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Abstract 
Understanding the genetic basis of biological aging in multi-organ systems is vital for 
elucidating age-related disease mechanisms and identifying therapeutic interventions. This study 
characterized the genetic architecture of the biological age gap (BAG) across nine human organ 
systems in 377,028 individuals of European ancestry from the UK Biobank. We discovered 393 
genomic loci, including 143 novel loci, associated with the BAG of the brain, eye, 
cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary, and renal systems. We 
also observed BAG-organ specificity and inter-organ crosstalk. Genetic variants associated with 
the nine BAGs are predominantly specific to the respective organ system while exerting 
pleiotropic effects on traits linked to multiple organ systems. A gene-drug-disease network 
confirmed the involvement of the metabolic BAG-associated genes in drugs targeting various 
metabolic disorders. Genetic correlation analyses supported Cheverud's Conjecture1 – the genetic 
correlation between BAGs mirrors their phenotypic correlation. A causal network revealed 
potential causal effects linking chronic diseases (e.g., Alzheimer's disease), body weight, and 
sleep duration to the BAG of multiple organ systems. Our findings shed light on promising 
therapeutic interventions to enhance human organ health within a complex multi-organ network, 
including lifestyle modifications and potential drug repositioning strategies for treating chronic 
diseases. All results are publicly available at: https://labs.loni.usc.edu/medicine.  
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Main 
Biological aging is complex and influenced by many factors, including genetics2, environmental 
exposures3, and modifiable lifestyle factors4 across multiple organ systems. A comprehensive 
understanding of the phenotypic landscape and genetic architecture underlying biological aging 
in multiple human organ systems is paramount in forging the path toward precision medicine5, 
including identifying vulnerability (e.g., smoking) and resilience factors (e.g., physical 
activities). This knowledge can improve our understanding of the underlying mechanisms 
driving age-related diseases, identify novel therapeutic targets, and develop personalized 
interventions for maintaining health and functional independence in the aging population. 
 Previous research efforts have made progress in studying the interconnectedness of multi-
organ systems in human health3,6–13. In a recent study by McCracken et al., a heart-brain-liver 
axis was studied, highlighting direct and indirect associations among the three organs and their 
interconnectivity and shared biological pathways11. A recent review highlighted the role of inter-
organ signals in metabolic control, including the secretion of peptides, small molecules, and lipid 
mediators by metabolic tissues and the involvement of the central nervous system in 
coordinating peripheral metabolic functions9. Riding the crest of the wave of artificial 
intelligence (AI), the biomedical community has increasingly adopted the biological age gap 
(BAG) as a comprehensive biomarker of human aging in multiple human organ systems. 
Specifically, BAG serves as a quantitative phenotype to capture the disparity between an 
individual's AI-derived age and chronological age, which can be used to model aging-related 
normative trajectory at the individual level and holds potential for application in disease 
populations to capture pertinent pathological processes. Nie et al. first derived the biological age 
in nine organ systems to predict the possibility of becoming centenarian13. In another study, Tian 
et al. derived eight BAGs in eight organ systems, correlating them with cognition, chronic 
disease, lifestyle factors, and mortality3.  

However, genetic determinants and biological pathways that underlie the observed 
heterogeneity of organ-specific BAGs remain elusive. Furthermore, whether chronic diseases 
and lifestyle factors causally impact the divergence between predicted age and chronological age 
in these organ systems remains to be established, manifesting as either a younger or older 
biological age. Our previous genome-wide association study (GWAS) uncovered the genetic 
heterogeneity of the multimodal brain BAGs using magnetic resonance imaging (MRI) data14. 
Expanding on prior research, the current study sought to comprehensively depict the genetic 
architecture underlying biological aging across nine human organ systems, including the brain, 
cardiovascular, eye, hepatic, immune, metabolic, musculoskeletal, pulmonary, and renal BAGs. 
Our overarching hypothesis postulates that the genetic determinants associated with the nine 
BAGs are not only specific to individual organ systems (i.e., BAG-organ specificity) but also 
directly or indirectly interconnected with other organ systems (i.e., inter-organ crosstalk). 

In the current study, we analyzed multimodal data from 377,028 individuals of European 
ancestry in the UK Biobank study15 (UKBB) to comprehensively capture the genetic architecture 
of the nine organ systems (Method 1). First, we used data from 154,774 participants to perform 
GWAS, gene-level, partitioned heritability, and genetic correlation analyses (Method 2). In our 
Mendelian randomization analyses, we used 222,254 UKBB participants that did not overlap 
with the individuals used to compute BAG to avoid potential bias16. We i) identified both 
previously reported and novel genomic loci, ii) demonstrated a greater genetic heritability 
estimate for the brain BAG compared to other organ systems, iii) constructed a network linking 
genes, drugs, and diseases for potential drug repurposing, iv) confirmed that BAG-associated 
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variants and genes exhibit BAG-organ specificity and inter-organ crosstalk, and v) established 
both genetic correlations and causal networks among the nine BAGs, chronic diseases, and 
lifestyle factors. All results, including the GWAS summary statistics, are publicly accessible 
through the MEDICINE (Multi-organ biomEDIcal sCIeNcE) knowledge portal: 
https://labs.loni.usc.edu/medicine. 
 
Results 
Genome-wide associations identify 143 novel genomic loci associated with the nine 

biological age gaps  

GWAS (Method 2a) identified 11, 44, 17, 41, 61, 76, 24, 67, and 52 genomic loci significantly 
associated with the brain, cardiovascular, eye, hepatic, immune, metabolic, musculoskeletal, 
pulmonary, and renal BAGs, respectively (Fig. 1, and Supplementary eFile 1). Notably,143 loci 
are novel – their top lead single-nucleotide polymorphism (SNP) was never associated with any 
clinical traits in the EMBL-EBI GWAS Catalog17, as annotated by the top lead SNPs in Fig. 1 
(Method 2c). Specifically, 7, 18, 7, 11, 27, 14, 11, 26, and 22 novel loci were found for the 
abovementioned nine BAGs.  

Some genomic loci were distinctly associated with a specific organ, while others showed 
associations with multiple organ BAGs or were close to each other on the genome. For instance, 
the locus on chromosome 6 associated with the hepatic (rs62401887, position: 24416482 at 
6p22.3), immune (rs80215559, position: 25918225 at 6p22.3), metabolic (rs79220007, position: 
26098474 at 6p22.2), musculoskeletal (rs2744575, position: 24494975 at 6p22.3), pulmonary 
(rs411535, position: 22061040 at 6p22.3), and renal BAGs (rs55925606, position: 25878848 at 
6p22.2) was close with each other on the human genome. Bayesian colocalization18 analyses 
supported a causal association of SNPs within this locus with the liver and musculoskeletal 
BAGs. The results showed a posterior possibility (PP) of two distinct causal variants 
(PP.H3.ABF=0.744) or one shared causal variant (PP.H4.ABF=0.256) associated with both traits 
in the GPLD1 gene, although the PP.H4.ABF hypothesis did not achieve the suggested threshold 
(>0.8)18. Detailed results are presented in Supplementary eFigure 1.  

Many of these loci were mapped to protein-encoding genes and provided functional 
insights. For example, the top lead SNP (rs62401887 at 6p22.3) within the locus of the hepatic 
BAG was mapped to the MRS2 gene by position (with a deleterious score of 14.89) and 
expression quantitative trait loci (eQTL, P-value=1.09x10-10) (Method 2c), which enables 
magnesium ion transmembrane transporter activity. We illustrate the regional Manhattan plot for 
the genomic locus with the highest significance for each organ BAG in Supplementary eFigure 
2. For instance, the brain BAG exhibited a highly significant locus (top lead SNP: rs371185851 
at 17q21.31) with multiple protein-encoding genes, including the widely recognized MAPT gene 
encoding tau protein associated with neurodegenerative diseases, such as Alzheimer's disease 
(AD)19. Moreover, the SNPs within this locus included enhancers and transcription start sites, 
specific to brain tissue chromatin states, highlighting their functional relevance in brain-related 
processes (Supplementary eFigure 2a).  

Consistent results were observed in split-sample and sex-stratified analyses (Method 2a 
and Supplementary eFigures 3-13). In the GWAS from the first split, we found 143, 399, 145, 
1358, 571, 1731, 527, 1232, and 1194 BAG-SNP associations for the nine abovementioned 
BAGs (P-value < 5x10-8). Of these, 67 (51), 375 (316), 143 (137), 1338 (1209), 563 (448), 1725 
(1339), 527 (496), 1232 (762), and 1183 (1093) associations were replicated in the second split 
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using both the nominal P-value (<0.05, 82% replications) and the Bonferroni-corrected threshold 
(<0.05/N, 80% replications). For the female-specific GWAS, we observed 352, 269, 398, 3524, 
1462, 1726, 1759, 536, and 1334 BAG-SNP associations for the nine BAGs. Among these, 349 
(346), 210 (140), 253 (206), 1648 (488), 1171 (840), 1461 (1095), 495 (108), 529 (375), and 
1247 (1089) associations were replicated in the male-specific GWAS using both the nominal P-
value (<0.05, 65% replications) and the Bonferroni-corrected threshold (<0.05/N, 41% 
replications). While we observe fewer significant loci (P-value < 5x10-8) in the sensitivity 
analyses than the results obtained from the full sample sizes, which may be due to reduced 
sample sizes, the signal peaks of the P-values remain consistent (Supplementary eFigure 5-13), 
as well as the effect directions. Sex differences were most evident in the musculoskeletal BAG. 
Only one genomic locus (at 2p23.3) was associated with both females and males for the 
musculoskeletal BAG (Supplementary eFigure 4 and 11). Detailed results of these loci are 
presented in Supplementary eFile 2 for split-sample and Supplementary eFile 3 for sex-
stratified results, respectively.  
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Figure 1: 143 novel genomic loci of the nine biological age gaps 

 
Organ-specific biological age gap (BAG) was derived from a large cohort of 30,108 to 111,543 
European ancestry participants from the UK Biobank cohort. The nine organ systems include the 
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brain (N=30,108), cardiovascular (N=111,543), eye (N=36,004), hepatic (N=111,543), immune 
(N=111,543), metabolic (N=111,543), musculoskeletal (N=111,543), pulmonary (N=111,543), 
and renal (N=111,543) BAGs. 143 novel genomic loci were associated with the nine BAGs using 
a genome-wide P-value threshold [–log10(P-value) > 7.30]. For visualization purposes, we only 
denoted the novel genomic loci – not associated with any clinical traits in EMBL-EBI GWAS 
Catalog – using their top lead SNP. The anatomical illustration of the human body was created 
using BioRender.com. All analyses used the Genome Reference Consortium Human Build 37 
(GRCh37). 
 
Phenome-wide associations demonstrate organ system specificity and inter-organ crosstalk 

We aimed to investigate the agreement of the identified genomic loci through our analysis of 
existing GWAS literature. To this end, we performed a phenome-wide association query in the 
EMBL-EBI GWAS Catalog17 for the candidate and independent significant SNPs within each 
locus (Method 2d). 

Our findings demonstrated significant associations between the identified loci in our 
GWAS and clinical traits in the literature specific to each organ system (i.e., BAG-organ 
specificity) (Fig. 2a). The genomic loci associated with the brain BAG exhibited the highest 
proportion of associations (529 out of 1798) with traits related to the brain, including imaging-
derived phenotypes such as brain volume metrics and white matter microstructure, demonstrated 
in the keyword cloud presented in Fig. 2a. The brain BAG loci were also enriched in many other 
traits related to other organ systems and chronic diseases, evidencing inter-organ crosstalk, 
including metabolic (N=383/1798, e.g., cholesterol levels), musculoskeletal (N=84, e.g., height), 
lifestyle factors (N=115/1798, e.g., alcohol consumption), neurodegenerative traits (N=210/1798, 
e.g., AD), and cognition (N=79/1798). For the eye BAG loci, most associations were found in 
metabolic (203 out of 1053), musculoskeletal (N=186/1053), eye (N=144/1053, e.g., age-related 
macular degeneration), and brain traits (N=47/1053), among many others. 

For the other seven body organ systems, among the loci associated with the 
cardiovascular BAG, most associations were observed with cardiovascular traits (1296 out of 
1890), such as systolic/diastolic blood pressure and coronary artery disease. Other associations 
were found with musculoskeletal (N=154/1890), metabolic (N=130/1890), immune (N=54/1890), 
renal (N=48/1890), and brain (N=39/1890) traits. For the hepatic BAG loci, 3769 out of 7216 
associations were related to metabolic and 1127 hepatic traits (e.g., blood protein, cirrhosis, and 
bilirubin). Among the loci associated with the immune BAG, abundant associations were found 
in metabolic (2028 out of 4453), immune (N=884/4453, e.g., different types of immune cells), 
hepatic (N=319/4453), musculoskeletal (N=243/4453), and cardiovascular traits (N=190/4453). 
For the metabolic BAG loci, most associations were observed in metabolic traits (22417 out of 
26780). We found a significant intertwining of metabolic systems with other organ systems, 
highlighting the presence of inter-organ crosstalk in human metabolic activities. This was 
supported by the fact that metabolic traits were highly enriched in the musculoskeletal (1301 out 
of 2869), pulmonary (305 out of 4547), and renal (2206 out of 4839) BAGs. Details of the 
phenome-wide associations are presented in Supplementary eFile 4.  

 
The biological age gap is more heritable in the brain than in other organ systems 

To enable a fair comparison of organ age heritability (i.e., effect size), we estimated the SNP-
based heritability (h2) across the nine organ systems using both the full sample sizes (Fig. 2b) 
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and down-sampled comparable samples (Fig. 2c). Additionally, the distributions of the 
magnitude of the beta coefficient (β) in GWAS are shown in Fig. 2d.  

Upon analyzing the full sample sizes, the estimated h2 for the brain BAG (0.47±0.02) 
significantly outperformed all other organ systems, followed by the eye (0.38±0.02), pulmonary 
(0.36±0.006), renal (0.31±0.006), metabolic (0.29±0.006), cardiovascular (0.27±0.006), 
musculoskeletal (0.24±0.006), hepatic (0.23±0.006), and immune BAGs (0.21±0.006) (Fig. 2b). 
All heritability estimates were statistically significant after controlling for multiple comparisons 
using the Bonferroni correction. This trend persisted even when subsampling the population of 
other BAGs to match that of the brain BAG, with comparable distributions in sex and age (Fig. 
2c). Finally, the effect size in the GWAS of the brain BAG (β=0.014±0.015) was also larger than 
other organ systems: 0.007<β<0.008 for the seven body organ BAGs and β=0.013±0.014 for the 
eye BAG (Fig. 2d). Detailed results of the h2 estimate are presented in Supplementary eTable 
1.  
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Figure 2: Phenome-wide associations of the identified genomic loci and SNP-wide 
heritability estimates of the nine biological age gap 

 

 
a) Phenome-wide associations of the identified genomic loci in the EMBL-EBI GWAS Catalog. 
By examining the candidate and the independent significant SNPs within each genomic locus, 
we linked them to various clinical traits through a comprehensive query. These traits were 
categorized into high-level groups encompassing different organ systems, neurodegenerative and 
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neuropsychiatric disorders, and lifestyle factors. To visually represent the findings, we generated 
keyword cloud plots based on the frequency of these clinical traits within each BAG. The length 
of each rectangle block indicates the number of associations concerning the genomic loci in our 
analysis and clinical traits in the literature. b) SNP-based heritability estimates (h2) for the nine 
BAGs with full sample sizes. c) The estimated h2 using randomly down-sampled sample sizes 
(N=30,108) for the nine BAGs. Error bars represent the standard error of the estimated 
parameters. d) The kernel density estimate plot shows the distribution of the effect sizes (i.e., the 
magnitude of the linear regression β coefficients) in the nine GWAS. The black horizontal lines 
represent the mean effect sizes.  
 

Genes linked to the nine biological age gaps are implicated in organ system-specific 

biological pathways 

To biologically validate our GWAS findings at the gene level, we performed gene-based 
associations using the MAGMA20 software based on the full P-value distribution from the 
GWAS of the nine BAGs. The significantly associated genes (Supplementary eFile 5) were 
used for the gene set enrichment analysis (GESA, Method 2e) to annotate relevant biological 
pathways underlying each organ system (Fig. 3a).  
 Genes associated with the cardiovascular BAG were implicated in the insulin-like growth 
factor II binding (IGF-II) pathway (P-value=7.08x10-7). Genes associated with the eye BAG 
were enriched in the pathway of forebrain dorsal-ventral pattern (FDVP) formation (P-
value=6.46x10-7). Among others, the most significant enrichment result shown in the hepatic 
BAG was the flavonoid glucuronidation pathway (P-value=1.71x10-8). Genes linked to the 
metabolic BAG displayed enrichment in several pathways, including the flavonoid 
glucuronidation pathway (P-value=2.46x10-15) and triglyceride-rich lipoprotein particle clearance 
pathway (P-value=3.72x10-15), both of which are implicated in liver function. In addition, the 
neutral lipid metabolic process, regulated by complex pathways featuring lipid metabolism 
enzymes and structural proteins, was also identified. Genes associated with the musculoskeletal 
BAG exhibited enrichment in the gene set in an amplicon at 20q11 (P-value=1.54x10-15), defined 
by a study of copy number alterations conducted on 191 patients with breast tumors21. Genes 
associated with the pulmonary BAG displayed significant enrichment in the pathways of the 
negative regulation biosynthetic process (P-value=3.72x10-10), consistent with a previous DNA 
methylation analysis of pulmonary function using old-aged Chinese monozygotic twins22. Genes 
associated with the renal BAG were implicated in the xenobiotic glucuronidation pathway (P-
value=1.56x10-6). Given that the kidney contains most enzymes metabolizing foreign substances 
(i.e., xenobiotics), it plays a crucial role in the overall metabolism of drugs and other foreign 
compounds within the body (Fig. 3a). Detailed results of GESA are presented in 
Supplementary eFile 6. 
 

Genes linked to the nine biological age gaps display organ system-specific gene expression 

patterns 
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To investigate the gene expression patterns of the significant genes associated with the nine 
BAGs, we performed a tissue-specific gene expression analysis20 using MAGMA and the GTEx 
RNA-seq dataset23 (Method 2f). 
 Across 54 human organ tissues (Fig. 3b), genes associated with the cardiovascular BAG 
exhibited significant overexpression in various heart-related tissues (e.g., the aorta and tibial 
artery) and other organs (e.g., the uterus and colon sigmoid). Genes associated with the hepatic 
BAG were overexpressed in the liver and adipose subcutaneous. Several immune system-related 
tissues showed a high average expression of the genes related to the immune BAG, including the 
spleen, blood, and lymphocytes. Likewise, the genes associated with the metabolic BAG showed 
a high expression level in the liver and intestine – critical organs in the metabolic system. The 
genes related to the pulmonary BAG displayed significant overexpression in the esophagus 
gastroesophageal junction, artery, and others. The genes associated with the renal BAG were 
overexpressed in the kidney. Detailed results are presented in Supplementary eFile 7.  
 

Gene-drug-disease network substantiates potentially repositionable drugs for aging-related 

diseases 

We performed a drug target enrichment analysis24 for the genes linked to the nine BAGs in the 
targeted gene sets of drug categories using the DrugBank database25, thereby constructing a 
gene-drug-disease network of potentially repositionable drugs (Method 2g).  

The constructed gene-drug-disease network (Fig. 3c) identified significant interactions 
between 12 metabolic BAG-linked genes, 46 drugs, and many metabolic disorders encoded in 
the ICD10 code (E70-E90). For instance, the PPARD gene was the target gene of the PPAR-δ 
agonist (SAR 351034, denoted in Fig. 3c), which aimed to improve insulin sensitivity and lipid-
related activities and battle against inflammation and oxidative stress, serving as actionable drugs 
for metabolic disorders, diabetes, and kidney and liver injury-related diseases26. Our results 
showed that genes associated with the metabolic BAG were used to develop drugs treating 
various other diseases – beyond metabolic disorders – related to multiple organ systems (Fig. 
3c). These included heart-related diseases (e.g., chronic rheumatic heart diseases for I05-I09) and 
cerebrovascular disease (I60-I69), although the enrichment did not survive correction for 
multiple comparisons (Fig. 3c). For instance, the drug MPSK3169A (clinical trial number: 
NCT01609140; metabolic BAG linked gene: PCSK9) is used to treat cerebrovascular disease and 
coronary heart disease; T3D-959 (clinical trial number: NCT04251182; pulmonary BAG linked 
gene: PPARD), was a candidate drug targeting AD. Detailed results are presented in 
Supplementary eFile 8.  

The drug-gene-disease network reveals the association between genes related to the 
metabolic BAG and drugs targeting various chronic diseases. It highlights the importance of the 
metabolic system in the overall functioning of the human body and the potentials of 
repositioning existing drugs to tackle biological aging.  
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Figure 3: Gene-level biological pathway annotation, tissue-specific gene expression, and 
gene-drug-disease network of the nine biological age gaps    

 
a) Gene set enrichment analyses were performed using curated gene sets and GO terms from the 
MsigDB database. b) Gene-property analyses evaluate tissue-specific gene expressions for the 
nine BAG-related genes using the full SNP P-values distribution. Only significant gene sets are 
presented after adjusting for multiple comparisons using the Bonferroni correction. c) The gene-
drug-disease network reveals a broad spectrum of gene, drug, and disease interactions across the 
nine BAGs. The ICD-10 code icons symbolize disease categories linked to the primary organ 
systems (e.g., G30 for Alzheimer's disease in the CNS). All presented genes passed the nominal 
P-value threshold (<0.05) and were pharmaco-genetically associated with drug categories in the 
DrugBank database; the symbol * indicates gene-drug-disease interactions that survived the 
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Bonferroni correction. Abbreviation: ICD: International Classification of Diseases; EGJ: 
esophagus gastroesophageal junction. 
 
Heritability enrichment in different cell types, functional categories, tissue-specific gene 

expression, and chromatin states  

To further biologically validate our GWAS findings at the SNP level, we performed partitioned 
heritability analyses27 (Method 2i) to estimate the heritability enrichment of genetic variants 
related to the nine BAGs concerning three different cell types28 (i.e., neurons, oligodendrocytes, 
and astrocytes, Fig. 4a), 53 non-tissue-specific functional categories27 (Fig. 4b), 205 tissue-
specific gene expression data23 (Fig. 4c) and 489 tissue-specific chromatin states29,30 (Fig. 4d).  
 We found significant heritability enrichment in oligodendrocytes (P-value=0.03), a 
specific type of neuroglial cells, for the brain BAG. The cardiovascular BAG also exhibited 
significant heritability enrichment in neurons (P-value=0.01) (Fig. 4a, Supplementary eFile 9). 
Concerning the heritability enrichment in non-tissue-specific functional categories, we 
exemplified the four highest significant partitioned heritability estimates for each BAG in Fig. 
4b. For the brain BAG, the super-enhancer regions employed 17.16% of SNPs to explain 
0.47±0.04 of SNP heritability (P-value=1.80x10-11), and the histone H3 at lysine 9 
(H3K9ac) regions used 12.61% of SNPs to explain 0.61±0.12 of SNP heritability (P-
value=2.96x10-4). For the eye BAG, the super-enhancer regions explained 0.39±0.05 of SNP 
heritability (P-value=2.12x10-6) using 16.84% of SNPs. For the hepatic BAG, the H3K9ac 
regions explained 0.69±0.13 of SNP heritability (P-value=3.60x10-5) using 12.61% of SNPs. For 
the immune BAG, the TSS regions (i.e., core promoters) explained 0.37±0.08 of SNP heritability 
(P-value=1.48x10-6) using 1.82% of SNPs. The 3.11% of SNPs annotated by the promoter 
regions explained 0.30±0.08 of SNP heritability (P-value=7.64x10-4) for the metabolic BAG. For 
the cardiovascular (enrichment=16.39±2.23; P-value=4.70x10-11), musculoskeletal 
(enrichment=17.34±4.08; P-value=1.65x10-6), pulmonary (enrichment=16.82±2.51; P-
value=7.58x10-9), and renal (enrichment=13.96±1.88; P-value=7.25x10-9) BAGs, the highest 
heritability enrichment was found in the regions conserved across mammals (Fig. 4b, 
Supplementary eFile 10). These results suggested disproportionate genomic contributions to the 
heritability of BAGs from multiple functional categories. 
 In addition, the nine BAGs showed high heritability enrichment in specific tissues 
corresponding to their organ systems. For example, the cardiovascular BAG showed significant 
heritability enrichment in multiple tissue types, including the artery (e.g., the aorta: P-
value=1.03x10-7), myometrium (P-value=1.35x10-4), and uterus (P-value=2.43x10-4). Significant 
heritability enrichment was found in the liver for the hepatic (P-value=5.60x10-9) and metabolic 
BAGs (P-value=6.24x10-9). For the immune BAG, significant heritability enrichment was found 
in fetal blood tissues (P-value=7.36x10-9) (Fig. 4c, Supplementary eFile 11). These findings 
were aligned with the tissue-specific gene expression patterns observed at the gene level (Fig. 
3b). 
 The results from multi-tissue chromatin states-specific data further provide the proof-of-
concept for the organ-specific heritability enrichment among these nine BAGs. For the brain 
BAG, significant heritability enrichment was found in multiple brain tissues in the H3K4me3 
(e.g., P-value=9.06x10-5 for the hippocampus), H3K4me1 (e.g., P-value=6.94x10-5 for the 
hippocampus), and H3K27ac (e.g., P-value=1.15x10-5 for the anterior caudate) regions. For the 
cardiovascular BAG, significant heritability enrichment was shown in the right ventricle in the 
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H3K4me3 region (P-value=6.36x10-5) and the artery aorta in the H3K27ac region (P-
value=5.81x10-7). Significant heritability enrichment was found in primary hematopoietic stem 
cells in the H3K4me1 region for the immune BAG for both females (P-value=5.61x10-5) and 
males (P-value=9.50x10-5). The fetal leg muscle tissue in the DNase regions (P-value=6.54x10-5) 
for the musculoskeletal BAG showed significant heritability enrichment. For the pulmonary 
BAG, significant heritability enrichment was found in the fetal lung in the H3K4me1 (P-
value=1.33x10-9) and DNase regions (P-value=3.80x10-8), among other tissues from the 
stomach, artery, and muscle. For the renal BAG, significant enrichment was shown in the liver in 
the H3K9ac region (P-value=2.46x10-5) and the gastric tissues in the H3K27ac region (P-
value=6.24x10-5) (Fig. 4d, Supplementary eFile 12).  
 
 
Cheverud's Conjecture: genetic correlations between the nine biological age gaps mirror 

their phenotypic correlations 

We estimated the genetic correlation (gc) (Method 2h) and the phenotypic correlation (pc for 
Pearson's correlation coefficient) between each pair of the nine BAGs. Our results supported the 
long-standing Cheverud's Conjecture1 – the genetic correlation between two clinical traits 
reflects their phenotypic correlation (Fig. 4e).  
 The musculoskeletal and hepatic BAGs showed the highest genetic correlation (gc=0.40) 
and phenotypic correlation (pc=0.38). Similarly, the hepatic and renal BAGs showed a high 
genetic correlation (gc=0.39) and phenotypic correlation (pc=0.37). The musculoskeletal BAG 
also showed significant genetic and phenotypic correlations with pulmonary (gc=0.35, pc =0.19) 
and renal BAGs (gc=0.13, pc =0.21). In addition, the eye BAG showed small genetic and 
phenotypic correlations with the brain BAG (gc=0.15, pc =0.11). The correlations between the 
brain and eye BAGs and other organ BAGs were relatively weaker than those observed among 
other organ pairs. These findings indicate the presence of shared genetic underpinnings that 
collectively contribute to the biological aging processes captured by these organ BAGs. Detailed 
results are presented in Supplementary eFile 13.  
 

Genetic correlations between the nine biological age gaps and 41 clinical traits of chronic 

diseases, cognition, and lifestyle factors 

We also estimated gc between the nine BAGs and 41 clinical traits to examine their genetic 
correlations. The 41 clinical traits encompassed many common chronic diseases and conditions 
and their disease subtypes7,31–34, cognition (e.g., general intelligence and reaction time, and 
lifestyle factors (e.g., computer use) (Fig. 4f and Supplementary eTable 2). 
 The brain BAG was genetically associated with several brain diseases of the central 
nervous system (CNS) and their subtypes, including AD (gc=0.37±0.14) and late-life depression 
(LLD, gc=0.25±0.07). Furthermore, we observed significant genetic correlations between the 
brain BAG and years of education (gc=-0.14±0.05) and intelligence (gc =-0.15±0.05). The 
cardiovascular BAG was positively correlated with stroke (gc=0.20±0.05), a significant 
cardiovascular disease, and was negatively correlated with years of education (gc=-0.17±0.05). 
The musculoskeletal BAG was positively correlated with hyperlipidemia (gc=0.18±0.06), 
rheumatoid arthritis (gc=0.13±0.03), and Crohn's disease (gc=0.19±0.06) and was negatively 
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correlated with atrial fibrillation (gc=-0.11±0.04), years of education (gc=-0.21±0.04), and 
intelligence (gc=-0.18±0.03). The pulmonary BAG was positively associated with 
hyperlipidemia (gc=0.12±0.04), stroke (gc=0.15±0.05), liver fat (gc=0.12±0.04), and lung 
carcinoma (gc=0.17±0.05). Finally, the renal BAG was positively correlated with chronic kidney 
disease (gc=0.39±0.06) and atrial fibrillation (gc=0.09±0.03). Notably, type 2 diabetes showed 
abundant positive genetic correlations with multiple BAGs, including the brain, cardiovascular, 
metabolic, pulmonary, and renal. Detailed results are presented in Supplementary eFile 14. 
 These genetic correlations yield insights into potential shared mechanisms underlying the 
nine BAGs, their relationships with chronic diseases, particularly AD and type 2 diabetes, and 
cognition. These compelling results prompted us to explore the potential causal effects of these 
traits on the nine BAGs. In the subsequent section, we unbiasedly selected 17 clinical traits 
encompassing chronic diseases, cognition, and lifestyle factors to perform Mendelian 
randomization (Method 2g).  
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Figure 4: Partitioned heritability enrichment and genetic correlation of the nine biological 
age gaps 

 
a) Cell type-specific partitioned heritability estimates for neurons, oligodendrocytes, and 
astrocytes. b) Partitioned heritability estimates for the general 53 functional categories. We only 
showed the four categories with the highest significant estimates for each BAG for visualization 
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purposes. c) Tissue-specific partitioned heritability estimates using gene sets from multi-tissue 
gene expression data. d) Tissue and chromatin-specific partitioned heritability estimates using 
multi-tissue chromatin data. e) Cheverud's Conjecture: the genetic correlation between two 
BAGs (gc, lower triangle) mirrors their phenotypic correlation (pc, upper triangle). f) Genetic 
correlations between the nine BAGs and 41 clinical traits, including chronic diseases and their 
subtypes involving multiple human organ systems, education, intelligence, and reaction time. 
The symbol * denotes Bonferroni-corrected significance; the absence of * indicates all results 
remain significant after correction. The standard error of the estimated parameters is presented 
using error bars. Abbreviation: AD: Alzheimer's disease; ASD: autism spectrum disorder; LLD: 
late-life depression; SCZ: schizophrenia; DB: type 2 diabetes; WMH: white matter 
hyperintensity; HPLD: hyperlipidemia; AF: atrial fibrillation; RA: rheumatoid arthritis; CD: 
Crohn's disease; CKD: chronic kidney disease.   
 

Hepatic and musculoskeletal biological age gaps are causally associated with each other 

We performed two-sample bi-directional Mendelian randomization for each pair of BAGs by 
excluding overlapping populations to avoid bias16 (Method 2j). We found that the hepatic and 
musculoskeletal BAGs showed a bi-directional causal relationship [from the hepatic BAG to the 
musculoskeletal BAG: P-value=9.85x10-7, OR (95% CI) = 1.47 (1.26, 1.71); from the 
musculoskeletal BAG to the hepatic BAG: P-value=1.54x10-8, OR (95% CI) = 2.78 (1.95, 3.97)] 
(Fig. 5). This causal relationship echoes our genetic correlation results: the musculoskeletal and 
hepatic BAGs showed the highest genetic correlation compared to other organ systems (Fig. 4e). 
Detailed results are presented in Supplementary eFile 15 for the Mendelian randomization and 
Supplementary eFigure 14 and 15 for the sensitivity check. 
 
Biological age gaps are causally associated with several chronic diseases, body weight, and 

sleep duration 

We investigated the bi-directional causal effects between chronic diseases (e.g., AD) and 
lifestyle factors (e.g., sleep duration) and the nine BAGs. We unbiasedly and systematically 
included 17 clinical traits (Method 2j) guided by our genetic correlation results (Fig. 4f). The 17 
clinical traits included chronic diseases linked to the brain, cardiovascular, metabolic, digestive, 
renal, and musculoskeletal systems, cognition, and lifestyle factors (Supplementary eTable 3).  
 In the forward Mendelian randomization, we found potential causal effects of AD on the 
brain [P-value=3.99x10-8, OR (95% CI) = 1.05 (1.03, 1.06), number of SNPs=10], hepatic [P-
value=7.53x10-7, OR (95% CI) = 1.03 (1.02, 1.04), number of SNPs=10], musculoskeletal [P-
value=1.73x10-5, OR (95% CI) = 0.98 (0.97, 0.99), number of SNPs=10], and renal [P-
value=5.71x10-4, OR (95% CI) = 0.98 (0.97, 0.99), number of SNPs=10] BAGs. Body weight 
showed causal effects on multiple organ systems, including the immune [P-value=8.96x10-5, OR 
(95% CI) = 1.08 (1.04, 1.11), number of SNPs=160], musculoskeletal [P-value=4.32x10-15, OR 
(95% CI) = 0.83 (0.79, 0.86), number of SNPs=160], pulmonary [P-value=3.50x10-7, OR (95% 
CI) = 0.84 (0.79, 0.90), number of SNPs=160], and renal BAGs [P-value=4.53x10-13, OR (95% 
CI) = 1.18 (1.13, 1.23), number of SNPs=160]. In addition, we also found that Crohn's disease 
had causal effects on the hepatic BAG [P-value=3.00x10-3, OR (95% CI) = 1.02 (1.00, 1.03), 
number of SNPs=77], type 2 diabetes on the metabolic BAG [P-value=9.92x10-12, OR (95% CI) 
=1.16 (1.09, 1.24), number of SNPs=8], inflammatory bowel disease [P-value=1.42x10-3, OR 
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(95% CI) = 1.02 (1.00, 1.03), number of SNPs=80] and primary biliary cholangitis [P-
value=7.41x10-4, OR (95% CI) = 1.02 (1.00, 1.03), number of SNPs=16] on the musculoskeletal 
BAG (Fig. 5).  
 For the inverse Mendelian randomization, we found potential causal effects of the 
metabolic [P-value=6.85x10-4, OR (95% CI) = 0.94 (0.91, 0.97), number of SNPs=71] and 
pulmonary [P-value=3.79x10-5, OR (95% CI) = 0.84 (0.79, 0.91), number of SNPs=62] BAGs on 
body weight, the cardiovascular BAG on triglycerides versus lipid ratio in very large very-low-
density lipoprotein (VLDL) [P-value=2.14x10-4, OR (95% CI) = 1.09 (1.04, 1.14), number of 
SNPs=39], and the brain BAG on sleep duration [P-value=2.61x10-3, OR (95% CI) = 1.09 (1.04, 
1.14), number of SNPs=10] (Fig. 5). Detailed results are presented in Supplementary eFile 16. 
 We performed several sensitivity analyses (Method 2j) to test the robustness of our 
findings. Based on these sensitivity checks, we found outlier instrumental variables (IVs, i.e., 
SNPs) for four Mendelian randomization tests (AD and body weight on musculoskeletal BAG, 
Crohn's disease on hepatic BAG, and type 2 diabetes on metabolic BAG) in the forward 
Mendelian randomization and one Mendelian randomization test (metabolic BAG on body 
weight) in the inverse Mendelian randomization. We reran the analyses by excluding these 
outlier SNPs, and the results remained consistent. Detailed results of the sensitivity check are 
presented in Supplementary eFigure 16-31 for all significant results.  
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Figure 5: Causal multi-organ network between the 9 biological age gaps and 17 clinical 
traits of chronic diseases, lifestyle factors, and cognition  
 

 
We conducted two sets of Mendelian randomization analyses. Firstly, we examined the causal 
relationships between each pair of BAGs, excluding overlapping populations. Secondly, we 
investigated the causal associations between the 9 BAGs and the 17 unbiasedly selected clinical 
traits. Bi-directional analyses, including forward and inverse analyses on the exposure and 
outcome variables, were performed in all experiments. Significant tests were adjusted for 
multiple comparisons using the Bonferroni correction. Each colored arrow represents a potential 
causal effect connecting the exposure variable to the outcome variable. The symbol "+" denotes 
an OR larger than 1, while "-" represents an OR smaller than 1. Detailed OR and 95%CI 
information can be found in Supplementary eFigure 32 and eFile 15-16. Abbreviation: AD: 
Alzheimer’s disease; T2D: type 2 diabetes; PBC: primary biliary cholangitis; CD: Crohn’s 
disease; IBD: inflammatory bowel disease; CI: confidence interval; OR: odds ratio.  
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Discussion 
The current study comprehensively depicts the genetic architecture of common genetic variants 
on biological aging of nine human organ systems using multimodal data from 377,028 European 
ancestry participants. We identified many (143 novel) genomic loci for the BAGs of nine human 
organ systems, which exhibited significant associations with a wide range of clinical traits 
documented in the GWAS Catalog. These associations were observed within a phenotypic 
landscape characterized by BAG-organ specificity and inter-organ crosstalk. The brain BAG 
showed the highest SNP-based heritability estimate among all nine organ systems. GESA, tissue-
specific gene expression patterns, and heritability enrichment results provided additional 
evidence supporting biological validation for BAG-organ specificity and inter-organ crosstalk. 
The phenotypic correlation between BAGs was a proxy for their genetic correlation, thereby 
supporting the long-standing Cheverud's Conjecture. Mendelian randomization demonstrated 
potential causal relationships between chronic diseases, particularly AD and type 2 diabetes, 
body weight, sleep duration, and the nine BAGs.  

Our large-scale multi-organ GWAS significantly expands the current catalog of genetic 
variants associated with health-related traits. The discovery of the 143 novel genomic loci has 
significant clinical implications. These findings provide an invaluable foundation to validate 
genes or regulatory elements, molecular pathways, and biological processes related to the clinical 
traits and diseases of interest in the current study and future GWAS analyses. Previous GWAS 
mainly focused on the BAG in one organ system, such as the brain BAG14,35–37 from imaging-
derived phenotypes. These investigations have largely overlooked the inherent 
interconnectedness of human organ systems, which are intricately intertwined with distinct axes. 
Recent studies have identified notable axes, such as the heart-brain-liver11, brain-eye38, and 
brain-heart39 axes, highlighting the importance of comprehending these intricate relationships to 
understand human physiology and health. 

Our phenome-wide associations validate the pleiotropic effects of the identified genomic 
loci, influencing various health-related clinical traits in the GWAS Catalog. Our findings also 
highlight BAG-organ specificity and inter-organ crosstalk, further supporting that biological 
aging is a complex, multifaceted phenomenon. The human brain regulates various physiological 
processes and maintains homeostasis throughout the body. Consequently, it is unsurprising that 
the brain exhibits interconnectedness with clinical traits associated with multiple organ systems. 
The remarkable enrichment of metabolic traits across various organ systems is unsurprising. As a 
vital metabolic organ, the liver substantially overlaps genetic variants and loci with both the 
hepatic and metabolic BAGs. Biologically, the liver's metabolic functions are intricately 
regulated by hormones like insulin and other metabolic regulators12. Similarly, the interplay 
between immune and metabolic processes is essential for maintaining overall health and is 
crucial for the body's ability to respond to pathogens and regulate metabolic homeostasis6. 

We highlighted that the brain BAG is the most heritable among the nine organ systems. 
Determining the genetic heritability of specific organ systems can be complex as no organ 
system functions independently, and many diseases or traits involve complex interactions 
between multiple organ systems, as well as genetic and environmental factors. The brain plays a 
crucial role in developing and functioning various physiological processes across the body. Its 
intricate structure and diverse cell types render it vulnerable to genetic influences40. Therefore, 
the brain may exhibit higher genetic stability and less environmental variability41 than other 
organs. The human brain's extensive functional connectivity and intricate networks may also 
contribute to its higher heritability. These networks facilitate the transmission of genetic 
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information and the propagation of genetic effects across different brain regions42. Lastly, 
genetic variations shaping the human brain are pleiotropic and influence cognitive abilities, 
behavior, and susceptibility to neurological and psychiatric disorders. Collectively, these factors 
may contribute to the marked genetic heritability observed in the human brain compared to other 
organ systems. 

Our gene-level and partitioned heritability analyses further validate our GWAS findings, 
supporting BAG-organ specificity and inter-organ crosstalk. In GSEA, the genes associated with 
the cardiovascular BAG were implicated in the IGF-II pathway. IGF-II activates two receptors 
(IGF-1R and IR-A) to promote cell growth and survival. The IGF signaling pathway is essential 
for cardiac development in the human heart - the first functional organ to develop43. In particular, 
IGF-II promotes fetal cardiomyocyte proliferation through the tyrosine kinase receptors IGF1R 
and INSR. Previous research provided appealing evidence on IGF signaling in cardiac 
regeneration in animal models and induced pluripotent stem cells44. The flavonoid 
glucuronidation pathway was the most significant enrichment result shown in the hepatic BAG. 
A previous study demonstrated that procyanidin C1, a flavonoid in grape seed extract, extended 
the lifespan of mice45. Furthermore, ample evidence indicated that natural flavonoids could be 
potential therapeutic approaches for non-alcoholic fatty liver disease46. The metabolites formed 
through this pathway can also exert effects beyond the liver and impact other organ systems. Our 
tissue-specific gene expression analyses provided additional support for the biological relevance 
of our GWAS findings, as the identified genes exhibited specific expression patterns within 
tissues from the corresponding organ systems. 

The heritability enrichment analysis further validates the BAG-organ specificity and 
inter-organ connections by highlighting the disproportional heritability enrichment of genetic 
variants in different functional categories, cell types, tissues, and chromatin states. The cell type-
specific enrichment results in the brain (i.e., oligodendrocytes) and cardiovascular (i.e., neurons) 
BAGs align with previous research. Specifically, Zhao et al. conducted a large-scale GWAS on 
brain white matter microstructure and found significant heritability enrichment in glial cells, 
particularly oligodendrocytes47, which aligns with our current findings. Our previous multimodal 
brain BAG GWAS14 also confirmed this enrichment in the brain BAG derived from the white 
matter microstructural features. Similarly, research has revealed the presence of an "intrinsic 
cardiac nervous system" within the heart, often called the "heart brain." This system consists of 
around 40,000 neurons similar to those found in the brain, indicating that the heart possesses a 
distinct nervous system48. 

Our genetic correlation results confirmed that the genetic correlation generally mirrors 
phenotypic correlations in multi-organ biological age. This suggests that environmental factors 
likely affect the aging of multiple organ systems in the same direction. Providing evidence for 
Cheverud's Conjecture can have clinical implications by providing valuable insights into the 
genetic basis of complex age-related diseases. For instance, by identifying the shared genetic 
factors underlying multiple age-related diseases, we can target these common pathways to 
develop novel treatments or repurpose existing drugs49 that have proven efficacy in one disease 
or condition for treating others. Moreover, the validation of Cheverud's Conjecture emphasizes 
the importance of considering the genetic covariance of age-related diseases in clinical practice. 
It underscores the need for comprehensive genetic assessments and genomic analyses to 
understand disease risk and progression50. 

We found a bi-directional causal relationship between the hepatic and musculoskeletal 
BAGs. Abundant research has suggested that liver function and metabolic health, particularly 
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related to glucose and lipid metabolism, can significantly impact musculoskeletal health51. This 
inter-organ crosstalk can cause dysregulation of liver metabolism (e.g., non-alcoholic fatty liver 
disease) linked to musculoskeletal disorders, including osteoporosis, sarcopenia, and muscle 
wasting. The musculoskeletal system can also exert an inverse influence on liver function. 
Regular physical activity and muscle strength have been linked to enhanced liver health and 
decreased susceptibility to liver diseases. To further support this, causal effects of primary biliary 
cholangitis, a chronic liver disease, on elevated musculoskeletal BAG were confirmed in our 
Mendelian randomization results (Fig. 5). The absence of direct causal relationships between the 
remaining BAGs can be attributed to various factors with potential explanations and 
implications. One possible explanation is that the brain BAG, having the smallest sample size in 
our GWAS (after removing overlapping participants), may be limited in statistical power. In 
addition, this may suggest that various factors, including chronic diseases, environmental 
exposures, and lifestyle choices, influence biological aging in alternative pathways or mediate 
such changes. Thus, understanding the collective contribution of chronic diseases, environmental 
factors, and lifestyle choices is crucial for comprehending the overall aging process and its 
impact on organ health. 

We found that several clinical traits collectively cause organ systems to appear older or 
younger than their chronological age. For instance, body weight was causally associated with the 
immune, musculoskeletal, metabolic, and pulmonary BAGs. For several reasons, body weight 
can causally influence multiple organ systems. Excessive body weight (e.g., obesity) has 
metabolic consequences, including increased inflammation, insulin resistance, and dysregulation 
of metabolic pathways in adipose tissue52. It also leads to mechanical stress on the body, 
contributing to musculoskeletal strain53 and cardiovascular workload54. Hormonal imbalances55 
and lifestyle factors linked to body weight also influence multi-organ function and the 
development of chronic diseases. Being overweight is also a risk factor for type 2 diabetes, 
which was positively causally associated with metabolic BAG (Fig. 5). AD was causally linked 
to the brain, hepatic, musculoskeletal, and renal BAGs. AD, a neurodegenerative disorder 
primarily affecting the brain, can have causal influences on multiple organ systems. For example, 
it has broader systemic involvement beyond the brain, mediated by mechanisms including 
protein aggregation (e.g., amyloid-β and tau56), vascular dysfunction57, inflammation58, and other 
secondary factors. Protein aggregates can spread to other organs; vascular abnormalities can 
impact blood flow; inflammation can affect distant organ systems; secondary factors, such as 
medication use and lifestyle changes, also contribute.  

In conclusion, our study presents compelling genetic evidence to support that no organ 
system is an island1 – the collective influence of various chronic diseases on these multi-organ 
systems and the interconnectedness among these human organ systems. These findings highlight 
the importance of comprehensively understanding the underlying causes of chronic diseases 
within the multi-organ network. By shedding light on its comprehensive genetic architecture, our 
study paves the way for future research to unravel complex disease mechanisms and develop 
holistic approaches to ameliorate overall organ health. 
 

  

 
1 We adapt the concept of "No Man Is An Island" from the poem by John Donne, highlighting the 
interconnectedness of human organ systems. 
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Methods 
Method 1: Study populations 

UKBB is a population-based study of approximately 500,000 people recruited between 2006 and 
2010 from the United Kingdom. The UKBB study has ethical approval, and the ethics committee 
is detailed here: https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/governance/ethics-
advisory-committee.  

The current study analyzed multimodal data, including imaging-derived phenotypes 
(IDP) and physical and physiological measures in nine human organ systems from 154,774 
UKBB participants. In our previous study, we constructed BAGs for eight organ systems using 
machine learning, including MRI data for brain BAG from 30,108 participants (European 
ancestry), pulse rate and blood pressure data for cardiovascular BAG, liver-related blood 
biomarkers for hepatic BAG, C-reactive protein and blood hematology variables for immune 
BAG, blood biomarkers for metabolic BAG, physical measurements and vitamin D for 
musculoskeletal BAG, lung functioning measurements for pulmonary BAG, and glomerular 
filtration and electrolyte regulation biomarkers for renal BAG from 111,543 participants. 
Furthermore, the current study also used 60 optical coherence tomography (OCT)-derived 
measures from 36,004 participants to derive the BAG of the ninth organ system – the eye BAG. 
The inclusion criteria for the features used to predict the eight BAGs, the machine learning 
methods, and cross-validation procedures are detailed in our previous study3. We initially used 
the 88 OCT-derived measures (category ID: 10079) for the additional eye BAG in 67,549 
participants. Of these measures, 28 were excluded due to a high missing rate (>20% of 
participants). Additionally, 4172 participants were excluded due to missing data, and 1798 
participants identified as outliers (outside mean +/- 6SD) for the 60 remaining measures were 
discarded. This finally resulted in 41,966 participants (36,004 European ancestry participants). 
The included 2444 features to derive the BAG of the nine organ systems are presented in 
Supplementary eFile 17.  

In addition, we also performed GWAS for seven variables from 222,254 UKBB 
participants by excluding the 154,774 participants from the BAG populations to avoid bias due 
to overlapping samples. These variables included six lifestyle factors and one cognitive variable: 
N=219,661 (European ancestry) for coffee intake (Field ID:1498), N=221,393 for fresh fruit 
intake (Field ID:1309), N=221,739 for tea intake (Field ID:1488), N=220,765 for sleep duration 
(Field ID:1160), N=209,012 for time spent outdoors in summer (Field ID:1050), N=221,337 for 
body weight (Field ID:21002), and N=220,624 for reaction time (Field ID:20023).             

The current work was jointly performed under application numbers 35148 (i.e., genetic 
data) and 60698 (i.e., the generation of the nine BAGs). In total, we analyzed data from 377,028 
individuals of European ancestry in the current study. 
 

Method 2: Genetic analyses 

We used the imputed genotype data for all genetic analyses, and our quality check pipeline 
resulted in 487,409 participants and 6,477,810 SNPs. After merging with the population for each 
BAG, we included 30,108-111,543 European ancestry participants for the nine BAGs (Fig. 1). 
To avoid bias due to overlapping populations16, we also used the rest of the UKBB participants 
of European ancestry (non-overlapping) to derive the GWAS summary statistics for several 
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lifestyle factors (Method 2j). Details of the genetic quality check protocol are described 
elsewhere32,59.  
 
(a): Genome-wide association analysis: For GWAS, we ran a linear regression using Plink60 for 
each BAG, controlling for confounders of age, dataset status (training/validation/test or 
independent test dataset), age x squared, sex, age x sex interaction, age-squared x sex interaction, 
and the first 40 genetic principal components; additional covariates for total intracranial volume 
and the brain position in the scanner were included for brain BAG GWAS. We adopted the 
genome-wide P-value threshold (5 x 10-8) and annotated independent genetic signals considering 
linkage disequilibrium (see below). To check the robustness of our GWAS results, we also 
performed sex-stratified GWAS for males and females and split-sample GWAS by randomly 
dividing the entire population into two splits (sex and age-matched). 

 
(b): SNP-based heritability: We estimated the SNP-based heritability (h2) using GCTA61 with 
the same covariates in GWAS. We reported results from two experiments for each BAG using i) 
the full sample sizes and ii) randomly down-sampled sample sizes to that (N=30,108) of the brain 
BAG with comparable distributions regarding sex and age – the sample size of brain BAGs was 
smaller than the other BAGs.  
 
(c): Annotation of genomic loci: The annotation of genomic loci and mapped genes was 
performed via FUMA62. For the annotation of genomic loci, FUMA first defined lead SNPs 
(correlation r2 ≤ 0.1, distance < 250 kilobases) and assigned them to a genomic locus (non-
overlapping); the lead SNP with the lowest P-value (i.e., the top lead SNP) was used to represent 
the genomic locus. For gene mappings, three different strategies were considered. First, positional 
mapping assigns the SNP to its physically nearby genes (a 10 kb window by default). Second, 
eQTL mapping annotates SNPs to genes based on eQTL associations using the GTEx v8 data. 
Finally, chromatin interaction mapping annotates SNPs to genes when there is a significant 
chromatin interaction between the disease-associated regions and nearby or distant genes62. The 
definition of top lead SNP, lead SNP, independent significant SNP, and candidate SNP can be 
found in Supplementary eMethod 2. 
 
(d): Phenome-wide associations for the identified SNPs: We queried the candidate and 
significant independent SNPs within each locus in the EMBL-EBI GWAS Catalog to determine 
their previously identified associations with any other traits. For these associated traits, we 
further mapped them into organ-specific groups and other chronic disease traits and cognition for 
visualization purposes.      
 
 
(e): Gene set enrichment analysis: We first performed gene-level association analysis using 
MAGMA20. First, gene annotation was performed to map the SNPs (reference variant location 
from Phase 3 of 1,000 Genomes for European ancestry) to genes according to their physical 
positions. We then performed gene-level associations based on the SNP GWAS summary statistics 
to obtain gene-level p-values between the nine BAGs and the curated protein-encoding genes 
containing valid SNPs. We performed GSEA using the gene-level association p-values. Gene sets 
were obtained from the Molecular Signatures Database (MsigDB, v7.5.1)63, including 6366 
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curated and 10,402 ontology gene sets. All other parameters were set by default for MAGMA. The 
Bonferroni method was used for correcting multiple comparisons for all tested gene sets. 
 
(f): Tissue-specific gene expression analysis: MAGMA performed gene-property analyses to 
identify tissue-specific gene expression of the nine BAGs. The gene-property analysis converts the 
gene-level association P-values (above) to Z scores and tests a specific tissue's gene expression 
value versus the average expression value across all tissues in a regression model. Bonferroni 
correction was performed for all tested gene sets. We reported the results from the 54 tissue types 
using the GTEx V8 data.   
 
(g): Gene-drug-disease network: We tested the enrichment of the nine BAG-linked genes in the 
targeted gene sets for different drug categories from the DrugBank database25. The gene-drug-
disease network was constructed to prioritize potentially repositionable drugs. The GREP 
software24 performs Fisher's exact tests to examine whether the prioritized genes are enriched in 
gene sets targeted by drugs in a clinical indication category for a certain disease or condition. 
Bonferroni correction was performed for all tested drugs. 
 
(h): Genetic correlation: We used the LDSC64 software to estimate the pairwise genetic 
correlation (gc) between each pair of BAGs, as well as between the nine BAG and 41 other 
clinical traits, including chronic diseases involving multiple organ systems, such as AD for brain 
and chronic kidney disease for kidney, cognition, and lifestyle factors. We used the precomputed 
LD scores from the 1000 Genomes of European ancestry. To ensure the suitability of the GWAS 
summary statistics, we first checked that the selected study's population was European ancestry; 
we then guaranteed a moderate SNP-based heritability h2 estimate. Notably, LDSC corrects for 
sample overlap and provides an unbiased estimate of genetic correlation50. The inclusion criteria 
and finally included traits are detailed in Supplementary eTable 2. Bonferroni correction was 
performed for the 41 clinical traits. 
 
(i): Partitioned heritability estimate: Partitioned heritability analysis estimates the percentage 
of heritability enrichment explained by pre-defined, annotated genome regions and categories27. 
First, the partitioned heritability was calculated for 53 general functional categories (one 
including the entire set of SNPs). The 53 functional categories are not specific to any cell type 
and include coding, UTR, promoter and intronic regions, etc. The details of the 53 categories are 
described elsewhere27. Subsequently, cell and tissue type-specific partitioned heritability was 
estimated using gene sets from Cahoy et al.28 for three main cell types (i.e., astrocyte, neuron, 
and oligodendrocyte), multi-tissue chromatin states-specific data (ROADMAP29 and ENTEx30), 
and multi-tissue gene expression data (GTEx V823). Bonferroni correction was performed for all 
tested annotations and categories. 
 
(j): Two-sample bi-directional Mendelian randomization: We investigated whether one BAG 
was causally associated with another BAG and whether the 41 clinical traits were causally 
associated with the nine BAGs (Fig. 4). To this end, we employed a bidirectional, two-sample 
Mendelian randomization using the TwoSampleMR package65. Both the forward and inverse 
Mendelian randomization were performed between each pair of traits by switching the exposure 
and outcome variables. We applied five different Mendelian randomization methods and 
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reported the results of inverse variance weighted (IVW) in the main text and the four others (i.e., 
Egger, weighted median, simple mode, and weighted mode estimators) in the supplement.  
 For the causal inference of each pair of BAGs, all GWAS summary statistics were 
derived from our analyses by excluding overlapping populations of the two BAGs. For example, 
to test the causal relationship between the brain BAG and cardiovascular BAG, we reran GWAS 
for the cardiovascular BAG by excluding the partially overlapping population from the brain 
BAG. For all the seven body organ systems which had entirely overlapping populations, we used 
the GWAS data from the split-sample analyses (Method 2a). For instance, the GWAS for the 
cardiovascular BAG was from the first-split data, and the pulmonary BAG was from the second-
split data. Bonferroni correction was performed for the tested BAGs. 
 One key challenge in our hypothesis-driven Mendelian randomization is to select these 
exposure variables unbiasedly. Clinical traits sharing common genetic covariance with nine 
BAGs are more likely to be causally associated with them. We performed a systematic inclusion 
procedure using the following criteria to overcome this. We manually queried the 41 clinical 
traits – used in our genetic correlation analyses – in the IEU GWAS database, specifically 
curated for Mendelian randomization analyses. We ranked all available studies for a certain trait 
(e.g., AD) based on the sample sizes. We then chose the study whose populations were of 
European ancestry and did not include UKBB participants to avoid bias due to overlapping 
populations16. For the traits whose GWAS data were available in the IEU GWAS database, we 
used the TwoSampleMR package to perform the Mendelian randomization analysis. For the 
traits whose data were not appropriate in the IEU GWAS database, we then performed another 
manual query in the EMBL-EBI GWAS Catalog database to download the available GWAS 
summary statistics with the same filter criteria. For the traits whose GWAS data were dominated 
by studies using UKBB participants in both databases, we ran GWAS using our own UKBB data 
by excluding overlapping populations. Finally, after harmonizing their GWAS summary 
statistics, this resulted in 17 clinical traits with at least eight valid IVs (i.e., SNPs). The 17 
clinical traits included chronic diseases affecting multiple organ systems, cognition, and lifestyle 
factors (Supplementary eTable 3). Bonferroni correction was performed for all tested clinical 
traits.  
 We performed several sensitivity analyses. First, a heterogeneity test was performed to 
check for violating the IV assumptions. Horizontal pleiotropy was estimated to navigate the 
violation of the IV's exclusivity assumption66 using a funnel plot, single-SNP Mendelian 
randomization approaches, and Mendelian randomization Egger estimator67. Moreover, the 
leave-one-out analysis excluded one instrument (SNP) at a time and assessed the sensitivity of 
the results to individual SNP.  
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Data Availability 
The GWAS summary statistics corresponding to this study are publicly available on the 
MEDICINE knowledge portal (https://labs.loni.usc.edu/medicine), the FUMA online platform 
(https://fuma.ctglab.nl/), the EMBL-EBI GWAS Catalog platform 
(https://www.ebi.ac.uk/gwas/home), and the IEU GWAS database (https://gwas.mrcieu.ac.uk/).  
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Code Availability 
The software and resources used in this study are all publicly available:  

• MEDICINE: https://labs.loni.usc.edu/medicine, knowledge portal for dissemination 
• BioAge: https://github.com/yetianmed/BioAge, biological age prediction 
• PLINK: https://www.cog-genomics.org/plink/, GWAS 
• FUMA: https://fuma.ctglab.nl/, gene mapping, genomic locus annotation 
• GCTA: https://yanglab.westlake.edu.cn/software/gcta/#Overview, heritability estimates  
• LDSC: https://github.com/bulik/ldsc, genetic correlation and partitioned heritability 
• TwoSampleMR: https://mrcieu.github.io/TwoSampleMR/index.html, Mendelian 

randomization   
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