1	Title: Risk of tuberculosis and uptake rates of latent tuberculosis infection screening among
2	clinical risk groups in South Korea: A nationwide population-based cohort study
3	
4	Short title: Risk of TB and LTBI screening among clinical risk groups in Korea
5	
6	Authors: Hyung Woo Kim ¹ , Jinsoo Min ² , Joon Young Choi ¹ , Ah Young Shin ¹ , Jun-Pyo Myong ³ ,
7	Yunhee Lee ³ , Hyeon Woo Yim ⁴ , Hyunsuk Jeong ⁴ , Sanghyuk Bae ⁴ , Choi Hoyong ⁵ , Hyekyung In ⁵ ,
8	Ahyoung Park ⁵ , Miri Jang ⁵ , Hyeon-Kyoung Koo ⁶ , Sung-Soon Lee ⁶ , Jae Seuk Park ⁷ , Ju Sang Kim ¹ *
9	
10	Affiliations:
11	¹ Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St.
12	Mary's Hospital, College of Medicine, The Catholic University of Korea
13	² Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's
14	Hospital, College of Medicine, The Catholic University of Korea,
15	³ Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of
16	Medicine, The Catholic University of Korea,
17	⁴ Department of Preventive Medicine, College of Medicine, The Catholic University of Korea,
18	⁵ Division of Tuberculosis Prevention and Control, Korea Disease Control and Prevention Agency,
19	⁶ Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik
20	Hospital, Inje University College of Medicine,
21	⁷ Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Dankook
22	University College of Medicine
23	
24	* Correspondence:
25	Ju Sang Kim
26	kimjusang@catholic.ac.kr

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

28 Abstract

29 Background: This study aimed to investigate actual tuberculosis (TB) risk and uptake rates of latent 30 tuberculosis infection (LTBI) screening among eight clinical risk groups specified in Korean guidelines. Proportions of potentially preventable TB in these groups were also calculated. 31 32 Methods and Findings: Patients enrolled before January 1st, 2018, were classified into a prevalence 33 cohort whereas those enrolled thereafter were classified into an incidence cohort. Both cohorts were 34 followed up until December 31st, 2020. Sex, age, and calendar year-adjusted standardized incidence ratio (SIR) of tuberculosis was calculated with total population in South Korea as a reference group. 35 The number of TB patients notified in 2018 was investigated for both prevalence and incidence 36 37 cohorts. SIR of TB in each incidence cohort was higher than that in each corresponding prevalence 38 cohort. Among all incidence cohorts, SIR in people living with human immunodeficiency virus 39 (PLHIV) was the highest (17.41, (95% CI: 14.14-21.43)). Although classified as moderate TB risk 40 diseases in current guideline, end-stage renal disease (ESRD) (8.05, (7.02-9.23)) and uncontrolled diabetes mellitus (DM) (6.31, (5.78-6.99)) showed high SIRs comparable to other high-risk diseases. 41 42 Among total TB cases notified in 2018, each cohort accounted for less than 1.5% except for patients with DM. The uptake rate of LTBI test was the highest among patients using TNF inhibitors (92.7%), 43 44 followed by those who underwent organ transplantation (60.4%) and PLHIV (41.3%). 45 Conclusions: LTBI screening should be reinforced for certain clinical risk groups such as ESRD or 46 uncontrolled DM. Beyond the current guideline, additional high-risk groups should be identified. 47

48 Keywords: Tuberculosis; Incidence; Latent tuberculosis; Relative Risk; Screening

49 INTRODUCTION

50	Approximately a quarter of population in the world is presumed to be infected with
51	tuberculosis (TB)[1]. For TB elimination, strategies to tackle the large TB reservoir are essential[2].
52	However, current diagnostic tools for latent tuberculosis infection (LTBI) have low predictive
53	values[3], which can result in high numbers needed treat to prevent a TB case. Several conditions
54	raising TB risk have been investigated[4]. Previous guidelines on LTBI have commonly specified two
55	key groups: TB contacts and clinical risk groups[5-8].
56	TB incidence in South Korea has continuously decreased since 2000. TB incidence was 96.3
57	cases per 100,000 population in 2000 and 44.6 cases per 100,000 population in 2021[9]. With a
58	decrease in TB incidence, strategy to prevent reactivation has been underscored as in other low-
59	incidence countries[10,11]. However, in contrast to contact investigation which is managed by the
60	government[12], LTBI screening in clinical risk group is usually performed in private sector, which
61	accounts for more than 90% healthcare facilities in South Korea[13]. Although clinical risk groups
62	have been specified in Korean guidelines since amendment in 2014[14], actual TB risk and uptake
63	rate of LTBI screening in these groups have not been evaluated before.
64	Thus, the objective of this study was to investigate the actual TB risk among high-risk
65	groups specified in Korean guidelines for TB and uptake rate of LTBI screening in each group.
66	Additionally, proportions of potentially preventable TB by implementing LTBI screening in these risk
67	groups were calculated among total nationwide TB burden.
68	
69	METHODS
70	Study population and data source
71	Eight diseases specified in Korean guidelines were selected. Records of patients with such
72	disease were extracted from National Health Information Database (NHID) according to the
73	operational definition of each disease (S1 Table). Each group was denoted as follows: Group 1,
74	people living with human immunodeficiency virus (PLHIV); Group 2, patients who underwent solid

75 organ or hematopoietic stem cell transplantation; Group 3, patients who used tumor necrosis factor

76 (TNF) inhibitors; Group 4, patients with end-stage renal disease (ESRD); Group 5, patients who 77 underwent gastrectomy; Group 6, patients with head & neck cancer; Group 7, patients with 78 hematologic malignancy; and Group 8, patients with diabetes mellitus (DM). Additionally, in Group 79 8, patients who needed regular insulin injection implying patients with poorly controlled DM were 80 selected and analyzed as Group 8-1. Three diseases (Group 1, Group 2, and Group 3) were classified 81 as high-risk diseases while others were classified as moderate-risk diseases. The date of enrollment 82 was defined as the first date that criteria for operational definition were all met. Patients enrolled before January 1st, 2018 were classified into a prevalence cohort, representing patients who had the 83 disease at the timepoint of January 1st, 2018. Those enrolled on 1st January 2018 or thereafter were 84 classified into an incidence cohort, who were newly diagnosed patients. Patients died before January 85 86 1st, 2018 were excluded. Patients with missing information on demographic variables such as age and 87 sex were also excluded. Each cohort was linked to database of Korean National TB Surveillance 88 System (KNTSS) using national identification number.

89

90 Study design

91 Patients enrolled in each cohort were followed up from January 1st, 2018 for the prevalence 92 cohort and from the date of enrollment for the incidence cohort. Follow-up was terminated at 1) date 93 of TB diagnosis, 2) date of death or 3) 31st December 2020, whichever came first. Incidence rate of 94 TB and mortality were calculated for each cohort. To estimate TB risk, sex, age, and calendar yearadjusted standardized incidence ratio (SIR) of tuberculosis were calculated with total population in 95 96 South Korea as a reference group. TB incidence among total population was calculated using database 97 of KNTSS notified from 2018 to 2020. SIR was presented after stratifying subjects into three age 98 groups - patients aged under 35 years, those aged between 35-64 years and those aged 65 years or 99 over.

Age-stratified proportion of each prevalence and incidence cohort among nationwide TB
 patients notified in 2018 was calculated. For the incidence cohort, only patients enrolled in 2018 were
 analyzed.

103	The percentage of those who underwent interferon-gamma release assay (IGRA) or
104	tuberculin skin test (TST) was investigated. Screening was classified by the date of LTBI
105	examination. Recent screening denoted that the screening was performed within one year before the
106	date of enrollment. New screening indicated that the screening was performed at the date of
107	enrollment or thereafter. Past screening represented that the screening was performed more than one
108	year before the date of enrollment. As some patients such as those who were scheduled for organ
109	transplantation and those who were going to use TNF inhibitors were requested to undergo LTBI
110	screening in advance, the percentage of recent or new screening was presented as one of the major
111	outcomes of this analysis.
112	
113	Statistical analysis
114	SIR based on Poisson model with 95% confidence interval from Wald's normal
115	approximation was calculated using R package 'popEpi'. All statistical analyses were conducted with
116	R v.3.6.2 (R foundation for Statistical Computing, Vienna, Austria) and SAS software version 9.4
117	(SAS Institute Inc., Cary, NC, USA). Statistical significance was considered when two-sided P-value
118	was less than 0.05.
119	
120	Ethics statement
121	The present study protocol was reviewed and approved by the Institutional Review Board
122	(IRB) of Incheon St. Mary's Hospital, the Catholic University of Korea (IRB No. OC20ZNDE0023).
123	Korea Disease Control and Prevention Agency collected informed consent from all notified TB
124	patients when they were enrolled according to Tuberculosis Prevention Act. Informed consent from
125	enrolled patients with high or moderate TB risk disease was waived due to the retrospective nature of
126	this study. All enrolled patients were anonymized.
127	
128	RESULTS

- 129 Numbers of finally included patients in prevalence and incidence cohorts are presented in
- 130 Figure 1. Demographic features of enrolled patients in each group were demonstrated in S2 Table.
- Among eight prevalence cohorts, Group 4 showed the highest TB incidence (487.4 per 100,000
- person-years) and mortality rate (9592.9 per 100,000 person-year). Similarly, among incidence
- 133 cohorts, TB incidence (1117.4 per 100,000 person-years) and mortality (19619.5 per 100,000 person-
- 134 years) were the highest in Group 4 (Table 1). In every group, TB incidence was higher in the
- 135 incidence cohort than in the prevalence cohort. Mortality was higher in the incidence cohort than in
- 136 the prevalence cohort for all groups except for Group 8.

137 Fig 1. Flow diagram.

								
	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8
Source population	19856	63003	36946	130885	253585	65647	127850	372110
Patients died before 1st Jan 2018	524	10435	155	23972	52402	8032	18141	50705
Patients who are live at 1 [™] Jan 2018	19332	52568	36791	106913	201183	57615	109709	367039
Data error	156	259	43	394	1257	265	463	5003
Patients without data error	19176	52309	36748	106519	199926	57350	109246	366539
Prevalence cohort	14776	40344	27390	95459	164472	40081	73949	335807
Who underwent LTBI treatment	228	565	1724	1153	391	96	399	5059
Prevalence cohort without LTBI treatment	14548	39779	25666	94306	164081	39985	73550	335302
Incidence cohort	4400	11965	9358	11060	35454	17269	35297	30731
Who underwent LTBI treatment	53	509	988	83	90	41	242	479
Incidence cohort without LTBI treatment	4347	11456	8370	10977	35364	17228	35055	30683

138

139 Group 1: patients with human immunodeficiency virus; Group 2: patient who underwent organ transplantation;

140 Group 3: patients who used tumor necrosis factor inhibitors; Group 4: patients with end-stage renal disease; Group

141 5: patients who underwent gastrectomy; Group 6: patients with head & neck cancer; Group 7: patients with

142 hematologic malignancy; Group 8: patients with diabetes mellitus.

143

144 LTBI: latent tuberculosis infection.

146 Table 1. Incidence of TB and death during follow-up period (2018-2020) among each prevalence cohort and each incidence cohort

		Prevalence col	Incidence cohort					
	TB, N (Incidence per 100000 person- years)	Death, N (Incidence per 100000 person- years)	Total N	Total follow- up (person- years)	TB, N (Incidence per 100000 person- years)	Death, N (Incidence per 100000 person- years)	Total N	Total follow-up (person- years)
Group 1	106 (247.1)	360 (839.2)	14548	42898.8	89 (1068.3)	162 (1944.6)	4347	8330.8
Group 2	167 (146.1)	2794 (2444.6)	39779	114293.7	105 (518.1)	1867 (9211.7)	11456	20267.6
Group 3	135 (177.2)	385 (505.3)	25666	76188.8	75 (448.9)	88 (526.7)	8370	16706.2
Group 4	1189 (487.4)	23401 (9592.9)	94306	243940.4	206 (1117.4)	3617 (19619.5)	10977	18435.7
Group 5	1161 (249.1)	15396 (3303.1)	164081	466104	225 (338.5)	3900 (5867.3)	35364	66470.2
Group 6	241 (219.7)	5860 (5341.1)	39985	109714.8	172 (575.5)	3239 (10837.4)	17228	29887.2
Group 7	311 (153.1)	9496 (4674.9)	73550	203127.5	343 (620.5)	9341 (16897.0)	35055	55282.1
Group 8	14677 (150.8)	204247 (2098.1)	3353020	9735057.0	1587 (208.8)	12207 (1606.4)	306834	759891.6
Group 8-1	4881 (304.0)	79825 (4971.9)	580894	1605530.5	498 (571.8)	5340 (6131.4)	38136	87092.1

147 Group 1: patients with human immunodeficiency virus; Group 2: patient who underwent organ transplantation; Group 3: patients who used tumor necrosis factor inhibitors;

148 Group 4: patients with end-stage renal disease; Group 5: patients who underwent gastrectomy; Group 6: patients with head & neck cancer; Group 7: patients with hematologic 149 malignancy; Group 8: patients with diabetes mellitus; Group 8-1: patients with diabetes mellitus who needed regular insulin injection.

150

151 TB: tuberculosis.

152 Standardized incidence ratio of TB

- 153 Age-stratified SIR of TB in the prevalence cohort is presented in Table 2. Group 4 had the
- 154 highest SIR (3.76, 95% CI: 3.55-3.98), followed by Group 1 (3.61, 2.98-4.37), Group 3 (3.30, 2.79-
- 155 3.90), and Group 8-1 (2.30, 2.24-2.37). Although there were subtle differences among cohorts, SIRs
- 156 in elderly population were lower than those in younger population.

Group	Age	Observed cases (n)	Expected cases (n)	Follow-up: person-years	SIR (95% CI)	P value
	<35	12	3.67	10573.1	3.27 (1.86-5.76)	< 0.001
Group	35-64	69	16.85	27287.9	4.09 (3.23-5.18)	< 0.001
1	≥65	25	8.84	5037.8	2.83 (1.91-4.19)	< 0.001
1	Total	106	29.36	42898.8	3.61 (2.98-4.37)	<0.001
	<35	4	3.58	16261.9	1.12 (0.42-2.98)	0.825
Group	35-64	117	49.58	78988.0	2.36 (1.97-2.83)	< 0.001
2	≥65	46	22.67	19043.7	2.03 (1.52-2.71)	< 0.001
2	Total	167	75.84	114293.7	2.20 (1.89-2.56)	<0.001
	<35	33	7.01	22623.7	4.71 (3.35-6.63)	<0.001
Group	35-64	69	21.97	44699.8	3.14 (2.48-3.98)	<0.001
3	≥65	33	11.96	8865.3	2.76 (1.96-3.88)	<0.001
5	<u></u> Total	135	40.93	76188.8	3.30 (2.79-3.90)	<0.001
	<35	8	2.09	6467.3	3.83 (1.91-7.66)	<0.001
Group	< <u>5</u> 3 35-64	8 479	80.90	123332.8	5.92 (5.41-6.48)	<0.001
4	33-04 ≥65	702	233.13	123332.8	3.01 (2.8-3.24)	<0.001 <0.001
4	 Total	1189	316.12	243940.4	· /	<0.001
	<35	2	0.83	243940.4	3.76 (3.55-3.98) 2.41 (0.60-9.64)	0.213
Carolin	<33 35-64	281	144.38	204652.1		
Group					1.95 (1.73-2.19)	< 0.001
5	<u>≥65</u>	878	555.09	258804.0	1.58 (1.48-1.69)	<0.001
	Total	1161	700.31	466104.0	1.66 (1.57-1.76)	< 0.001
G	<35	3	1.41	4742.3	2.13 (0.69-6.61)	0.189
Group	35-64	63	34.85	48128.0	1.81 (1.41-2.31)	< 0.001
6	<u>≥65</u>	175	125.59	56844.6	1.39 (1.2-1.62)	< 0.001
	Total	241	161.84	109714.8	1.49 (1.31-1.69)	< 0.001
	<35	10	8.12	37222.7	1.23 (0.66-2.29)	0.510
Group	35-64	105	56.09	95993.3	1.87 (1.55-2.27)	< 0.001
7	≥65	196	132.99	69911.5	1.47 (1.28-1.7)	< 0.001
	Total	311	197.20	203127.5	1.58 (1.41-1.76)	< 0.001
	<35	83	40.21	128813.8	2.06 (1.66-2.56)	< 0.001
Group	35-64	4804	3246.43	4690996.8	1.48 (1.44-1.52)	< 0.001
8	≥65	9790	9163.04	4915246.4	1.07 (1.05-1.09)	< 0.001
	Total	14677	12449.69	9735057.0	1.18 (1.16-1.20)	< 0.001
	<35	56	17.00	58409.4	3.29 (2.54-4.28)	< 0.001
Group	35-64	1834	475.81	706728.4	3.85 (3.68-4.04)	< 0.001
8-1	≥65	2991	1627.15	840392.6	1.84 (1.77-1.91)	< 0.001
	Total	4881	2119.96	1605530.5	2.30 (2.24-2.37)	< 0.001

157 Table 2. Standardized incidence ratio of TB among each prevalence cohort stratified b	y age
---	-------

158 Group 1: patients with human immunodeficiency virus; Group 2: patient who underwent organ transplantation;

Group 3: patients who used tumor necrosis factor inhibitors; Group 4: patients with end-stage renal disease; Group
 5: patients who underwent gastrectomy; Group 6: patients with head & neck cancer; Group 7: patients with

hematologic malignancy; Group 8: patients with diabetes mellitus; Group 8-1: patients with diabetes mellitus who
 needed regular insulin injection.

163

164 TB: tuberculosis; SIR: standardized incidence ratio.

166	Among all groups, SIR of TB was higher in the incidence cohort than in the prevalence
167	cohort (Table 3). Group 1 had the highest SIR (17.41, 14.14-21.43), followed by Group 3 (9.67, 7.71-
168	12.12), Group 2 (8.90, 7.35-10.77), and Group 4 (8.05, 7.02-9.23), which comprised the high-TB risk
169	group. Among other groups, Group 8-1 and Group 7 showed considerably high SIRs (6.31, 5.78-6.99
170	and 6.07, 5.46-6.75, respectively). As in the prevalence cohort, SIRs in elderly population were lower
171	than those in younger population. This generation gap in SIR was prominent in Group 1. For incident
172	Group 1, SIR was 33.43 (26.31-42.47) aged between 35 and 64 years and 1.42 (0.46-4.41) for those
173	who aged 65 years or over. Group 7 also showed such generation gap. For incident Group 7, SIR was
174	22.27 (15.75-31.49) for those aged under 35 years and 4.65 (4.03-5.36) for those aged 65 years or
175	over. However, in Group 3, such tendency was not prominent. For incident Group 3, SIRs for those
176	aged under 35 years, aged between 35 and 64 years, and aged 65 years or over were 8.91 (5.37-
177	14.78), 10.44 (7.69-14.18), and 8.84 (5.64-13.86), respectively.

Group	Age	Observed	Expected	Follow-up:	SIR (95% CI)	P value
P		cases (n)	cases (n)	person-years		
	<35	19	1.00	3192.6	19.03 (12.14-29.84)	< 0.001
Group	35-64	67	2.00	3972.8	33.43 (26.31-42.47)	< 0.001
1	≥65	3	2.11	1165.4	1.42 (0.46-4.41)	0.542
	Total	89	5.11	8330.8	17.41 (14.14-21.43)	< 0.001
	<35	9	0.59	3109.4	15.16 (7.89-29.13)	< 0.001
Group	35-64	77	8.75	14784.4	8.80 (7.04-11.00)	< 0.001
2	≥65	19	2.46	2373.8	7.73 (4.93-12.12)	< 0.001
	Total	105	11.80	20267.6	8.90 (7.35-10.77)	< 0.001
	<35	15	1.68	6557.5	8.91 (5.37-14.78)	< 0.001
Group	35-64	41	3.93	8501.3	10.44 (7.69-14.18)	< 0.001
3	≥65	19	2.15	1647.4	8.84 (5.64-13.86)	< 0.001
	Total	75	7.76	16706.2	9.67 (7.71-12.12)	< 0.001
	<35	5	0.25	863.1	19.87 (8.27-47.73)	< 0.001
Group	35-64	78	5.54	8628.0	14.07 (11.27-17.57)	< 0.001
4	≥65	123	19.80	8944.6	6.21 (5.21-7.41)	< 0.001
	Total	206	25.59	18435.7	8.05 (7.02-9.23)	< 0.001
	<35	0	0.20	675.0	0	
Group	35-64	86	21.84	33185.8	3.94 (3.19-4.86)	< 0.001
5	≥65	139	60.71	32609.4	2.29 (1.94-2.70)	< 0.001
	Total	225	82.75	66470.2	2.72 (2.39-3.10)	< 0.001
	<35	2	0.43	1705.0	4.62 (1.16-18.48)	0.030
Group	35-64	75	9.46	14202.3	7.92 (6.32-9.94)	< 0.001
6	≥65	95	28.74	13979.9	3.31 (2.70-4.04)	< 0.001
	Total	172	38.63	29887.2	4.45 (3.83-5.17)	< 0.001
	<35	32	1.44	7470.2	22.27 (15.75-31.49)	< 0.001
Group	35-64	122	14.40	26056.1	8.47 (7.09-10.12)	< 0.001
7	≥65	189	40.66	21755.7	4.65 (4.03-5.36)	< 0.001
	Total	343	56.50	55282.1	6.07 (5.46-6.75)	< 0.001
	<35	38	10.95	36272.6	3.47 (2.53-4.77)	< 0.001
Group	35-64	912	308.16	504621.9	2.96 (2.77-3.16)	< 0.001
8	≥65	637	367.35	218997.1	1.73 (1.60-1.87)	< 0.001
	Total	1587	686.46	759891.6	2.31 (2.20-2.43)	< 0.001
	<35	15	2.84	10598.4	5.29 (3.19-8.77)	< 0.001
Group	35-64	308	31.59	53195.6	9.75 (8.72-10.9)	< 0.001
8-1	≥65	175	44.56	23298.2	3.93 (3.39-4.55)	< 0.001
	Total	498	78.98	87092.1	6.31 (5.78-6.88)	< 0.001

179 Table 3. Standardized incidence ratio of TB among each incidence cohort stratified by	' age.
---	--------

180 Group 1: patients with human immunodeficiency virus; Group 2: patient who underwent organ transplantation;

181 Group 3: patients who used tumor necrosis factor inhibitors; Group 4: patients with end-stage renal disease; Group

182 5: patients who underwent gastrectomy; Group 6: patients with head & neck cancer; Group 7: patients with

hematologic malignancy; Group 8: patients with diabetes mellitus; Group 8-1: patients with diabetes mellitus who
 needed regular insulin injection.

185

186 TB: tuberculosis; SIR: standardized incidence ratio.

188 Proportion of each cohort among nationwide TB cases

- 189 Table 4 presents number of TB cases notified in 2018 among each cohort and proportion of
- 190 each cohort among 33,328 nationwide TB cases notified in 2018. Most of prevalence cohorts
- accounted for less than 1.5% of total notified TB cases except for Group 8 (17.2%). The proportion of
- 192 each incidence cohort was similar to or lower than that of the prevalence cohort. Most of incidence
- 193 cohorts accounted for less than 1% of total notified TB cases except for Group 8 (3.3%).

195 Table 4. Number of TB cases notified in South Korea, 2018 among each cohort and proportion of

each cohort among total nationwide TB cases notified in South Korea, 2018 (n = 33,328)

	TB cases among prevalence cohort, N (proportion %)	TB cases among incidence cohort ^a , N (proportion %)
All age (n=33,328)	4 1 2	
Group 1	48 (0.1)	50 (0.2)
Group 2	80 (0.2)	34 (0.1)
Group 3	79 (0.2)	26 (0.1)
Group 4	501 (1.5)	88 (0.3)
Group 5	480 (1.4)	89 (0.3)
Group 6	103 (0.3)	64 (0.2)
Group 7	144 (0.4)	158 (0.5)
Group 8	5724 (17.2)	1097 (3.3)
Group 8-1	2453 (7.4)	398 (1.2)
Total	6613 (19.8)	1572 (4.7)
Age <35 (n=4,155)		
Group 1	6 (0.1)	8 (0.2)
Group 2	3 (0.1)	4 (0.1)
Group 3	21 (0.5)	7 (0.2)
Group 4	6 (0.1)	2 (0.0)
Group 5	3 (0.1)	0(0)
Group 6	2 (0.0)	1 (0.0)
Group 7	10 (0.2)	18 (0.4)
Group 8	38 (0.9)	24 (0.6)
Group 8-1	29 (0.7)	12 (0.3)
Total	84 (2.0)	58 (1.4)
Age 35-64 (n=13,916)		
Group 1	35 (0.3)	38 (0.3)
Group 2	61 (0.4)	26 (0.2)
Group 3	39 (0.3)	14 (0.1)
Group 4	203 (1.5)	37 (0.3)
Group 5	140 (1.0)	36 (0.3)
Group 6	37 (0.3)	26 (0.2)
Group 7	55 (0.4)	60 (0.4)
Group 8	2067 (14.9)	689 (5.0)
Group 8-1	987 (7.1)	258 (1.9)
Гotal	2411 (17.3)	913 (6.6)
Age $\geq 65 (n=15,257)$		
Group 1	7 (0.0)	4 (0.0)
Group 2	16 (0.1)	4 (0.0)
Group 3	19 (0.1)	5 (0.0)
Group 4	292 (1.9)	49 (0.3)
Group 5	337 (2.2)	53 (0.3)
Group 6	64 (0.4)	37 (0.2)
Group 7	79 (0.5)	80 (0.5)
Group 8	3619 (23.7)	384 (2.5)
Group 8-1	1437 (9.4)	128 (0.8)
Total	4118 (27.0)	601 (3.9)

^aOnly patients who were enrolled in 2018 were analyzed.

198 Group 1: patients with human immunodeficiency virus; Group 2: patient who underwent organ transplantation;

199 Group 3: patients who used tumor necrosis factor inhibitors; Group 4: patients with end-stage renal disease; Group

5: patients who underwent gastrectomy; Group 6: patients with head & neck cancer; Group 7: patients with

201 hematologic malignancy; Group 8: patients with diabetes mellitus; Group 8-1: patients with diabetes mellitus who 202 needed regular insulin injection.

TB: tuberculosis.

204	Age-stratified proportion of each cohort was presented in Table 4. For high TB-risk diseases
205	(Group 1, 2, 3) and DM (Group 8) proportions of incidence cohort were highest among TB patients
206	aged between 35-64 years. For moderate TB-risk diseases such as ESRD (Group 4), or malignancy
207	(Group 5, 6, 7), those were highest among TB patients aged over 65 years. Proportions of each
208	incidence cohort were relatively low among TB patients aged under 35 years, in most of diseases.
209	However, those of high TB-risk disease (Group 1, 2, 3) among TB patient aged over 65 years were
210	even lower than among TB patients aged under 35 years.
211	
212	LTBI test uptake rate
213	The uptake rate of LTBI test was the highest in Group 3, with 92.7% of patients in Group 3
214	undergoing LTBI test within a year before or after the initiation of TNF inhibitors (Table 5). The
215	percentage was 41.3% in Group 1 and 60.4% in Group 2. These percentages were lower in groups
216	with moderate TB risk diseases. Only 14.1% and 12.0% of patients in Group 4 and Group 7
217	underwent LTBI test recently or newly, respectively. These percentage for other moderate TB risk
218	groups were even lower. IGRA rather than TST was the mostly used LTBI test in each group.
219	

220 Table 5. Percentage of patients who underwent latent TB screening with interferon-gamma release

	Recent or new	Dest services	No concerine	Total	
	screening	Past screening	No screening		
(row %)		(row %)	(row %)		
Group 1	up 1 1815 (41.3)		2542 (57.8)	4400	
Group 2	7221 (60.4)	315 (2.6)	4429 (37.0)	11965	
Group 3	8675 (92.7)	358 (3.8)	325 (3.5)	9358	
Group 4	1558 (14.1)	155 (1.4)	9347 (84.5)	11060	
Group 5	424 (1.2)	223 (0.6)	34807 (98.2)	35454	
Group 6 393 (2.3)		207 (1.2)	16669 (96.5)	17269	
Group 7	4235 (12.0)	490 (1.4)	30572 (86.6)	35297	
Group 8 2103 (0.7)		231 (0.1)	304979 (99.2)	307313	
Group 8-1 794 (2.1)		53 (0.1)	37386 (97.8)	38233	
(2) IGRA					
	Recent or new	Past IGRA	No IGRA	Total	
	IGRA (row %)	(row %)	(row %)	Total	
Group 1	1802 (41.0)	24 (0.5)	2574 (58.5)	4400	
Group 2 7108 (59.4)		265 (2.2)	4592 (38.4)	11965	
Group 3	8650 (92.4)	335 (3.6)	373 (4.0)	9358	
Group 4 1551 (14.0)		91 (0.8)	9418 (85.2)	11060	
Group 5 419 (1.2)		127 (0.4)	34908 (98.5)	35454	
Group 6 390 (2.3)		111 (0.6)	16768 (97.1)	17269	
Group 7	4193 (11.9)	294 (0.8)	30810 (87.3)	35297	
Group 8	2067 (0.7)	196 (0.1)	305050 (99.3)	307313	
Group 8-1 779 (2.0)		43 (0.1)	37411 (97.9)	38233	
(3) TST					
	Recent or new	Past TST	No TST	Total	
	TST (row %)	(row %)	(row %)	Total	
Group 1	56 (1.3)	37 (0.8)	4307 (97.9)	4400	
Group 2	774 (6.5)	264 (2.2)	10927 (91.3)	11965	
Group 3	919 (9.8)	478 (5.1)	7961 (85.1)	9358	
Group 4	84 (0.8)	98 (0.9)	10878 (98.4)	11060	
Group 5	1		35327 (99.6)	35454	
Group 6	-		17143 (99.3)	17269	
Group 7	•		(0.8) 34900 (98.9)		
Group 8	126 (0.0)	72 (0.0)	307115 (99.9)	307313	
Group 8-1 63 (0.2)		23 (0.1)	38147 (99.8)	38233	

assay (IGRA) or tuberculin skin test (TST) for each incidence cohort.

222 Group 1: patients with human immunodeficiency virus; Group 2: patient who underwent organ transplantation;

Group 3: patients who used tumor necrosis factor inhibitors; Group 4: patients with end-stage renal disease; Group

5: patients who underwent gastrectomy; Group 6: patients with head & neck cancer; Group 7: patients with

hematologic malignancy; Group 8: patients with diabetes mellitus; Group 8-1: patients with diabetes mellitus who needed regular insulin injection.

220 needed regular insulin injection.

227 IGRA: interferon-gamma release assay; TST: tuberculin skin test.

- 228 Recent screening denotes that latent TB examination (IGRA or TST) is performed within one year before the
- 229 date of enrollment. New screening indicates that the screening is performed at the date of enrollment or
- thereafter. Past screening represents that the screening is performed more than one year before the date of

enrollment.

233 DISCUSSION

In this study, well-known high TB risk diseases showed high SIRs as expected. Patients with ESRD showed TB risk comparable to those with high TB risk diseases. TB risk was relatively low in patients who underwent gastrectomy and patients with DM among groups with moderate TB risk. However, patients with uncontrolled DM status showed a relatively high TB risk. The uptake rate of LTBI screening in these clinical risk group was still suboptimal in all groups except for patients who used TNF inhibitors.

240 Previous LTBI guidelines did not specify when to treat in detail[5-8,15]. We demonstrated 241 that TB risk of patients who developed the disease newly was higher than that of those who were 242 diagnosed several years ago. This might be attributable to a decreased immunity of patients with an 243 uncontrolled status of disease around the date of diagnosis. Considering that in South Korea, 244 diagnosis rate of human immunodeficiency virus (HIV) was still suboptimal[16]. Many patients 245 presented low CD4+ cell levels at diagnosis[17], which might have increased their vulnerability to TB 246 at diagnosis as shown in a previous study [18]. Uncontrolled naïve DM and uremic status of patients 247 with chronic kidney disease (CKD) initiating dialysis might have also contributed to the high TB 248 incidence at diagnosis. Additionally, intensive immunosuppressive treatment following solid organ or 249 hematopoietic stem cell transplantation and consecutive use of TNF inhibitors could increase TB risk. Among patients with malignancy, it was presumed that immunosuppressive states might be temporary 250 251 during a session of anticancer treatments such as chemotherapy just after the diagnosis of cancer, which was demonstrated by decreasing SIR of TB with increasing time after cancer diagnosis[19]. 252 Our findings underscored that LTBI screening should be focused on incident groups. 253 However, most of incident groups showed higher mortality as well as higher TB incidence than 254 255 prevalent groups. Among patients who were newly diagnosed as ESRD, 33.0% (3617/10977) of patients died during the follow-up period. Considering adverse effects of LTBI treatment such as 256 gastrointestinal trouble and hepatotoxicity[20], we speculate that providing LTBI treatment to these 257 258 critically ill patients might be unfeasible in many cases. Moreover, in patients newly diagnosed as malignancy, preventing TB would not be a medical priority. In a previous study, TB incidence was 259

260 higher among patients with malignancy such as esophageal, lung, pancreatic cancer, and multiple myeloma, showing a relatively low 5-year survival[21]. We expect that the acceptance rate for LTBI 261 treatment among these patients with limited life expectancy would be low. Low LTBI screening 262 uptake rate in patients with malignancy (Groups 5, 6, 7) might be related to this reason. 263 264 However, Groups 2 and 3 showed relatively high uptake rates for LTBI screening (60.4% and 92.7%, respectively). This might be because LTBI screening and treatment are more feasible in 265 these groups than in other groups. Mortality rate of Group 3 was the lowest among all incident groups. 266 267 This finding suggests that LTBI screening would be more feasible when they are scheduled to be a 268 high-risk group, than when they had already become. Relatively low uptake rate of LTBI screening 269 rate among PLHIV (41.3%) who were specified as the highest TB risk group could be explained by 270 this hypothesis considering a low diagnosis rate of HIV and a low CD4+ cell count at diagnosis 271 suggesting delayed diagnosis of HIV in South Korea[16,17]. We presume that diagnosis of HIV in 272 earlier course of the disease would enhance the LTBI screening uptake rate. Further studies are 273 needed to verify this hypothesis.

274 ESRD showed high SIR as other diseases with high TB risk, although it was specified as a 275 disease with moderate TB risk in South Korea[15]. Additionally, it showed the highest SIR among all 276 prevalent groups, suggesting that immunosuppression state could last for a longer period than other 277 groups. Therefore, it should be reclassified as a disease with a high TB risk. However, LTBI 278 screening is not widely performed for those with ESRD. We speculate that screening LTBI at earlier 279 stage in chronic kidney disease (CKD) could be an alternative option for increasing the uptake rate of 280 LTBI screening, like that for PLHIV. However, potential nephrotoxicity of anti-TB medication, especially rifampicin, is a concern[22], which might lower the uptake rate of LTBI treatment among 281 patients with pre-dialysis CKD. LTBI regimen without potential risk of nephrotoxicity should be 282 investigated. 283

DM is a known risk factor for TB[23]. However, in our study, TB risk was relatively low among diseases with moderate TB risk. Instead, uncontrolled DM status rather than disease itself contributed to TB development, as reported in a previous study[24]. By focusing on patients with

uncontrolled DM, the cost of LTBI screening could be reduced while the effectiveness of TB
prevention is increased. However, mortality rate of this group was quite high – more than 10 times as
high as that of the total DM group. This suggests that there might be other serious comorbidities
among them. As in patients with ESRD and those with malignancy, comorbidities might limit the
feasibility of LTBI screening.

292 Besides feasibility, strategy targeting these clinical risk groups has other limitations. First, these clinical risk groups accounted for only small proportion of nationwide TB patients – less than 293 294 1.5% for each group except for patients with DM. Similarly to our results, Ronald et al. have demonstrated that application of WHO's LTBI guideline targeting only for TB contacts and clinical 295 296 risk group can only minimally impact the national TB incidence of Canada[25]. Only 4.5% of active 297 TB cases were preventable with this strategy. This suggests that covering clinical risk group is 298 essential but insufficient to reduce TB burden. Identification of additional high-risk groups is 299 required[26]. Second, when compared to SIR in younger generation, SIR in elderly population was 300 much lower in most groups. This suggests that identifying diseases with a high TB risk could be a 301 useful tool for risk stratification among younger generation whereas it is less useful in elderly 302 population. The low SIR in elderly population is attributable to a high TB incidence among general 303 elderly population in South Korea[27]. Other comorbidities not specified in current guidelines, 304 waning immunity derived from aging, and malnutrition might also contribute to this[28]. In addition, 305 we demonstrated that proportions of high TB risk diseases among elderly TB patients were extremely 306 low, and lower than other age groups, implying LTBI screening strategy targeting for high TB risk 307 diseases is less efficient in elderly population, than in other age groups.

In the previous Canadian study, covering immigrants from high TB burden countries potentially prevented 37.1% of total TB cases[25]. However, in South Korea, the proportion of foreign-born residents among total population was 3.4% in 2020, which was lower than average (14.7%) of other high-income countries[29]. Instead, native elderly TB patients are a key group in South Korea. In 2021, TB patients who aged 65 years or above accounted for approximately 51.0% of total TB cases[9]. LTBI screening and treatment among elderly population are not routinely

recommended due to low predictive values of diagnostic tools such as IGRA and TST and higher
incidence of adverse effects during LTBI treatment[20]. Recently, the necessity of expanding LTBI
screening to elderly population has been suggested[30] and the feasibility of LTBI treatment among
high-risk elderly population has been reported[31]. Further studies identifying high-risk elderly
population should be implemented.

This study has a strength of linking two databases covering the entire South Korean 319 population. Thus, many study subjects were included. We compared several diseases with high or 320 321 moderate TB risk simultaneously at nationwide level within the same study period. However, our 322 study had a limitation in that the LTBI status of each patient was unavailable. SIR among patients 323 with LTBI might reflect more accurate TB risk. However, considering that most diseases did not 324 affect LTBI prevalence[5] and that age was the most significant factor associated with LTBI 325 prevalence[32], we assumed that LTBI prevalence in each group and general population were not 326 quite different, and that age-adjusted SIR would be sufficient for estimating the actual TB risk. 327 Another limitation was that the number of patients with LTBI was not known. Thus, calculation of 328 further cascade of care such as initiation of LTBI treatment was unfeasible. 329 In conclusion, LTBI screening in certain clinical risk groups such as patients with ESRD and 330 patients with uncontrolled DM should be reinforced. Ideally, LTBI screening should be provided around the date of the disease diagnosis. However, feasibility of LTBI treatment at that period 331 332 remains a problem. Beyond the current guideline, identification of additional high-risk groups, especially among elderly population, is required. 333

334

335 Financial Disclosure Statement

This work was supported by a Research Program funded by Korea Disease Control and Prevention Agency (https://www.kdca.go.kr/) (2020E310100 to JSK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

339

340 Competing interests

341		The authors have declared that no competing interests exist.			
342 References					
343	1.	Houben RMGJ, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-			
344		estimation Using Mathematical Modelling. PLOS Medicine. 2016; 13:e1002152.			
345		https://doi.org/10.1371/journal.pmed.1002152			
346	2.	Dye C, Glaziou P, Floyd K, Raviglione M. Prospects for tuberculosis elimination. Annu Rev			
347		Public Health. 2013; 34:271-286. https://doi.org/10.1146/annurev-publhealth-031912-114431			
348		PMID: 23244049			
349	3.	Rangaka MX, Wilkinson KA, Glynn JR, Ling D, Menzies D, Mwansa-Kambafwile J, et al.			
350		Predictive value of interferon-γ release assays for incident active tuberculosis: a systematic			
351		review and meta-analysis. Lancet Infect Dis. 2012; 12:45-55. https://doi.org/10.1016/s1473-			
352		3099(11)70210-9 PMID: 21846592			
353	4.	Leung CC, Rieder HL, Lange C, Yew WW. Treatment of latent infection with			
354		Mycobacterium tuberculosis: update 2010. Eur Respir J. 2011; 37:690-711.			
355		https://doi.org/10.1183/09031936.00079310 PMID: 20693257			
356	5.	European Centre for Disease Prevention and Control. Programmatic management of latent			
357		tuberculosis infection in the European Union; 2018 [cited 2023 25th Jan]. Available from:			
358		https://www.ecdc.europa.eu/en/publications-data/programmatic-management-latent-			
359		tuberculosis-infection-european-union			
360	6.	National Institute for Health and Care Excellence. Tuberculosis, NICE guideline; 2016 [cited			
361		2023 25th Jan]. Available from: www.nice.org.uk/guidance/ng33			
362	7.	World Health Organization. WHO consolidated guidelines on tuberculosis: module 1:			
363		prevention: tuberculosis preventive treatment; 2020 [cited 2023 25th Jan]. Available from:			
364		https://www.who.int/publications/i/item/9789240001503			
365	8.	Targeted tuberculin testing and treatment of latent tuberculosis infection. Am J Respir Crit			
366		Care Med. 2000; 161:S221-247. https://doi.org/10.1164/ajrccm.161.supplement_3.ats600			
367		PMID: 10764341			

368	9.	Korea Disease Control and Prevention Agency. Annual Report on the Notified Tuberculosis
369		in Korea, 2021. 2022.
370	10.	Shea KM, Kammerer JS, Winston CA, Navin TR, Horsburgh CR, Jr. Estimated rate of
371		reactivation of latent tuberculosis infection in the United States, overall and by population
372		subgroup. Am J Epidemiol. 2014; 179:216-225. https://doi.org/10.1093/aje/kwt246 PMID:
373		24142915
374	11.	World Health Organization. Towards tuberculosis elimination: an action framework in low-
375		incidence countries. Geneva; 2014.
376	12.	Go U, Park M, Kim U-N, Lee S, Han S, Lee J, et al. Tuberculosis prevention and care in
377		Korea: Evolution of policy and practice. Journal of Clinical Tuberculosis and Other
378		Mycobacterial Diseases. 2018; 11:28-36.
379		https://doi.org/https://doi.org/10.1016/j.jctube.2018.04.006
380	13.	Organization for Economic Cooperation and Development. OECD Reviews of Public Health:
381		Korea. A Healthier Tomorrow; 2020. Available from: https://www.oecd-
382		ilibrary.org/sites/6e005d47-en/index.html?itemId=/content/component/6e005d47-en
383	14.	Joint Committee for the Revision of Korean Guidelines for Tuberculosis. Korean Guidelines
384		for Tuberculosis, 2nd edition. Korea Centers for Disease Control and Prevention; 2014.
385	15.	Joint Committee for the Revision of Korean Guidelines for Tuberculosis. Korean Guidelines
386		for Tuberculosis, 4th edition. Korea Centers for Disease Control and Prevention; 2020.
387	16.	Lee E, Kim J, Lee JY, Bang JH. Estimation of the Number of HIV Infections and Time to
388		Diagnosis in the Korea. J Korean Med Sci. 2020; 35:e41.
389		https://doi.org/10.3346/jkms.2020.35.e41 PMID: 32056401
390	17.	Kim MJ, Chang HH, Kim SI, Kim YJ, Park DW, Kang C, et al. Trend of CD4+ Cell Counts
391		at Diagnosis and Initiation of Highly Active Antiretroviral Therapy (HAART): Korea
392		HIV/AIDS Cohort Study, 1992-2015. Infect Chemother. 2017; 49:101-108.
393		https://doi.org/10.3947/ic.2017.49.2.101 PMID: 28608664
394	18.	Ellis PK, Martin WJ, Dodd PJ. CD4 count and tuberculosis risk in HIV-positive adults not on

395	ART: a sy	stematic	review a	and meta-	analysis.	PeerJ.	2017:	5:e4165.

- 396 https://doi.org/10.7717/peerj.4165 PMID: 29259846
- 19. Cheng MP, Abou Chakra CN, Yansouni CP, Cnossen S, Shrier I, Menzies D, et al. Risk of
- 398 Active Tuberculosis in Patients with Cancer: A Systematic Review and Meta-Analysis. Clin
- 399 Infect Dis. 2017; 64:635-644. https://doi.org/10.1093/cid/ciw838 PMID: 27986665
- 400 20. Campbell JR, Dowdy D, Schwartzman K. Treatment of latent infection to achieve
- 401 tuberculosis elimination in low-incidence countries. PLoS Med. 2019; 16:e1002824.
- 402 https://doi.org/10.1371/journal.pmed.1002824 PMID: 31170161
- 403 21. Cheon J, Kim C, Park EJ, Ock M, Lee H, Ahn JJ, et al. Active tuberculosis risk associated
- 404 with malignancies: an 18-year retrospective cohort study in Korea. J Thorac Dis. 2020;
- 405 12:4950-4959. https://doi.org/10.21037/jtd.2020.02.50 PMID: 33145069
- 406 22. Grilo Novais A, Silva C, Coelho AR, Silva R, Carvalho AC. Rifampicin-Induced
- 407 Nephrotoxicity in a Tuberculosis Patient: Treatment Dilemma? Eur J Case Rep Intern Med.
- 408 2021; 8:002833. https://doi.org/10.12890/2021_002833 PMID: 34790626
- 409 23. Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis: a systematic
- 410 review of 13 observational studies. PLoS Med. 2008; 5:e152.
- 411 https://doi.org/10.1371/journal.pmed.0050152 PMID: 18630984
- 412 24. Yoo JE, Kim D, Han K, Rhee SY, Shin DW, Lee H. Diabetes Status and Association With
- 413 Risk of Tuberculosis Among Korean Adults. JAMA Netw Open. 2021; 4:e2126099.
- 414 https://doi.org/10.1001/jamanetworkopen.2021.26099 PMID: 34546370
- 415 25. Ronald LA, Campbell JR, Rose C, Balshaw R, Romanowski K, Roth DZ, et al. Estimated
- 416 Impact of World Health Organization Latent Tuberculosis Screening Guidelines in a Region
- 417 With a Low Tuberculosis Incidence: Retrospective Cohort Study. Clin Infect Dis. 2019;
- 418 69:2101-2108. https://doi.org/10.1093/cid/ciz188 PMID: 30856258
- 419 26. Bigio J, Viscardi A, Gore G, Matteelli A, Sulis G. A scoping review on the risk of
- 420 tuberculosis in specific population groups: can we expand the World Health Organization
- 421 recommendations? Eur Respir Rev. 2023; 32 https://doi.org/10.1183/16000617.0127-2022

- 422 PMID: 36631131
- 423 27. Kim JH, Yim JJ. Achievements in and Challenges of Tuberculosis Control in South Korea.
 424 Emerg Infect Dis. 2015; 21:1913-1920. https://doi.org/10.3201/eid2111.141894 PMID:
- 425 26485188
- 426 28. Caraux-Paz P, Diamantis S, de Wazières B, Gallien S. Tuberculosis in the Elderly. J Clin

427 Med. 2021; 10 https://doi.org/10.3390/jcm10245888 PMID: 34945187

428 29. United Nations Department of Economic and Social Affairs Population Division.

429 International Migrant Stock 2020. 2020.

- Huynh GH, Klein DJ, Chin DP, Wagner BG, Eckhoff PA, Liu R, et al. Tuberculosis control
 strategies to reach the 2035 global targets in China: the role of changing demographics and
 reactivation disease. BMC Med. 2015; 13:88. https://doi.org/10.1186/s12916-015-0341-4
 PMID: 25896465
- 434 31. Huang HL, Huang WC, Lin KD, Liu SS, Lee MR, Cheng MH, et al. Completion Rate and
- 435 Safety of Programmatic Screening and Treatment for Latent Tuberculosis Infection in Elderly
- 436 Patients With Poorly Controlled Diabetic Mellitus: A Prospective Multicenter Study. Clin
- 437 Infect Dis. 2021; 73:e1252-e1260. https://doi.org/10.1093/cid/ciab209 PMID: 33677558
- 438 32. Kim HW, Min J, Choi JY, Shin AY, Myong JP, Lee Y, et al. Prevalence of latent tuberculosis
- 439 infection among participants of the national LTBI screening program in South Korea A
- 440 problem of low coverage rate with current LTBI strategy. Front Public Health. 2022;
- 441 10:1066269. https://doi.org/10.3389/fpubh.2022.1066269 PMID: 36743163