comparison to 8 (57.1%) individuals on probiotics (Fig 4C). This observation is not 465 
statistically significant (p=0.096, chi-squared test); further investigation of a larger 466 
cohort is needed to determine whether probiotic use could significantly affect the 467 
stability of the microbiome. In particular, there was more movement between clusters 468 
1 and 9 at the onset/resolution of ILI in individuals treated with placebo versus probiotic 469 
(Fig 4D-E). Together, these results indicate that the administration of probiotics did 470 
not have an observable effect on the overall nasal microbiota and that further studies 471 
are needed to assess whether probiotics can mitigate the long-term impact of ILI on 472 
the individual. 473 
 474 
 475 

 476 
 477 
Figure 4: The effect of an oral Lactobacillus rhamnosus GG probiotic on ILI. A. There was no 478 
statistical difference in the number of individuals who experienced ILI between the probiotic (active) 479 
and placebo arms of the trial (p=0.0918757, chi-squared test). B. The number of participants in each of 480 
the 4 cluster movement categories separated by whether they were part of the probiotic/active or 481 
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placebo arms of the trial. C. The frequency of cluster movement between individuals receiving probiotic 482 
vs. placebo treatments (p=0.096, chi-squared test). D-E. Network representation of cluster movement 483 
of individuals who experienced ILI on active (D) and placebo (E) treatment. Node size is proportional to 484 
the number of samples in a particular category/cluster group. The edges that connect node categories 485 
are sized proportional to the number of individuals who transitioned from one category to another during 486 
the course of their respiratory infection. Nodes and edges are coloured by the cluster that they belong 487 
to. 488 
 489 
 490 
 491 
 492 
Discussion 493 
Here we show that the diverse microbiota of frail, older residents of long-term care 494 
homes could be grouped into 9 distinct clusters based on ASV presence and 495 
abundance. We find that the  nasal microbiota of frail older adults exhibits an 496 
individualized response to ILI, often resulting in a lack of stability which is possibly 497 
mitigated, at least in part, by probiotic use. 498 
 499 
The observed diversity of this community is perhaps not surprising given that inter-500 
individual variability is also a feature of the aging immune system, where a lifetime of 501 
environmental exposures and immune experiences shapes the immune response and 502 
age-associated inflammation37. Interestingly, age did not correlate with microbiota 503 
composition, but frailty did, results which are in line with frailty being a better indicator 504 
of infection risk than age4, 5. 505 
 506 
Although this study is unique in its focus on a more frail, LTC dwelling cohort, previous 507 
studies have similarly identified changes to the respiratory tract microbiota in 508 
individuals who experience respiratory infection38, 39. In particular, a recent study of 509 
older (mean age of 70) community dwelling adults found similar distinctions between 510 
individuals experiencing ILI versus healthy controls36. Interestingly, this study found a 511 
difference in the stability of the microbiota post-ILI in individuals with higher 512 
abundances of core microbiota species (including Corynebacterium, Dolosigranulum, 513 
and Staphylococcus) 36; in contrast, we see no evidence of a difference in stability 514 
between individuals in clusters associated with or without a dominant taxa, perhaps 515 
suggesting that any protective effect of dominant taxa from ILI-induced changes to the 516 
microbiota in healthy older adults is weaker in this frail population. 517 
 518 
We identified a microbiome that lacked stability and changed longitudinally in 76% of 519 
individuals with ILI. The microbiota did not change in a predictable way or converge 520 
on a particular ASV or cluster, but instead was highly individualized. These results 521 
indicate that the introduction of a pathogen – be it viral or bacterial – often leads to 522 
profound changes in the frail, aged nasal microbiota. The results of the pilot study of 523 
a probiotic targeted for the gastrointestinal tract suggest that it may be possible to 524 
mitigate these changes, at least in part. Only 21 (of 77) individuals on probiotic 525 
treatment experienced ILI, and of those only 8 moved between microbiome clusters; 526 
this is in contrast to 30 of 73 individuals on placebo experiencing ILI with 24 of those 527 
30 moving between clusters. This pilot trial is too small to be able to statistically 528 
conclude that probiotic use is beneficial to the stability of the nasal microbiota during 529 
and following ILI, and further investigation – perhaps with a nasal probiotic – are 530 
encouraged. 531 
 532 
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Our analyses identify 9 distinct clusters of nasal microbial communities across this 533 
dataset. All but one of these clusters are associated with a dominant taxa (present at 534 
>35% relative abundance in >70% of samples), similar to that of the, community 535 
dwelling older adult microbiota36. Our use of hierarchical clustering outlined the 4 ASVs 536 
of Corynebacterium and 5 ASVs of Moraxella prevalent in the dataset. The ASVs of 537 
each species rarely co-occur within an individual (with the exception of cluster 1) 538 
suggesting possible intra-species competition within this niche. This may have 539 
downstream implications on the ecology of these communities, especially when we 540 
consider that certain Corynebacterium and Moraxella ASVs were differentially 541 
abundant across various collected metadata (Sup Fig 4). Cluster 2 was unique in that 542 
it wasn’t dominated by a particular taxa and that it was more diverse than the other 543 
clusters as measured by the Shannon diversity index. Interestingly, this increase in 544 
diversity correlated with a decrease in bacterial load (as measured by qPCR 545 
concentration), perhaps indicating the loss of a once-present prevalent taxon leaving 546 
only the less abundant – but highly diverse – taxa in its wake. 547 
 548 
Of the tested metadata variables, we identified a correlation of microbial composition 549 
with LTC home site, sex, time of collection, frailty, and cardiovascular disease. 550 
Variability of the microbiota with LTC home is already well-established in the gut16 and 551 
underlies known variations in management practices, air quality, diet, location etc. 552 
between LTC home sites. Similarly, changes to the nasal microbiota with the seasons 553 
has been previously documented in children40, and year-to-year differences may 554 
represent the effect of circulating viruses (and variants thereof) on the nasal 555 
microbiota. 556 
 557 
Preventing respiratory infection – and/or the long-term consequences of – in frail older 558 
adults will have an outsized impact on their care, quality of life and use of health care 559 
resources. Frailty, disability, and loss of independence is exacerbated by having a 560 
respiratory infection41 and hospitalization rates – especially for strokes and 561 
cardiorespiratory events – increase months to years after infection42. Some, but not all 562 
vaccines, are less effective in frail individuals43 so understanding the features of the 563 
frail microbiome and exploring new preventative measures are essential to reducing 564 
the burden of respiratory infections. 565 
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Supplemental Materials 603 
 604 

 605 
Supplemental Figure 1: A time series schematic of mid-turbinate sample 606 
collection. A time series of sample collection in this multi-year, longitudinal dataset 607 
(n=334). Labelled dates on the x-axis represent approximate start and end dates of 608 
collection for each cohort of samples. pre-C&F = pre-cold and influenza season; post-609 
C&F = post-cold and influenza season; ILI = influenza like illness. 610 
 611 
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 613 
Supplemental Figure 2: Evidence that 9 clusters is optimal. A-B. The dendrogram 614 
and taxonomic summaries as shown in Fig 1 redisplayed here for comparison. A 615 
detailed legend matching colours to genus-level taxonomic assignments is provided 616 
in Sup Fig 3. C. A heatmap of Bray Curtis distances between samples ordered as in 617 
panels A-B. D-G. PCoA analyses of various axes show separation of samples from 618 
each cluster across PCoA space. H. Median Bray Curtis distances within (black) and 619 
between (grey) each cluster show more similarity within clusters (with the exception 620 
of cluster 2) than between clusters. 621 
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 622 

 623 
Supplemental Figure 3: ASVs which are differentially abundant with qPCR 624 
concentration. A. ANCOMBC was used to determine ASVs which were differentially 625 
abundant with qPCR concentration. Here, the log fold change of each differentially 626 
abundant ASV is displayed as well as the adjusted p-value. The genus (or family if the 627 
genus was undefined) taxonomic id is used to identify each ASV. B-G. The log-628 
transformed qPCR concentration and relative abundance of each differentially 629 
abundant ASV is shown. A regression line with confidence intervals is shown in blue. 630 
 631 

 632 
Supplemental Figure 4: ASVs which significantly correlate with particular 633 
metadata variables. A-C. When examining the LTC site, among the 9 differentially 634 
abundant ASVs with a mean relative abundance >0.1% include 3 taxa which are 635 
dominant across the dataset. D. Of the 5 differentially abundant ASVs across the 636 
month of collection, 2 also correlated with LTC site, including a Moraxella ASV. 637 
 638 
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 639 
Supplemental Figure 5: The proportion of pre-C&F, ILI, and post-C&F samples 640 
in each cluster type. Samples collected at different points in the study period were 641 
not preferentially found in any particular cluster (p=0.148252, chi-squared test). 642 
 643 

 644 
Supplemental Figure 6: Respiratory events are not predictable from a priori 645 
collected samples. A. There are no observable differences between pre-C&F 646 
samples collected before ILI events did or did not occur (p=0.378/0.099, permanova 647 
with Bray Curtis and Aitchison distances, respectively). B. Clustering of pre-C&F 648 
samples did not statistically differ between individuals who did and did not 649 
subsequently experience ILI (p=0.121349, chi-squared test). 650 
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 652 
Supplemental Figure 7: ASVs which are differentially abundant across pre-C&F, 653 
ILI, and post-C&F sample types. A. ANCOMBC was used to determine the ASVs 654 
which were differentially abundant across the three sample types. Here, the test 655 
statistic (W) of each differentially abundant ASV is displayed along with the adjusted 656 
p-value. The genus (or family if the genus was undefined) taxonomic ID is used to 657 
identify each ASV. B-I. The log-transformed relative abundance of each differentially 658 
abundant ASV across the three sample types. 659 
 660 

 661 
Supplemental Figure 8: The intra-individual Bray Curtis distance is increased 662 
when significant cluster movement is observed. In individuals who did not have 663 
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events, those whose microbiome moved between clusters (“change”) have a 664 
statistically significant increased Bray Curtis distance when compared to those who 665 
did not move between clusters (“same”). Similarly, individuals who experienced 666 
influenza-like illness (ILI) had an increased intra-individual Bray Curtis distance when 667 
the illness resulted in a permanent change in cluster membership (categories 3-4) 668 
when compared to individuals who did not change clusters (category 1). 669 
 670 

 671 
Supplemental Figure 9: There is no discernible pattern in cluster movement 672 
between samples. Nodes and edges are weighted based on the number of samples 673 
in each category. Rows and columns of nodes are labelled with the sample type (pre-674 
C&F, ILI, post-C&F) and cluster number (1-9). 675 
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 677 
Supplemental Figure 10: Relative abundance of Lactobacillus across samples. 678 
There were no differentially abundant ASVs between individuals on active and placebo 679 
treatments, including any ASV with the taxonomic assignment of Lactobacillus. 680 
 681 
 682 
Supplemental Table 1: Participant characteristics across the dataset split by 683 
active and placebo arms of the trial. 684 
Characteristic Properties 
Sex 56 Female (73%) Active; 47 Female 

(64.4%) Placebo 
Median age (± standard deviation; sd) 86 (±7.4) Active; 87 (±6.7) Placebo 
Smoker 33 No, 40 Prior, 3 Yes (1 Unknown) 

Active; 38 No, 33 Prior, 2 Yes Placebo 
Median # of medications (± sd) 9 (±3.2) Active; 9 (±4.0) Placebo 
Median # of co-morbidities (± sd) 9 (±3.3) Active; 8 (±2.9) Placebo 
Median Barthel score (± sd) 30 (±28.1) Active; 45 (±29.8) Placebo 
Num. of Individuals reporting respiratory 
events 

21 (27.3%) Active; 30 (41.1%) Placebo 

 685 
 686 
 687 
 688 
 689 

�����

�����

�����

�����

�����

	
��
� ���
���
������ ����

�
��
��
�

�
	�
��
��
�

�

	������
� �� ����� ��
����
�����

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.02.23289167doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.02.23289167
http://creativecommons.org/licenses/by-nc-nd/4.0/


 690 
Supplemental Table 2: Correlating metadata variables. 691 
Variable 1 Variable 2 Statistical test, p-value 
Age at enrolment Sex aov, p=0.040 
Age at enrolment Smoker aov, p=0.0002 
Age at enrolment Influenza vaccination 

(current season) 
aov, p=0.044 

Age at enrolment Anemia aov, p=0.006 
Age at enrolment Seizures aov, p=0.020 
Site at enrolment Month chisq, p=2.519e-05 
LTC Site Season chisq, p=0.009 
LTC Site Year chisq, p=2.427e-13 
LTC Site Influenza vaccination 

(previous season) 
chisq, p=0.026 

LTC Site Pneumococcal vaccine 
(ever) 

chisq, p=0.001 

LTC Site Shared room chisq, p=9.711e-10 
LTC Site Seizures chisq, p=0.041 
Month Season chisq, p < 2.2e-16 
Month Year chisq, p=7.831e-16 
Month Smoker chisq, p=0.0004 
Month Pneumococcal vaccine 

(ever) 
chisq, p=0.024 

Month IL1B aov, p=0.005 
Season Year chisq, p=0.0003 
Season Pneumococcal vaccine 

(ever) 
chisq, p=0.019 

Season Dementia chisq, p=0.018 
Season IL1B aov, p=0.027 
Had respiratory event IL1B aov,p=0.042 
Smoker COPD chisq, p=0.012 
Smoker IL1B aov, p=0.050 
Medications (number of) COPD aov, p=0.015 
Medications (number of) CHF aov, p=0.0003 
Medications (number of) Dementia aov, p=0.017 
Medications (number of) DM aov, p=0.022 
Medications (number of) Comorbidities (number of) aov, p=8.03e-07 
Influenza vaccination 
(current season) 

Influenza vaccination 
(previous season) 

chisq, p=0.001 

Influenza vaccination 
(current season) 

Influenza vaccination 
(ever) 

chisq, p=3.596e-08 

Influenza vaccination 
(current season) 

Pneumococcal vaccine 
(ever) 

chisq, p=7.083e-05 

Influenza vaccination 
(current season) 

IL1B aov, p=0.032 

Influenza vaccination 
(previous season) 

Influenza vaccination 
(ever) 

chisq, p=7.785e-10 

Influenza vaccination 
(previous season) 

Pneumococcal vaccine 
(ever) 

chisq, p=0.001 
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Influenza vaccination 
(previous season) 

Comorbidities (number of) aov, p=0.014 

Influenza vaccination 
(ever) 

Pneumococcal vaccine 
(ever) 

chisq, p=0.003 

Influenza vaccination 
(ever) 

Barthel total aov, p=0.037 

Influenza vaccination 
(ever) 

Comorbidities (number of) aov, p=0.044 

Influenza vaccination 
(ever) 

IL1B aov, p=0.015 

Pneumococcal vaccine 
(ever) 

Cancer chisq, p= 0.029 

COPD CVD chisq, p=0.002 
CHF Comorbidities (number of) aov, p=0.002 
CVD Comorbidities (number of) aov, p=2.56e-06 
Anemia Comorbidities (number of) aov,p= 0.008 
Dementia IL6 aov, p=0.027 
Stroke Comorbidities (number of) aov, p=0.017 
Diabetes mellitus Comorbidities (number of) aov, p=0.045 

 692 
 693 
Supplemental Table 3: p-values of correlation tests (per individual) between 694 
collected metadata variables and cluster movement categories.  695 
Characteristic p-value Statistical test 
Age at enrolment 0.312 aov 
Sex 0.123 chisq 
LTC home site 0.722 chisq 
Allocation Group 
Probiotics 

0.091 chisq 

Smoker 0.192 chisq 
Num Medications 0.326 aov 
Influenza vacc this season 0.743 aov 
Influenza vacc last season 0.419 chisq 
Influenza vaccine ever 0.447 chisq 
Has pt received 
pneumonia vaccine 

0.290 chisq 

Is pt in shared room 0.985 chisq 
Barthel total 0.668 aov 
COPD 0.190 chisq 
CHF 0.148 chisq 
CVD 0.424 chisq 
Anemia 0.206 chisq 
Dementia 0.312 chisq 
CVA Stroke 0.123 chisq 
DM 0.403 chisq 
Hypothyroid 0.176 chisq 
Num Comorbidities 0.725 aov 
Seizures 0.309 chisq 
Cancer 0.468 chisq 
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IL1B 0.438 aov 
IL6 0.569 aov 
TNFA 0.675 aov 

Correlation was determined either with a chi squared or aov test, depending on 696 
the data type of the variable. COPD: chronic obstructive pulmonary disease, 697 
CHF: congestive heart failure, CVD: cardiovascular disease. 698 
  699 
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