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Abstract

In the context of precision medicine, multi-omics data integration provides a comprehensive

understanding of underlying biological processes and is critical for disease diagnosis and biomarker

discovery. One commonly used integration method is early integration through concatenation of

multiple dimensionally reduced omics matrices due to its simplicity and ease of implementation.

However, this approach is seriously limited by information loss and lack of latent feature interaction.

Herein, a novel multi-omics early integration framework (IE-MOIF) based on information

enhancement and image representation learning is thus presented to address the challenges.

IE-MOIF employs the self-attention mechanism to capture the intrinsic correlations of

omics-features, which make it significantly outperform the existing state-of-the-art methods for

multi-omics data integration. Moreover, visualizing the attention embedding and identifying

potential biomarkers offer interpretable insights into the prediction results. All source codes and

model for IE-MOIF are freely available https://github.com/idrblab/IE-MOIF.

Keywords

Multi-omics integration, Deep learning, Disease diagnosis, Biomarker discovery

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.06.07.23291110doi: medRxiv preprint 

https://github.com/idrblab/IE-MOIF
https://doi.org/10.1101/2023.06.07.23291110


Introduction

With the rapid advancement of high-throughput biomedical sequencing technology, it has become

increasingly easy to access multiple omics (multi-omics) data (mRNA expression, DNA

methylation, microRNA expression, protein expression, etc.) from national programs of genome

research, such as The Cancer Genome Atlas (TCGA) [1], the International Cancer Genome

Consortium (IGCG) [2], etc. While each omics data type is specific in revealing a part of biological

information, integrating multi-omics data can provide a more comprehensive view of disease

mechanisms [3-7] and an opportunity to promote the development of precision medicine [8-10].

However, improper integration approaches may introduce the complexity and computational cost of

the problem [3, 11, 12]. Therefore, there is an urgent need for methods to process, normalize, and

integrate heterogeneous multi-omics data into a cohesive compendium that can capture

complementary information and serve as a training ground for further analysis and learning [13,

14].

In recent years, numerous strategies have been proposed for unsupervised multi-omics integration,

such as iCluster [15], Similarity Network Fusion (SNF) [16], Multi-Omics Factor Analysis (MOFA)

[17], SubtypeGAN [18], DeepProg [19], etc. These methods primarily address the tasks of subtype

clustering and prognostic analysis, that is, they do not require prior knowledge of sample

phenotypes. As datasets with detailed sample phenotype annotations are becoming increasingly

available, there is a growing interest in supervised multi-omics data integration methods that enable

accurate prediction on unknown samples [20, 21]. So far, supervised integration methods include:

(1) early integration methods that concatenate matrices of different omics data types, such as RDFS

[22], Stetson et al. [23], Fu et al. [24] and, (2) intermediate integration methods that transform

different omics data types into a common space, such as MoGCN [25], and (3) late integration

methods that combine predictions from different omics data types using ensemble learning, such as

MOGONET [20] and MOMA [26]. Compared to other integration methods, early integration has

become the most commonly used method [3, 27] for the reasons that it preserves the attributes of

biometric measurements and is ease of implementation.

However, early integration faces two main challenges in its application: (1) The raw

high-dimensional data generated by concatenating all omics data is complex, noisy and redundant,

which results in a difficult learning and an underperformed model [3]. Existing methods [22, 28]

often apply feature selection algorithms to reduce the complexity of the composite matrix, which

results in information loss as certain useful information is filtered out during the selection process
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[16]. (2) Another challenge lies in the fact that sequential high-dimensional multi-omics vectors can

hardly reflect the intrinsic correlations of omics-features from the representational level [29] and

cannot be applied to some advanced deep learning models, such as 2D-CNN and Vision

Transformer [30].

To address these challenges, we propose IE-MOIF, a novel multi-omics early integration

framework based on information enhancement and image representation learning strategies.

Specifically, all feature variables within the raw high-dimensional multi-omics data are designated

as a global feature set (GFS), while the feature subsets resulting from feature selection are

designated as a local feature set (LFS). IE-MOIF constructs a sample similarity network utilizing

the GFS, and the features within the LFS achieve information enhancement through neighborhood

aggregation and message passing in this sample similarity network. Then the LFS is assigned to a

regular 2D-map (omicsMap) by calculating the feature cosine similarity. Finally, an ensemble

model of Vision Transformer (ViT) with different number of encoders (En-ViT) is used to capture

the intrinsic correlations of omics-features in the omicsMap and perform effective class prediction

on new samples. To validate the capabilities and versatility of IE-MOIF, we performed a

comprehensive performance comparison with other multi-omics integration methods on four

biomedical classification tasks: Alzheimer’s disease (AD) patient classification, breast carcinoma

(BRCA) subtype classification, tumor grade classification in prostate cancer (PRAD) and

COVID-19 patient classification. Our results demonstrate that our proposed method outperforms

other state-of-the-art (SOTA) methods while providing interpretable insights into prediction results

through latent visualizing and biomarker discovery.

Materials and Methods

Datasets collection

The superiority of IE-MOIF was validated on four different biomedical classification tasks: PRAD

for tumor grade classification in prostate cancer, ROSMAP for AD patients vs. normal control,

BRCA for breast invasive carcinoma PAM50 subtype classification, and COVID-19 for corona

virus disease patients vs. normal control. Specifically, preprocessed datasets of ROSMAP and

BRCA were obtained from a previous study [20] , with each dataset containing mRNA data, DNA

methylation data and miRNA data. For PRAD dataset , batch effect-normalized mRNA data, DNA

methylation data, miRNA data and clinical data were obtained from the GDC TCGA Prostate

Cancer dataset provided on Xena (https://xenabrowser.net/). Patients with both mRNA data, DNA

methylation data and miRNA data were included. For COVID-19 dataset, mRNA data, proteins
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data, lipids data and metabolites data were obtained from the MassIVE Dataset Summary

(accession=MSV000085703). It was a cohort study conducted by Overmyer et al. [26], which

involving 128 patients with and without COVID-19 diagnosis and enabled a comprehensive system

analysis of COVID-19 blood sample. The details of four datasets were listed in Table 1.

Data preprocessing

Chi-square (χ2) feature selection is a supervised feature selection method that commonly used in the

feild of statistics and biomedical science. Specifically, it assesses the correlation between the

feature and the real label by chi-square test, and then determines whether to select it. In order to

make the selected features match the 2D grid map, which hold the same length of width and height,

the number of features of each omics will be computed before feature selection. Similar to the study

by wang et al. [27], the ROSMAP dataset used 200 mRNA, 200 meth and 200 miRNA respectively;

while the BRCA, PRAD and COVID-19 datasets used 1000 mRNA, 1000 meth and 500 miRNA

respectively. Finally, each feature is scaled to [0, 1] through linear transformations by using the

sklearn package.

IE-MOIF construction

IE-MOIF is proposed for multi-omics integration and classification. This framework is composed of

two main modules: (1) information enhancement module for reducing information loss of

omics-features after feature selection, (2) image representation learning module for capturing

intrinsic correlations between omics-features.

Module 1: information enhancement module

Information enhancement is performed through neighborhood aggregation and message passing in

the SSN. SNF algorithm [32] was utilized to construct networks of samples for each available omics

separately and then efficiently fuses these into one network (SSN) that represents the full spectrum

of underlying data. Suppose that given n samples and m omics data types, for the ��ℎ omics type, a

� × � scaled sample similarity network �� is calculated:

�� �, � = exp −
�2 ��, ��

���,�

where x is a vector represented by the ��ℎ omics type and � ��, �� is the euclidean distance

between sample i and sample j. µ is a hyper-parameter that can be empirically set and ��,� is used to
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eliminate the scaling problem. Then, a normalized sample weight matrix �� and a K-nearest

neighbors local affinity matrix �� of the ��ℎ omics type will be calculated as follows:

�(�) �, � =

�(�, �)
2 �≠� �(�, �)�

, � ≠ �

1
2

, � = �

�(�) �, � =
�(�, �)

�∈��
�(�, �)�

, � ∈ ��

0 , ��ℎ������

where �� represents a set of ��’s neighbors including ��

In the case of there are two types of omics, the similarity matrix corresponding to each of the data

types will be updated iteratively as follows:

�(�) = �(�) × �≠� � ��
� − 1 × � � �

, � = 1, 2, 3, …, �

where P�+1
(1) is the status matrix of the first omics type after t iterations and P�+1

(2) is the status

matrix of the second omics type. After t steps, the overall status matrix can be calculated as:

�(�) =
��

(1) + ��
(2)

2

Given a sample matrix � ∈ Rn×m (n samples and m features), a new sample matrix �' will be

calculated for fusing this SSN (�(�)) into the sample matrix �:

�' = �(�) × �

Module 2: image representation learning module

A sample matrix �' ∈ Rn×m is generated from the information enhancement module, therefore,

each feature is represented by a n-dimension vector � ∈ Rd . Then sklearn package is applied to

calculate feature similarity network � ∈ R�×� . The similarity between feature i and feature j is

indicated by � �, � as follows:

�(�, �) = 1 −
�� ∙ �

�� ��
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Then, the UMAP or tSNE algorithm is used to reduce the matrix D to 2D space. The omics-features

in this 2D space are further rearranged to a regular 2D-grid map using the J-V algorithm for linear

assignment. The J-V algorithm finds the optimal solution with the minimum distance between the

2D scatter and the regular grid, and generates a pre-learned map reflecting the intrinsic correlations

between omics-features. Finally, the raw multi-omics data is transformed into an image

representation by rearranging each feature from different omics layers to a specific position

according to this pre-learned map (OmicsMap).

In the workflow of ViT [33], the 2D grid map � ∈ R�×�×� is split into a sequence of flattened 2D

patches Xp ∈ R�×(�2∙�) , where (H, W) is the resolution of the original map, C is the number of

channels, (P, P ) is the resolution of each image patch. The patches are flattened and mapped to D

dimensions with a trainable linear projection. Then position embedding is added to these patches

while class token is concatenated to the first patch, that is, the ith 2D image is newly represented as

follows:

�� = [�class; X�
1E; X�

2E; . . . ; ; X�
�E] + ����, E ∈ R(�2∙�)×�, ���� ∈ R(�+1)×�

The ViT encoder consists of alternating layers of multi-head self-attention (MHA) and MLP blocks.

Layernorm (LN) is applied before every block, and residual connections after every block.

Specifically, each encoder can be written as:

�'� = MHA(LN(��−1)) + ��−1, � = 1,2,3, . . . , �

�� = MLP(LN(��)) + ��, � = 1,2,3, . . . , �

where L is the number of encoder blocks, zl−1 is the output of the (l − 1)th encoder block. The

class token ��[�����] of the output from the last encoder block will be transferred into a MLP Head

for the final prediction:

�� = MLP_Head(��[�����])

Finally, we used an ensemble model of ViT models with 9, 10, 11 and 12 encoding layers

respectively called En-ViT and made effective class predictions on new samples using a voting

approach. Other hyper-parameters for random state, learning rate and num_mlp are set to 0, 5e-5

and 2048 respectively.

Interpretability assessment of IE-MOIF
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The capability of a deep learning model to identify potential biomarkers is critical to interpreting

results and understanding the underlying biology in biomedical applications. In our study, the

importance of input features can be measured based on an importance score computed from the

permutation algorithm and the mean squared error (MSE) metric, that is, the performance decrease

after the features are masked represents the importance of the input features. Suppose that given a

valid dataset S ∈ Rn×m , sample’s label Y ∈ R1×n and a trained model ViT. For the feature mi , its

importance can be computed as follows:

Importancemi = MSE(Y, ViT(S)) − MSE(Y, ViT(Sm))

where �� represent the masked matrix after the ��ℎ feature is replaced by 0 value.

Adjusted Rand index (ARI) [34] is used to evaluate the clustering performance of latent vectors,

which reflects the degree of overlap between clustering results and actual labels. Specifically,

clustering labels K is generated for latent vectors using K-means clustering and then calculate RI

based on actual labels:

�� =
� + �

�

2

where a is defined as the number of instance pairs that are assigned to the same class in C and to the

same cluster in K. b is defined as the number of instance pairs that are assigned to different classes

in C and different clusters in K. The ARI is then calculated using the following formula:

��� =
�� − �(��)

max(��) − �(��)

Results and Discussion

Architecture of IE-MOIF

Here, we propose the IE-MOIF, a novel multi-omics early integration framework for biomedical

classification tasks and biomarker discovery (as shown in Figure 1). Given a preprocessed

multi-omics dataset, we first use SNF [16] to construct omics-specific sample similarity networks

(SSN) for different omics layer. These SSNs are iteratively fused to generate the final fusion

network. Meanwhile, a feature selection method is applied for raw multi-omics input, which can

filter redundant and noisy features. These features are further enhanced by performing

neighborhood aggregation and message passing in the SSN (as illustrated in Figure 1b). Then, the

matrix with information-enhanced features is further used to construct feature similarity network
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(FSN) by calculating the pair-wise cosine similarity. FSN is projected into 2D space using the

dimensionality reduction algorism (UMAP [35] or tSNE [36]), which is further assigned to a

regular 2D-grid map (OmicsMap) by using J-V algorithm [37]. As a result, all the features from

different omics types will be rearranged to a specific position according to this pre-learned

OmicsMap. After image representation, the OmicsMap is split into a sequence of flattened 2D

patches and forwarded to an ensemble learning framework (En-ViT), where ViT models use 9, 10,

11 and 12 encoding layers, respectively (as illustrated in Figure 1c). The detailed structure of ViT

is presented in Supplementary Figure S1. En-ViT effectively detects the variation in patches

through powerful self-attention mechanism and makes robust label prediction.

IE-MOIF outperforms existing supervised multi-omics integration methods in various

classification tasks

The classification performance of IE-MOIF was compared with four SOTA supervised multi-omics

integration (SMI) methods and four traditional supervised machine learning (TML) methods: (1)

MOGONET [20]. MOGONET explores the cross-omics correlations at the label space for effective

multi-omics integration by using graph convolutional network (GCN) and view correlation

discovery network (VCDN) to explore the cross-omics correlations at the label space for effective

multi-omics integration. (2) MoGCN [25]. MoGCN is a SMI method based on auto encoder and

GCN. (3) RDFS [38]. RDFS is a SMI model that uses RF and deep neural network (DNN). (4)

MOMA [26]. MOMA is a multi-task attention learning algorithm for integrating multi-omics data

and outperforms in the classification of disease-related phenotypes. (5) K-nearest neighbor (KNN).

(6) Random forest (RF). (7) Support vector machine (SVM). (8) Extreme gradient boosting

(XGBoost). The details of these methods were listed in Table 2. To ensure comparability,

MOGONET, MoGCN, RDFS and MOMA were retrained with multi-omics data in the

corresponding input format reported in original literatures. KNN, RF, SVM and XGBoost were

trained with the concatenated matrix of the multi-omics data. We used the above methods to

perform stratified 5-fold cross validation (CV) on four datasets (ROSMAP, BRCA, PRAD and

COVID-19). The average accuracy (ACC), F1-score and Matthews correlation coefficient (MCC)

of 5-fold CV were used as the evaluation metrics for binary classification, while ACC, F1_weight

and F1_macro were used for multi-class classification. The following results described the

superiority of proposed IE-MOIF over other supervised multi-omics integration methods in terms of

‘effectiveness & robustness’ and ‘extensibility & practicability’.

The effectiveness & robustness of IE-MOIF
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As shown in Figure 2 and Supplementary Table S1, S2, S3, IE-MOIF showed the best

performance in terms of all metrics across three multi-omics datasets. Specifically, the ACC value

of IE-MOIF was higher than that of all supervised integration methods, which was 0.8405, 0.8674

and 0.9219 on ROSMAP, BRCA and PRAD dataset, respectively. Among the SMI methods, no

such a method can beat others consistently. For instance, MORONET displayed better performance

on ROSMAP and PRAD while MoGCN performed better on BRCA compared with other

integration methods. In the binary classification tasks (ROSMAP and PRAD), IE-MOIF get 4.86%

and 10.24% higher in F1 metric, respectively, compared with MORONET. In the multi-class

classification task (BRCA), IE-MOIF was 4.99% and 5.81% higher than MoGCN in F1_weighted

and F1_macro, respectively. The results indicated that IE-MOIF was of superior robustness on

multiple biomedical classification tasks. It was worth noting that both methods (MOGONET and

MoGCN) were based on GCN, which suggested that integration methods utilizing neighborhood

aggregation and message passing could learn multi-omics data more efficiently than feedforward

neural networks (RDFS and MOMA). Interestingly, the SSN module in IE-MOIF could function as

the GCN for neighborhood aggregation and message passing, thus improving the performance of

IE-MOIF. MOMA showed inferior performance compared to other SMI methods on two of three

datasets (PRAD and BRCA). This result might be attributed to the fact that MOMA utilizes raw

high-dimensional multi-omics data as model input, which contains much noise. Compared to the

best one among four TML methods on three datasets, IE-MOIF get 19.53%, 27.9% higher in MCC

on ROSMAP and PRAD, respectively, and 6.5% higher in F1_macro on BRCA. These TML

methods were trained with the concatenated multi-omics data and belong to the early integration

approach, which were incapable of making full use of multi-omics data. This further demonstrated

the effectiveness and robustness of our multi-omics integration strategy with information

enhancement and image representation learning.

The extensibility & practicability of IE-MOIF

The COVID-19 dataset is a binary classification task with four types of multi-omics data. As shown

in Supplementary Table S4, IE-MOIF (0.9840), MOGONET (0.9840) and RDFS (0.9600)

achieved the comparable performance in ACC on COVID-19 dataset. However, it was worth noting

that all the four SMI methods were initially developed for dealing with multi-omics data containing

three or fewer omics types. MOMA and MoGCN, in particular, were difficult to apply to

COVID-19 dataset due to their poor extensibility. Therefore, we focused on comparing the

proposed IE-MOIF with MOGONET and RDFS on COVID-19 dataset. The source codes of

MOGONET and RDFS were manually modified to cope with the COVID-19 dataset. In contrast,
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IE-MOIF is an end-to-end integral framework. It only requires users to input data without the

modification of source code, and is not limited by the number of multi-omics data types. In

conclusion, IE-MOIF is of great extensibility and practicability which can automatically perform

multi-omics data integration and various classification tasks.

IE-MOIF outperforms existing unsupervised multi-omics integration methods in various

classification tasks

IE-MOIF was also compared with three unsupervised multi-omics integration (UMI) methods: (1)

MOFA [39]. MOFA is a Bayesian model for unsupervised integration of multi-omics data, and it

infers a set of hidden factors to capture biological and technical sources of variability. (2) SNF [16].

SNF is an unsupervised method that creates a comprehensive view of a disease by computing and

fusing patient similarity networks. (3) SubtypeGAN [18]. SubtypeGAN is a deep adversarial

learning approach for unsupervised integration of multi-omics data. To compare these UMI

methods, the combination strategy proposed by Sehwan et al. [26], ‘unsupervised_method +

supervised_classifier’, was applied in this study. This strategy utilized ‘unsupervised_method’ for

latent encoding of multi-omics data and ‘supervised_classifier’ for classification. In total, 12

methods were obtained and evaluated by pairing above three UMI methods and four commonly

used classifiers (KNN, RF, SVM, XGBoost). For each UMI method, the best combination was

selected as the final model (as shown in Supplementary Table S6).

As shown in Figure 2, the combination methods with ‘unsupervised_method +

supervised_classifier’ strategy were significantly worse than our IE-MOIF. Specifically, compared

to the best performing UMI method, IE-MOIF was able to get 27.55%, 27.56% higher in MCC on

ROSMAP and PRAD, respectively, and 11.9% higher in F1_macro on BRCA. Most of UMI

methods were worse than SMI methods and certain UMI methods displayed inferior performance

compared to TML methods (e.g., MOFA worse than SVM on ROSMAP and SNF worse than

XGBoost). These results indicate that typical unsupervised integration methods do not work

effectively on current biomedical classification tasks, though they are popular in sample clustering

and prognostic analysis. This also explains the reason for the development of novel supervised

multi-omics data integration methods.

Performance of IE-MOIF under different omics data type

In order to demonstrate the effectiveness of multi-omics integration in improving the performance

of classification task, we conducted a comparative analysis of the classification performance of

IE-MOIF utilizing three types of omics data (‘mRNA + meth + miRNA’), IE-MOIF utilizing two
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types of omics data (‘mRNA + meth’, ‘mRNA + miRNA’, and ‘meth + miRNA’), and IE-MOIF

using single-omics data type (mRNA, meth, and miRNA). For this purpose, the integrated

OmicsMap was partitioned into a multi-channel map where each channel represented an individual

omics layer and was used as the omics-specific map. The maps for three combinations of any two

omics types were obtained by pairing different channels within the multi-channel map.

As shown in Figure 5, the IE-MOIF models utilizing three types of omics data consistently

achieved optimal performance across the two binary classification tasks (ROSMAP and PRAD),

which demonstrated the necessity of integration of multi-omics data in biomedical classification.

Furthermore, the IE-MOIF models utilizing two types of omics data presented superior performance

compared to the models employing corresponding single-omics data (e.g., ‘mRNA + miRNA’

outperforms either mRNA or miRNA). Interestingly, certain IE-MOIF models utilizing two types of

omics data and single-omics data exhibited better performance compared to the best baseline model

utilizing three types of omics data (e.g., ‘mRNA + meth’ and ‘miRNA’ in the PRAD dataset). This

further substantiates that IE-MOIF can effectively capture the intrinsic correlations of

omics-features during the early integration of multi-omics data through SSN for feature

enhancement and FSN for image representation.

Ablation studies

Three ablation studies were conducted to systematically investigate the influences of the

information enhancement module (Module 1) and image representation learning module (Module 2)

on BRCA dataset. Specifically, Study 1 was for the evaluation of Module 1 while Study 2 and

Study 3 were for Module 2. In the Study 1, the concatenated matrix of multi-omics data was

directly used for image representation learning without employing the Module 1. In the Study 2, a

neural network with two fully connected layers was trained on the output from Module 1 without

using Module 2 for image representation learning. In the Study 3, the influence of image classifier

within Module 2 was comprehensively evaluated. We retained the OmicsMap transformation part in

the Module 2 and test four other CNN-based image classifiers (AlexNet [40], GoogLeNet [41],

ResNet50 [42] and VGG11 [43]). These image classifiers were implemented using the torchvision

package. For convenience, the model names for different ablation studies were indicated in Table 3.

As shown in Table 3, removing any module from IE-MOIF or replacing the image classifier

resulted in the decreased classification performance on BRCA. Specifically, IE-MOIF outperformed

IE-MOIFFSN and IE-MOIFSSN by 1.49% and 3.03% in F1_macro, respectively. IE-MOIF using

En-ViT get 4.33%, 10.28%, 14.16% and 2.30% higher in F1_macro compared to IE-MOIFAlexNet,

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.06.07.23291110doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.07.23291110


IE-MOIFGoogLeNet, IE-MOIFResNet and MOIFVGGNet, respectively. These results indicate that the

combination of all the proposed modules collectively contribute to the overall superiority of

IE-MOIF and effectively compensate for the shortcomings of simply early integration methods in

multi-omics data.

A case study for lung squamous cell carcinoma (LUSC) diagnosis

The application prospects of IE-MOIF in disease diagnosis was validated by using the LUSC

dataset. To be specific, a multi-omics dataset of mRNA and miRNA for LUSC was obtained from

GDC TCGA. As shown in Figure 4a, patients with primary tumor, stage information and both types

of omics data were included, and they were divided into early (stage ⅰ and stage ⅱ) and late stages

(stage ⅲ and stage ⅳ) based on tumor stage. In total, 465 samples (389 early-stage and 76 late-stage)

were obtained. These samples were sorted by diagnosis year in ascending order and the top 90%

samples were used as training data for 5-fold CV, which included 345 early-stage and 73 late-stage

patients. The last 10% samples were used as an independent test data, which included 44 early-stage

and 3 late-stage patients. After model training on 5-fold CV, the best model was then evaluated on

the independent test set. As shown in the Figure 4b, IE-MOIF achieved an ACC of 0.872, F1-score

of 0.5 and MCC of 0.537 on the independent test set and all three positive samples were

well-identified. It was worth noting that the LUSC dataset is highly imbalanced with a large

discrepancy between positive and negative patients. We mainly focued on the recall metric, which

was the proportion of positive samples correctly predicted by the model. The recall produced by

IE-MOIF was 1.0, demonstrating the power of IE-MOIF in identifying the ground-truth positive

patients in clinical practice.

Investigating the interpretability of IE-MOIF

To visualize the latent representation of multi-omics samples, the attention embedding of class

token was extracted from IE-MOIF and the clustering performance of attention embedding was

compared to that of raw multi-omics data. As shown in Figure 5, the IE-MOIF embedding was

more distinguishable for sample clustering than raw data and achieved better ARI scores [34],

indicating the power of IE-MOIF in multi-omics data analysis. Furthermore, a main advantage of

IE-MOIF was its ability in giving crucial feature-level insights and interpretation into potential

biomarker discovery. The capability of IE-MOIF for potential biomarker discovery was evaluated

on ROSMAP dataset. Important biomarkers were identified based on their importance score

(described in Materials and Methods). Figure 6 depicted the top 15 features identified by

IE-MOIF from each CV. The more frequently a feature was identified across the 5-fold CV, the
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higher its ranking.

Based on the comprehensive consideration of 5-fold CV results, important mRNA features

identified by IE-MOIF were APLN, ANKRD30B, SLC25A18, GPER1 and CDK2AP1 et al. Apalin,

encoded by APLN, is a bioactive neuropeptide [44] that is prevalent in neuronal cell bodies and

fibers throughout the neuraxis [45]. Several studies have shown that apelin may play a critical role

in the pathophysiology of AD by regulating Tau and amyloid-β [50], and it has been proposed as a

promising target for neurodegenerative diseases beyond AD [48, 49]. In addition, Semick et al. first

reported that ANKRD30B is significantly less expressed in AD patients compared to controls in the

hippocampus and entorhinal cortex brain regions, suggesting that it is a promising AD-related gene

[50]. Other genes identified by IE-MOIF, such as GPER1 [51] and CDK2AP1 [52], had also been

proved to be associated with AD. Moreover, highly ranking miRNAs identified by IE-MOIF, such

as has-mir-129-5p [53], has-mir-132 [54, 55], has-mir-376a [56] and has-mir-127-3p [57] et al.,

had also been reported to be associated with AD. Li et al., for instance, discovered a correlation

between serum expression of miR-129-5p and serum levels of cognitive function markers in AD

patients, and they proposed it as a novel therapeutic target for AD treatment [53]. By validating the

important features identified by IE-MOIF with experimental literatures, it is demonstrated that

IE-MOIF has promising applications in potential biomarkers discovery for diseases diagnosis in

clinical practice.

Conclusion

In this study, a novel multi-omics early integration framework (IE-MOIF) was constructed by (1)

information enhancement, (2) image representation learning for biomedical classification and

biomarker discovery. Based on a comprehensive comparison with SOTA multi-omics integration

methods and traditional machine learning models, our proposed method consistently achieves

superior performance and holds good interpretability. The effectiveness of each key module in

IE-MOIF is demonstrated by systematic ablation studies. All in all, this work enables better use of

multi-omics data and would become an essential tool for omics research, disease diagnosis and

biomarker discovery.

Availability of data and materials

The ROSMAP and BRCA datasets can be freely and openly accessed via

https://github.com/txWang/MOGONET. The PRAD and LUSC datasets can be freely and openly

accessed via https://xenabrowser.net/datapages. The COVID-19 dataset can be freely and openly

accessed via https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp (accession=MSV000085703).
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All data are described in the Datasets section. Please see Table 1 and Refs. [1, 20, 31] for details to

the data. Source code for IE-MOIF is uploaded on https://github.com/idrblab/IE-MOIF.
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Genomics Proteomics & Bioinformatics.
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Table 1 Summary of datasets

Dataset Categories Types of Multi-omics Data

Binary-class

PRAD Early stage: 319, Late stage: 206
mRNA: 60483, meth: 22185, miRNA:
1880

ROSMAP NC: 169, AD: 182
mRNA: 55,889, meth: 23,788, miRNA:
309

COVID-19 COVID: 102, Non-COVID: 26
lipidomics: 3357, metabolomics: 150,
protein: 517, mRNA: 13,263

Multi-class BRCA
Normal-like: 115, Basal-like: 131,
HER2-enriched: 46, Luminal A: 436,
Luminal B: 147

mRNA: 20,531, miRNA: 503meth:
20,106,

The ROSMAP dataset is for the classification of Alzheimer’s disease (AD) patients and normal

control (NC). The PRAD dataset is for stage classification in prostate cancer (PRAD). The

COVID-19 dataset is for the classification of COVID patients and non-COVID patients. The LUSC

dataset is for stage classification in lung squamous cell carcinoma (LUSC). The BRCA dataset is for

breast invasive carcinoma (BRCA) subtype classification with normal-like, basal-like, human

epidermal growth factor receptor 2 (HER2)-enriched, Luminal A, and Luminal B subtypes.
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Table 2 Summary of comparison of our work with other state-of-the-art multi-omics
integration methods

Model Name Method Category Code availability Reference

MoGCN Graph convolutional
networks

Supervised https://github.com/Lif
oof/MoGCN

Li et al. (2022) [25]

MOGONET Graph convolutional
networks

Supervised https://github.com/tx
Wang/MOGONET

Wang et al. (2021) [20]

RDFS Feedforward neural
networks

Supervised https://github.com/hu
yy96/RDFS

Hu et al. (2022) [22]

MOMA Feedforward neural
networks

Supervised https://github.com/d
mcb-gist/MOMA

Moon et al. (2022) [26]

MOFA Matrix factorization Unsupervised https://github.com/bi
oFAM/MOFA

Argelaguet et al. (2018) [39]

SNF Network fusion Unsupervised https://github.com/ma
xconway/SNFtool

Wang et al. (2014) [16]

SubtypeGAN Variational AutoEncoder Unsupervised https://github.com/hai
yang1986/Subtype-G
AN

Yang et al. (2021) [18]
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Table 3 Ablation study on the BRCA dataset (5-fold cross validation)

Ablation studies Model Model name Accuracy F1_weighted F1_macro

Study 1 IE-MOIF (without Module 1) IE-MOIFFSN 0.8526 ± 0.0178 0.8589 ± 0.0164 0.8306 ± 0.0251

Study 2 IE-MOIF (without Module 2) IE-MOIFSSN 0.8366 ± 0.0138 0.8410 ± 0.0147 0.8152 ± 0.0158

Study 3

IE-MOIF (with AlexNet) IE-MOIFAlexNet 0.8354 ± 0.0169 0.8397 ± 0.0158 0.8022 ± 0.2530

IE-MOIF (with GoogLeNet) IE-MOIFGoogLeNet 0.7897 ± 0.0017 0.7945 ± 0.0018 0.7427 ± 0.0052

IE-MOIF (with ResNet) IE-MOIFResNet 0.7703 ± 0.0036 0.7677 ± 0.0039 0.7039 ± 0.0099

IE-MOIF (with VGGNet) IE-MOIFVGGNet 0.8469 ± 0.0045 0.8517 ± 0.0045 0.8225 ± 0.0057

Final model IE-MOIF (with En-ViT) IE-MOIF 0.8674 ± 0.0212 0.8732 ± 0.019 0.8455 ± 0.0271

The results are presented as mean ± standard deviation. The best result is marked in bold. study 1:
the concatenated matrix of preprocessed multi-omics data is directly used for image representation
learning without employing a similarity network for information enhancement of omics-features.
study 2: a DNN with two fully connected layers is used for classification instead of image
representation learning. study 3: the OmicsMap transformation part in the image representation
learning module is retained and other CNN-based image classifiers (AlexNet, GoogLeNet,
ResNet50 and VGG11) are used to replace En-ViT and perform classification tasks.
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Figure 1. Overview of the IE-MOIF. a, Input processing during the application phase: IE-MOIF

necessitates that each sample possesses multi-omics features concurrently. Dimensionality reduction is

achieved through the application of feature selection to each omics data type. A single matrix is generated

by concatenating all omics data. b, IE-MOIF employs neighborhood aggregation and message passing in

a sample similarity network to minimize information loss. SNF constructs networks of patients for each

omics type and then efficiently fusing these into a fused network. This fused network incorporates all

features of a given input and provides a comprehensive representation of a patient cohort. The value of

each feature is re-calculated based on the weights in the fused network. c, Image representation learning:

A feature similarity network is constructed using cosine similarity in the concatenated multi-omics matrix

and projected into 2D-space. Each feature is then rearranged to a regular image using the J-V algorithm.

In En-ViT learning, image is divided into a sequence of flattened 2D patches and serves as input to

multiple ViT models. The labels generated by these models are integrated through a voting mechanism to

produce the final label prediction.
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Figure 2. Performance comparison of multi-omics integration methods by 5-fold cross-validation. a, Results of the
ROSMAP dataset. b, Results of the PRAD dataset. c, Results of the BRCA dataset. ACC, F1, MCC for binary
classification. ACC, F1-weighted, F1-macro for multi-class classification. Box plots show the median (centre lines),
interquartile range (hinges) and 1.5-times the interquartile range (whiskers). ACC: accuracy, MCC: Matthews correlation
coefficient.
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Figure 3. Performance comparison between single-omics and multi-omics via IE-MOIF mRNA, meth, and miRNA
refer to single-omics data classification with mRNA expression data, DNAmethylation data, and miRNA expression data,
respectively. mRNA + meth, mRNA + miRNA, and meth + miRNA refer to classification with two types of omics data.
mRNA + meth + miRNA refers to classification with three types of omics data. Box plots show the mean and standard
deviation (whiskers). MCC: Matthews correlation coefficient.
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Figure 4. A case study for lung squamous cell carcinoma (LUSC) diagnosis a, LUCS dataset processing. Patients

with primary tumor, stage information and both types of omics data are included, and they are divided into early (stage ⅰ

and stage ⅱ) and late stages (stage ⅲ and stage ⅳ) based on tumor stage. These samples are sorted by diagnosis year in

ascending order and the top 90% samples are used as training data. The last 10% samples are used as an independent test

data. b, IE-MOIF prediction result on Test set. ACC: accuracy, MCC: Matthews correlation coefficient.
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Figure 5: TSNE visualization of patients based on the IE-MOIF attention embedding (right) and the initial raw
expression (left). a, Visualization of the ROSMAP dataset (Alzheimer’s disease and normal control). b, Visualization of
the PRAD dataset (early stage and late stage). c, Visualization of the BRCA dataset (normal-like, basal-like, human
epidermal growth factor receptor 2 (HER2)-enriched, Luminal A, and Luminal B subtypes). The adjusted Rand index
(ARI) score is calculated and shown in the plot.
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Figure 6: Important input features identified by IE-MOIF on the ROSMAP dataset a, miRNA level. b, mRNA level.
The circle represents whether this feature is identified in this fold. The height of the bar represents the sum of the scores
for this feature in 5-CV, while the size of the circle represents the importance score of the feature in a certain fold. The
red pentagram in the upper right corner of the feature represents that this feature has been reported in the literature.
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