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Abstract 

 

Background and Objectives: Rapid diagnosis of stroke and its subtypes is critical in 

early stages. We aimed to discover and validate blood-based protein biomarkers to 

differentiate ischemic stroke (IS) from intracerebral hemorrhage (ICH) within 24 hours 

using high-throughput proteomics. 

 

Methods: We collected serum samples within 24 hours from acute stroke (IS & ICH) 

and mimics patients. In the discovery phase, SWATH-MS proteomics identified 

differentially expressed proteins (fold change: 1.5, p<0.05, and confirmed/tentative 

selection using Boruta random forest) between IS and ICH which were validated using 

Multiple Reaction Monitoring (MRM) proteomics in the validation phase. Protein-

protein interactions and pathway analysis were conducted using STRING version 11 

and Cytoscape 3.9.0. Cut-off points were determined using Youden Index. Prediction 

models were developed using backward stepwise multivariable logistic regression 

analysis. Hanley-McNeil test, Integrated discrimination improvement index, and 

likelihood ratio test determined the improved discrimination ability of biomarkers 

added to clinical models.  

 

Results: Discovery phase included 20 IS and 20 ICH while validation phase included 

150 IS, 150 ICH, and 6 stroke mimics. We quantified 365 proteins in the discovery 

phase. Between IS and ICH, we identified 20 differentially expressed proteins. In the 

validation phase, combined prediction model including three biomarkers: GFAP (OR 

0.04; 95%CI 0.02-0.11), MMP9 (OR 0.09; 95%CI 0.03-0.28), APO-C1 (OR 5.76; 95%CI 

2.66-12.47) and clinical variables independently differentiated IS from ICH (accuracy: 
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92%, sensitivity: 96%, specificity: 69%). Addition of biomarkers to clinical variables 

improved the discrimination capacity by 26% (p<0.001). Subgroup analysis within 6 

hours identified that GFAP and MMP9 differentiated IS from ICH with a sensitivity> 

90%. 

 

Conclusions: Our study identified that GFAP, MMP, and APO-C1 biomarkers 

independently differentiated IS from ICH within 24 hours and significantly improved 

the discrimination ability to predict IS. Temporal profiling of these biomarkers in the 

acute phase of stroke is urgently warranted. 

 

Keywords: Ischemic Stroke; Intracerebral Hemorrhage; Diagnosis; Differentiation; 

Blood; Biomarkers; Proteomics. 

 

Glossary:  

IS= Ischemic Stroke; ICH= Intracerebral hemorrhage; SDE= Significantly Differentially 

Expressed; CT= Computed Tomography; MRI= Magnetic Resonance Imaging; SWATH-

MS= sequential windowed acquisition of all theoretical fragment ion mass spectra; 

MRM= Multiple Reaction Monitoring; FDR= False Discovery Rate; PCA= Principal 

Component Analysis; OR= Odds Ratio; CI= Confidence Interval; ROC= Receiver 

Operating Characteristic; AUC= Area Under the Curve; PPV= Positive Predictive Value; 

NPV= Negative Predictive Value; VIF= Variance Inflation Factor; IDI= Integrated 

Discrimination Improvement; GO= Gene Ontology; KEGG= Kyoto Encyclopedia of Genes 

and Genomes.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2023. ; https://doi.org/10.1101/2023.06.10.23291233doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.10.23291233
http://creativecommons.org/licenses/by-nd/4.0/


Introduction 

An early diagnosis of stroke and definitive acute treatment is critical in acute stroke 

care.1 Early detection of stroke and its subtypes is crucial since the efficacy of 

reperfusion therapies in ischemic stroke (IS) including intravenous thrombolysis2–4 and 

mechanical thrombectomy,5,6 is time-dependent. There are several challenges in the 

diagnosis of IS including poor sensitivity of a computed tomography (CT) scan to 

diagnose IS in the acute phase, lack of availability of a magnetic resonance imaging 

(MRI) scan and trained neurologists in resource-limited settings, and expensive cost of 

imaging equipment’s. Therefore, the search for a novel molecular marker for stroke 

diagnosis has received growing attention in the last 20 years.7–9 

As of 2022, we do not have a functional blood-based stroke biomarker (either individual 

or in combination) which can differentiate IS from intracerebral hemorrhage (ICH) and 

other similar conditions. We also do not have a point of care test which can strengthen 

the stroke diagnosis along with neuroimaging. Most of the studies conducted till date 

have used the candidate-based immunoassays with every protein requiring a separate 

assay or a multiplex assay approach to determine diagnostic biomarkers for 

differentiating IS from healthy controls, stroke mimics, and ICH within 24 hours. A high-

throughput proteomics approach, on the other hand, can simultaneously quantify many 

proteins in an exploratory fashion and could potentially be a highly sensitive method to 

detect diagnostic protein markers in stroke patients at a low cost per sample in a rapid 

and reproducible manner. Further, recent advancements in label-free quantification of 

proteins have offered a cost-effective alternative to the labelling methods for 

discovering protein biomarkers in stroke with subsequent validation in larger cohorts 

using the targeted proteomics methods. Label-free techniques like sequential windowed 

acquisition of all theoretical fragment ion mass spectra (SWATH-MS) have been 
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preferred over labelled proteomics techniques for large clinical studies focussed on 

biomarker discovery.10 

With the growing need for a blood-based diagnostic biomarker in stroke, it is 

imperative to utilize the advantages of the latest high-throughput proteomics 

approaches and focus on relevant clinical questions for identifying protein biomarkers 

that have adequate sensitivity and/or specificity to differentiate stroke subtypes in 

clinical settings. Therefore, we aimed to discover blood-based protein biomarkers to 

diagnose and differentiate IS from ICH within 24 hours using the untargeted SWATH-MS 

proteomics approach. We also validated the diagnostic performance of the discovered 

proteins in a separate cohort of IS, ICH, and stroke mimics using the targeted Multiple 

Reaction Monitoring (MRM) proteomics approach. 

 

Methods 

Study population and study design 

This diagnostic test study was conducted in the Department of Neurology, All India 

Institute of Medical Sciences (AIIMS), New Delhi, India in collaboration with Institute of 

Genomics and Integrative Biology (IGIB), New Delhi, India. From October 2017 to March 

2020, we included consecutive stroke patients aged 18 years and above, ischemic or 

hemorrhagic confirmed by neuroimaging and clinical diagnosis admitted within 24 

hours of symptom onset to the neurology wards and/or emergency department of 

AIIMS, New Delhi. All included patients had clinical signs consistent with the definition 

of stroke given by the American Heart Association (AHA)/American Stroke Association 

(ASA).11 We also included a group of stroke mimics presenting within 24 hours with 

stroke-like symptoms. We excluded patients with a previous history of stroke, 

admission after the 24-hour onset of the qualifying event, cerebral vein thrombosis, 
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chronic liver and/or kidney disease, documented history of cancer, pregnancy, and 

unwilling to provide written informed consent.  

The study was approved by the Local Institutional Ethics Committee of AIIMS, New 

Delhi (Ref. No. IECPG-395/28.09.2017). We obtained written informed consent from all 

the recruited patients or legally authorized representative prior to collecting blood 

samples and clinical history. The study was divided into two phases: (1) discovery 

phase and (2) validation phase. The study flow diagram is represented in Figure 1. 

 

Sample size 

For the discovery phase, based on the feasibility, budget, and time-frame of the study, 

we selected 40 stroke patients comprising of 20 IS and 20 ICH. The literature suggests a 

sample size of 10 to 30 for conducting a pilot/discovery phase study.12,13  

For the validation phase, to achieve a sensitivity and specificity of 90% with 5% margin 

of error and 5% drop out rate, we estimated a final sample size of 300 comprising 150 

IS and 150 ICH patients14 using STATA version 13.0 software.  

 

Blood sample collection 

We collected five ml of peripheral blood samples in serum vacutainer tubes from stroke 

patients and mimics within 24-hour onset. For serum collection, it was left standing at 

room temperature for 30 minutes until clotted. It was then centrifuged at 3000g for 10 

minutes, after which the serum was separated into cryovials. Five aliquots of each 

sample (100µl) were prepared and stored at -80°C until further analysis. 
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Sample preparation, Reduction, alkylation, and trypsin digestion 

Refer to previously published paper.15 

 

DISCOVERY PHASE 

SWATH-MS data acquisition 

Refer to previously published paper.15  

 

Bioinformatic analysis  

We used a high-pH fractionated peptide library for human serum proteins (obtained 

from SCIEX) comprising 465 proteins. SWATH peaks were extracted using this library in 

SWATH 2.0 microapp in PeakView 2.2 software (SCIEX), excluding shared peptides. The 

processing settings for peak extraction were: maximum 10 peptides per protein, 5 

transitions per peptide, >95% peptide confidence threshold, 1% peptide false discovery 

rate (FDR). XIC extraction window was set to 55 minutes with 75 ppm XIC Width. Data 

were normalized using total area sum normalization and log2 transformed. Batch 

correction was performed for removing the non-biological experimental variations and 

was visualized using the Principal Component Analysis (PCA) plots. Differentially 

expressed proteins were selected using two criteria: (i) p-value <0.05 and ± 1.5 fold 

change cut-offs (>1.5 for upregulated and <0.67 for downregulated proteins); or (ii) 

confirmed/tentative selection in the Boruta random forest feature selection method. 

The STRING 11 online tool16 was used to create the protein network of the differentially 

expressed proteins between various conditions. Further, protein-protein interaction 

network and the functional enrichment analyses were conducted using Cytoscape 3.9.0 

software.17 
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VALIDATION PHASE 

Differentially expressed proteins obtained in the discovery phase and five proteins 

identified in our meta-analysis9 were validated using targeted proteomics in the 

validation phase.  

 

Peptide selection for Multiple Reaction Monitoring (MRM)-based targeted 

proteomics 

Peptide selection was performed using search results from ProteinPilot,18 

PeptideAtlas19 or in-silico generated peptides of proteins using Expasy PeptideCutter 

tool.20 Peptides with +2 and +3 charges were considered for MRM and for each peptide, 

5-6 fragment ions were used for identification. Peptide selection for the list of 

shortlisted proteins is given in supplementary Table 1. 

 

MRM data acquisition 

Tryptic peptides obtained after digestion were desalted using reversed-phase Oasis HLB 

cartridges (Waters, Milford, MA) as per manufacturer’s protocol. The peptide mixture 

was dried using a vacuum centrifuge, and the peptides were resuspended in 0.1% 

formic acid at a final concentration of 1μg/μl. A heavy labeled peptide for Apo A1 

(QGLLPVLESFK; K=Lysine-13C6,15N2) protein was spiked-in the resolubilized plasma 

digest at a final concentration of 1ng/μl. 

The targeted MRM-MS21 analysis of the tryptic peptides was performed on a TSQ 

Altis (Thermo Fisher, San Jose, CA). The instrument was equipped with an H-ESI ion 

source. A spray voltage of 3.5 keV was used with a heated ion transfer tube set at a 

temperature of 325°C. Chromatographic separations of peptides were performed on 

Vanquish UHPLC system (Thermo Fisher, San Jose, CA). 
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Ten μl sample was injected and peptides were loaded on an ACQUITY UPLC BEH C18 

column (130Å, 1.7 µm, 2.1 mm X 100 mm, Waters) from a cooled (4°C) autosampler and 

separated with a linear gradient of water (buffer A) and acetonitrile (buffer B), 

containing 0.1% formic acid, at a flow rate of 300µl/minute in 30 minutes gradient run.  

 

Statistical analysis  

Skyline version 21.1 was used to analyze the MRM data.22 The area for each peptide was 

spike-in normalized using a heavy labeled peptide for Apo A1 protein and then log2 

transformed. The random forest-based imputation was performed for peptides with 

<10% missing values.23 The normality of the data was assessed using the Shapiro-Wilk 

test.  

The results of our study were reported as per the Standard for Reporting Diagnostic 

Accuracy (STARD) guidelines.24 For each comparison, IS was taken as the endpoint and 

univariable logistic regression analysis was conducted using odds ratio (OR) and 95% 

confidence interval (CI). Receiver operating characteristic (ROC) curve analyses were 

performed for biomarkers differentiating IS from ICH and stroke mimics. The optimal 

cut-off points were determined using the Youden Index. The sensitivity, specificity, 

positive predictive value (PPV), and negative predictive value (NPV) of each biomarker 

were determined. Since the aim of this study was to detect and diagnose IS, cut-offs for 

each biomarker were selected having the highest sensitivity values to detect IS and to 

rule out ICH or mimics with the best available specificity values. 

Prediction models were developed to determine the accuracy and precision of protein 

biomarkers and their discrimination ability was evaluated using area under the curve 

(AUC)/c-statistic. The clinical variables with p-value <0.1 in the univariable analysis 

along with demographic variables like age and sex, were included in a backward 
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stepwise multivariable logistic regression analysis. Afterward, biomarkers were added 

incrementally to this model. Those biomarkers that contributed to at least a 1% 

increase in the AUC/c-statistic were retained in the model. Another prediction model 

was developed to determine the diagnostic potential of biomarkers alone in 

differentiating IS. For each prediction model, the degree of multicollinearity was tested 

using the variance inflation factor (VIF) and predictors with VIF value >2.5 were 

removed from the final model. The discrimination ability (AUC) between various 

prediction models was compared and quantitatively assessed using the Hanley-McNeil 

test p-value.25 At different pre-test probabilities of the disease, the corresponding post-

test probability, and the multi-level likelihood ratio were determined. The integrated 

discrimination improvement (IDI) index was calculated to assess the added value of the 

biomarkers to the clinical predictive models.26,27 The goodness-of-fit between the two 

hierarchical prediction models was evaluated using the Likelihood Ratio (LR) test based 

on the ratio of their likelihoods.28 The selection of the best prediction model was done 

using Akaike’s Information Criteria (AIC)29 and Bayesian Information Criteria (BIC).30 

The statistical analyses were conducted in R version 3.6.2 and STATA version 13.1. 

 

Data availability 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE31 partner repository with the dataset identifier PXD032917. 

 

Results 

Results from the Discovery Phase 

We enrolled 40 patients in the discovery phase: 20 IS and 20 ICH patients recruited 

within 24 hours. Between IS and ICH cases, there was no significant difference in the 
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mean age (p=0.12) and mean blood sampling time from symptom onset (p=0.86). The 

baseline characteristics of the patients are given in supplementary Table 2. 

Serum proteomic profiles were compared between 20 IS and 20 ICH cases using the 

SWATH-MS approach. We quantified 375 proteins at 1% peptide FDR between IS and 

ICH. The total ion chromatogram and the PCA plots depicting batch variations are given 

in supplementary figure 1 and supplementary figure 2. 

We identified 14 differentially expressed proteins using the fold change and p-value 

criteria. Three proteins were upregulated, while 11 were downregulated in IS compared 

to ICH (Figure 2a). We further identified 11 confirmed/tentative features between IS 

and ICH using the Boruta random forest method (Figure 2b and supplementary Table 

3). Five proteins (UniProt IDs: P01023, P01833, P01764, P19652, and P02654) were 

common using both protein selection criteria. Therefore, after combining the distinctly 

expressed proteins using both criteria, 20 differentially expressed proteins were 

identified between IS and ICH within 24 hours (Table 1). A heatmap of these 20 proteins 

is depicted in Figure 2c.  

Interaction network analysis observed that 15 proteins formed a highly connected 

network showing molecular interactions with other proteins (Figure 2d). APOH had the 

highest degree of interaction with other proteins followed by APOA1, A2M, and HP. In 

our network, 10 protein-protein interactions had an interaction score of >0.90.  

Functional enrichment analysis identified molecular pathways/processes involving 

blood microparticles, extracellular space, lipoprotein particles, cholesterol metabolism, 

platelet degranulation, and post translational protein phosphorylation that were 

significantly different between IS and ICH (supplementary Table 4). 
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Results from the Validation Phase 

We included 306 cases in the validation phase; 300 stroke patients (150 IS and 150 ICH) 

and 6 stroke mimics within 24 hours. The mean age of IS, ICH, and stroke mimics were 

54.59±15.54, 55.30±12.72, and 47.83±18.25 years, respectively. IS, ICH, and stroke 

mimics consisted of 64.67%, 65.33%, and 66.67% males. The mean blood sampling time 

(in hours) from symptom onset was 15.29±5.55 in IS, 14.97±6.55 in ICH, and 8.75±5.07 

in stroke mimics. The 6 stroke mimics included patients suffering from hypoglycaemia 

(2), vertigo (2), syncope (1), and seizure (1) (supplementary Table 5 and 

supplementary Table 6). 

We validated 20 differentially expressed proteins identified in the discovery phase and 

five proteins (GFAP, BNP, D-dimer, MMP-9, and UCH-L1) identified in our published 

meta-analysis.9 While selecting the peptides of interest for MRM, unique peptides for 

two proteins (UniProt IDs: P01764 and P01601) could not be determined, while the 

unique peptide (TDISMSDFENSR) for PIGR protein (UniProt ID: P01833) was not 

detectable in any sample, thus they were excluded from the final analysis. Therefore, 22 

proteins (17 from discovery phase and five from meta-analysis) were selected in our 

validation phase. One unique peptide per protein was used for quantification. The final 

list of unique peptides and quantifier fragment ion for each protein is given in 

supplementary Table 7. 

 

Univariable analysis in the Validation Phase 

In the univariable analysis, the protein concentration of 15 out of 22 biomarkers were 

different between IS and ICH (p-value <0.1) (supplementary Table 8). The diagnostic 

characteristics for the 15 categorized biomarkers are given in Table 2. In a subgroup 

analysis conducted within 6 hours, nine of 22 biomarkers significantly differentiated 12 
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IS from 26 ICH cases (supplementary Table 9 and supplementary Table 10). In a 

secondary analysis, only three biomarkers differentiated IS from stroke mimics within 

24 hours (supplementary Table 11).  

 

Multivariable regression analysis in the validation phase 

Clinical model 

Five clinical variables including sex (OR 2.12; 95%CI 1.12-4.02), hypertension (OR 0.40; 

95%CI 0.23-0.70), atrial fibrillation (OR 9.13; 95%CI 2.01-41.57), current smoking (OR 

3.19; 95%CI 1.70-5.96), and NIHSS score at admission (OR 0.87; 95%CI 0.84-0.90) were 

independent predictors of IS (AUC/c-statistic of 81%) (Table 3). 

 

Biomarker model 

Eight protein biomarkers including GFAP (OR 0.06; 95%CI 0.03-0.16), MMP-9 (OR 0.16; 

95%CI 0.06-0.42), APO-C1 (OR 6.56; 95%CI 3.20-13.45), APO-A1 (OR 0.28; 95%CI 0.09-

0.81), Haptoglobin (OR 2.88; 95%CI 1.26-6.58), UCH-L1 (OR 0.35; 95%CI 0.14-0.84), 

ORM2 (OR 0.38; 95%CI 0.15-0.95), and Serotransferrin (OR 4.40; 95%CI 1.30-14.85) 

were independent predictors of IS (AUC/c-statistic of 88%) (Table 3). 

 

Combined model (clinical variables + protein biomarkers) 

Proteins that were significant in the biomarker model were incrementally added to the 

clinical model. In the combined prediction model, four clinical variables including 

hypertension (OR 0.38; 95%CI 0.19-0.76), atrial fibrillation (OR 21.92; 95%CI 3.17-

151.35), current smoking (OR 3.00; 95%CI 1.37-6.55), and NIHSS score at admission 

(OR 0.87; 95%CI 0.84-0.91), and three protein biomarkers including GFAP (OR 0.04; 
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95%CI 0.02-0.11), MMP-9 (OR 0.09; 95%CI 0.03-0.28), and APO-C1 (OR 5.76; 95%CI 

2.66-12.47) were independent predictors of IS (AUC/c-statistic of 92%) (Table 3).  

Comparing the diagnostic performance of prediction models 

We compared the ROC curves of three prediction models using the Hanley and McNeil 

test. We observed that the combined model had significantly higher AUC compared to 

biomarker model (p=0.036) and clinical model (p<0.0001) (Figure 3). 

The IDI index suggested that combined model increased the discrimination ability by 

13% (p<0.001) compared to biomarker model and by 26% (p<0.001) compared to 

clinical model. 

The goodness-of-fit between the clinical and combined models (hierarchical models) 

was compared using the likelihood ratio test. The addition of three protein biomarkers 

(GFAP, MMP-9, and APO-C1) to the clinical variables significantly increased the 

likelihood ratio by 102.74 (p<0.001). Further, combined model including clinical and 

biomarker variables, had the least AIC and BIC values than clinical model. 

 

Comparison between prediction models at different pre-test probabilities 

Combined model including clinical variables and protein biomarkers (GFAP, MMP-9, 

APO-C1), improved the pre-test probability of diagnosing an IS from 30%, 50%, and 

70% to a post-test probability of 57%, 82%, and 95%, respectively. Combined model 

had the best sensitivity, specificity, and likelihood ratios at all the three pre-test 

probability cut-offs compared to clinical and biomarker models. At a pre-test 

probability of 30%, combined model had the highest NPV of 94% to rule out ICH (Table 

4). 
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Discussion 

In the discovery phase, our study identified 20 differentially expressed proteins 

between IS and ICH. Of these 20 proteins, in the validation phase, we identified three 

biomarkers (GFAP, MMP9, APOC1) that independently differentiated IS from ICH in 

multivariable analyses. When these three biomarkers were added to the prediction 

models containing clinical variables, they significantly improved the discrimination 

ability to detect IS. GFAP and MMP9 further differentiated the two stroke subtypes in a 

subgroup analysis within 6 hours. In a secondary analysis, we identified three 

biomarkers (APO-L1, BNP, FBXW5) that differentiated IS from stroke mimics. To the 

best of our knowledge, this is the first study that has utilized the discovery-based label-

free SWATH-MS proteomics and targeted MRM proteomics to identify and validate 

differentially expressed protein biomarkers in the blood of patients with IS and ICH 

within 24 hours of symptom onset. 

 

Our findings highlight the importance of a panel-based approach in diagnostic 

biomarker research in stroke. Our study observed that a combined panel of biomarkers 

and clinical variables detected IS from ICH with an accuracy of 92%. Only a few studies 

in the past have adopted the panel-based approach. The Stroke-Chip study in 201732 

included a panel of clinical variables and biomarkers in which only NT-proBNP 

independently differentiated IS from ICH with an accuracy of 75.7%. Earlier, Montaner 

et al. in 201233 observed that in a combined panel, S100B and RAGE independently 

differentiated IS from ICH with an improved accuracy of 84%.  Thus, future studies must 

focus on testing the diagnostic potential of their biomarkers in multivariable prediction 

models to identify independent biomarkers for IS diagnosis. 
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For the first time our study used a label-free proteomics approach to detect the levels of 

proteins identified in the literature such as GFAP, MMP9, BNP, D-dimer, and UCH-L1 in 

stroke patients. We focussed on finding a combination of biomarkers with/without 

clinical variables which can detect IS with high sensitivity and a high NPV to rule out 

ICH. The poor specificity values observed in most of the biomarkers when analyzed 

alone, were improved significantly when combined in a panel. 

 

Our network analysis identified an interaction network of 15 proteins that was highly 

connected. The most common significant pathways underlying the proteins 

differentiating IS from ICH included cholesterol metabolism and lipid-related processes, 

platelet degranulation, and pathways related to extracellular space and matrix. 

 

Thus far, no proteomics study conducted in stroke has identified biomarkers within the 

24-hour time window. In a recent study, Malicek et al. 202134 used a similar discovery-

based label-free proteomics approach and identified nine proteins in a small sample of 3 

IS and 4 ICH patients. They collected blood samples between 1 to 15 days and lacked a 

validation phase. Of these nine proteins, serum amyloid P-component was also 

differentially expressed in our discover phase. Another study by Zhang et al. 202135 

collected serum within five days and identified two metabolic biomarkers between IS 

and ICH using targeted metabolomics. Lopez et al. (2012)36 used targeted proteomics 

and identified a combination of APO-CIII and APO-AI that differentiated IS from ICH 

with an AUC of 0.92. In our discovery phase, we also observed that APO-AI was 

significantly downregulated in IS by 0.61-fold compared to ICH. 
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Several studies in the past have used immunoassays to identify candidate protein 

biomarkers for differentiating IS from ICH. GFAP is the most extensively studied protein 

and several systematic reviews and meta-analyses,37–40 including those published by 

our group8,9,41 also reiterate our findings that GFAP efficiently differentiates the two 

stroke subtypes with high sensitivity and/or specificity within 24 as well as 6 hours. 

With regards to MMP9, our findings are in line with several other published studies33,42–

44 and meta-analysis,9 that observed that MMP-9 has significantly lower levels in IS than 

ICH and efficiently differentiates the two stroke subtypes within 24 hours. 

 

Previous studies have had contradictory results regarding the APO-C1 levels in IS and 

ICH patients. In our study, we detected higher levels of APO-C1 in IS than ICH. The 

increased levels of APO-C1 during acute IS might be related to its key role in lipid 

metabolism, also observed in the pathway analysis in our study. One study by Allard et 

al. (2004)45 corroborates our findings as they observed higher levels of APO-C1 in IS 

than ICH. However, a study by Walsh et al. (2016)46 observed that in a small sample of 

14 IS and 23 ICH cases, the median APO-CI levels were slightly lower in IS compared to 

ICH. Therefore, more adequately powered studies are required to confirm the levels of 

APO-C1 in stroke subtypes. 

 

Strengths of our study 

This study provides crucial insights into the pathophysiology of IS and ICH in acute 

stages. We validated the diagnostic potential of discovered biomarkers in a large cohort 

of patients using a high-throughput proteomics approach. Our study was conducted in 

resource-limited settings wherein there is an urgent need for an alternative approach 

toward rapid stroke diagnosis. Our study analyzed the individual protein profile of each 
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patient using proteomics in both discovery and validation phases without pooling any 

sample. Since, pooled samples do not reflect the diseased/non-diseased condition of a 

single person and may produce false-positive or false-negative results. 

 

Limitations of the study 

Certain inherent limitations associated with our study must be kept in mind when 

interpreting its results. Firstly, the serum samples were obtained only from the Indian 

population; thus, further studies conducted in ethnically diverse populations are 

required to validate the generalizability of the biomarkers identified in our study. 

Secondly, relative quantification of proteins was done in the validation phase. To 

determine the biomarker levels with absolute quantification, future studies must be 

conducted on these biomarkers using either labelled peptide-based targeted proteomics 

or standard immunoassays. Lastly, the number of stroke mimics included in this study 

were very less, therefore, findings were only exploratory. 

 

Future directions 

The literature on proteomics studies for diagnostic biomarkers in stroke is mainly 

limited to the discovery phase, while the validation phase is lacking. Therefore, studies 

must look to validate their discovered biomarkers in a large independent cohort using 

either standard immunoassays or targeted proteomics approaches using MRM. Since 

stroke is a multifactorial disorder, a single biomarker approach might not be 

appropriate, and instead studies must look for a panel of biomarkers that may increase 

the overall sensitivity and specificity of the diagnosis. The ability of the biomarkers to 

independently diagnose IS must be evaluated in multivariable regression models 

consisting of potential clinical predictors along with independent protein biomarkers. 
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Studies should also examine the improvement in the discrimination ability and the 

incremental value of any biomarker over clinical variables using various statistical 

approaches. Future studies should utilize the advanced label-free proteomics 

technology for biomarker research in stroke. They require a minimal sample volume at 

a low cost per sample. This approach would be convenient for studies investigating a 

panel of biomarkers. Studies must avoid pooling of samples when conducting their 

proteomics experiments to avoid false positive/false negative results. 

 

Conclusion 

Our study identified 20 differentially expressed proteins between IS and ICH in the 

discovery phase using SWATH-MS proteomics with a strong interaction network for 15 

proteins. The validation phase highlighted the potential of 15 biomarker candidates in 

differentiating IS from ICH within 24 hours. The prediction model including three 

protein biomarkers (GFAP, MMP9, and APOC1) and clinical variables, had the best 

discrimination ability and increased the post-test probability of detecting IS with high 

sensitivity, specificity, and likelihood ratios. Protein biomarkers along with clinical 

predictors significantly improved the discrimination ability of the model in 

differentiating IS from ICH within 24 hours. Our results must be validated in other 

populations using absolute quantification to confirm the generalizability of our findings 

and the diagnostic performance of the identified biomarkers.  
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Figure legends 

 

Figure 1: Study flow diagram 
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Figure 2a: Volcano plot depicting the log2 fold change on the x-axis and -log10 p-value 

on the y-axis for the upregulated and downregulated proteins in 20 IS cases compared 

to 20 ICH cases within 24 hours. Figure 2b: Feature selection using the Boruta random 

forest between 20 IS and 20 ICH cases within 24 hours. Figure 2c: Heatmap showing 

the distribution and expression pattern of 20 significantly differentially expressed 

proteins between IS and ICH. Figure 2d: Protein-protein interaction network analysis 

of differentially expressed proteins between IS and ICH using the Cytoscape software. 

The colour of nodes and edges represents the degree of interaction and interaction 

score. 
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Figure 3: A comparison between the ROC curves of Clinical prediction model (blue 

curve), Biomarker prediction model (red curve), and Combined prediction model (green 

curve) to differentiate IS from ICH within 24 hours. 
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Table 1: List of significantly differentially expressed proteins between IS and ICH within 24 hours of symptom onset using Fold change 

with p-value and Boruta random forest feature selection criteria 

S. No UniProt ID Protein Name (Gene annotation) Fold Change* P-value Boruta decision 

1 P01764 Ig heavy chain V-III region VH26  4.42 0.007 Confirmed 

2 P01023 Alpha-2-macroglobulin (GN=A2M) 2.54 0.02 Confirmed 

3 P08253 72 kDa type IV collagenase (GN=MMP2) 1.78 0.04 Rejected 

4 P05155 Plasma protease C1 inhibitor (GN=SERPING1) 1.12 0.04 Confirmed 

5 P00738 Haptoglobin (GN=HP) 0.97 0.04 Tentative 

6 P02749 Beta-2-glycoprotein 1 (GN=APOH) 0.95 0.17 Confirmed 

7 P02753 Retinol-binding protein 4 (GN=RBP4) 0.87 0.0001 Confirmed 

8 P02787 Serotransferrin (GN=TF) 0.82 0.07 Confirmed 

9 P01833 Polymeric immunoglobulin receptor (GN=PIGR) 0.66 0.003 Confirmed 

10 P02654 Apolipoprotein C-I OS=Homo sapiens (GN=APOC1) 0.64 0.01 Confirmed 

11 P02743 Serum amyloid P-component (GN=APCS) 0.62 0.04 Rejected 

12 P02647 Apolipoprotein A-I (GN=APOA1) 0.61 0.03 Rejected 

13 P01601 Ig kappa chain V-I region HK101 (Fragment) 0.59 0.04 Rejected 

14 P19652 Alpha-1-acid glycoprotein 2 (GN=ORM2) 0.59 0.01 Tentative 

15 P01613 Ig kappa chain V-I region Ni 0.58 0.02 Rejected 

16 Q969U6 F-box/WD repeat-containing protein 5 (GN=FBXW5) 0.56 0.04 Rejected 

17 Q9UNW1 Multiple inositol polyphosphate phosphatase 1 (GN=MINPP1) 0.52 0.03 Rejected 

18 O14791 Apolipoprotein L1 (GN=APOL1) 0.37 0.01 Rejected 

19 Q86U17 Serpin A11 (GN=SERPINA11) 0.33 0.02 Rejected 

20 P17936 Insulin-like growth factor-binding protein 3 (GN=IGFBP3) 0.21 0.08 Confirmed 

*Fold change is a ratio representing the change of protein concentration between IS and ICH patients. 
Bold values: Fold change >1.5 or <0.67, p-value<0.05 and confirmed/tentative in Boruta random forest. 
Abbreviations: A2M- Alpha-2-macroglobulin, MMP2- Matrix metalloproteinase 2 (72 kDa type IV collagenase), SERPING1- Plasma protease C1 inhibitor, HP- 
Haptoglobin, APOH- Apolipoprotein H (Beta-2-glycoprotein 1), RBP4- Retinol Binding protein 4, TF- Serotransferrin, PIGR- Polymeric immunoglobulin receptor, 
APOC1- Apolipoprotein C-I, APCS- Serum amyloid P-component, APOA1- Apolipoprotein A1, ORM2- Orosomucoid (Alpha-1-acid glycoprotein 2), FBXW5- F-
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box/WD repeat-containing protein 5, MINPP1- Multiple inositol polyphosphate phosphatase 1, APOL1- Apolipoprotein L1, SERPINA11- Serpin A11, IGFBP3- 
Insulin-like growth factor-binding protein 3. 
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Table 2: The diagnostic potential of protein biomarkers assessed in the validation phase of the study to differentiate ischemic stroke 

from intracerebral hemorrhage within 24 hours of onset 

S. 

No 

Protein Biomarker 

(UniProt ID) 

OR (95% CI) p-

value 

Cutoff Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

PPV (95% CI) 

(For IS) 

NPV (95% CI) 

(For ICH) 

1 GFAP (P14136) 0.06 (0.03-0.12) <0.001 <16.54 93% (88-97%) 55% (46-63%) 67% (60-74%) 89% (81-95%) 

2 MMP-9 (P14780) 0.15 (0.07-0.32) <0.001 <16.52 94% (89-97%) 30% (23-38%) 57% (51-63%) 83% (71-92%) 

3 UCH-L1 (P09936) 0.24 (0.12-0.44) <0.001 <14.03 90% (84-94%) 32% (25-40%) 57% (50-63%) 76% (64-86%) 

4 MINPP1 (Q9UNW1) 0.39 (0.24-0.62) <0.001 <19.93 73% (65-80%) 49% (41-58%) 59% (51-66%) 64% (55-73%) 

5 APO-A1 (P02647) 0.13 (0.07-0.26) <0.001 <21.92 92% (86-96%) 39% (31-48%) 60% (54-67%) 83% (72-91%) 

6 Alpha-1-acid-

Glycoprotein (ORM2) 

(P19652) 

0.33 (0.17-0.63) 0.001 <20.29 24% (17-32%) 91% (85-95%) 72% (57-84%) 54% (48-61%) 

7 BNP (N=179) (P16860) 0.38 (0.20-0.72) 0.003 <9.46 74% (64-83%) 47% (36-58%) 59% (49-68%) 65% (52-76) 

8 Beta-2-glycoprotein 1 

(APOH) (P02749) 

0.25 (0.10-0.65) 0.004 <20.25 96% (91-98%) 14% (9-21%) 53% (47-59%) 78% (58-91%) 

9 RBP4 (P02753) 0.49 (0.30-0.80) 0.005 <17.32 75% (68-82%) 40% (32-48%) 56% (48-63%) 62% (51-71%) 

10 MMP-2 (P08253) 0.54 (0.33-0.89) 0.01 <18.63 40% (32-48%) 73% (65-80%) 60% (48-70%) 55% (48-62%) 

11 APO-C1 (P02654) 1.94 (1.15-3.29) 0.01 >16.26 80% (73-86%) 33% (25-41%) 54% (47-61%) 62% (50-73%) 

12 Alpha-2-Macroglobulin 

(P01023) 

0.56 (0.34-0.93)  0.02 <18.70 75% (68-82%) 37% (29-45%) 54% (47-61%) 60% (49-70%) 

13 IGFBP3 (P17936) 0.53 (0.30-0.95) 0.03 <17.10 85% (78-90%) 25% (18-33%) 53% (46-59%) 62% (49-74%) 

14 Haptoglobin (P00738) 1.81 (1.01-3.22) 0.04 >17.21 85% (78-90%) 25% (18-32%) 53% (46-59%) 62% (48-74%) 

15 Serotransferrin (P02787) 0.51 (0.26-0.99) 0.04 <21.02 90% (84-94%) 18% (12-25%) 52% (46-58%) 64% (48-78%) 

The cut-off values represent the Log2 normalized protein concentrations. 
Abbreviations: OR: Odds Ratio; CI: Confidence Interval; PPV: Positive Predictive Value; NPV: Negative Predictive Value; APO- Apolipoprotein; APOH: 
Apolipoprotein H (Beta-2-glycoprotein 1); MINPP1: Multiple inositol polyphosphate phosphatase 1; ORM2: Orosomucoid 2 (Alpha-1-acid glycoprotein 2); RBP4: 
Retinol Binding Protein 4; MMP- Matrix Metalloproteinase; MMP2: Matrix Metalloproteinase 2 (72 kDa type IV collagenase); A2M: Alpha-2-Macroglobulin; IGFBP3: 
Insulin-like growth factor-binding protein 3; FBXW5: F-box/WD repeat-containing protein 5; APCS: Serum amyloid P-component; SERPING1: Serpin Family G 
Member 1 (Plasma protease C1 inhibitor); GFAP: Glial Fibrillary Acidic Protein; UCH-L1: Ubiquitin C-Terminal Hydrolase L1; BNP: Brain Natriuretic Peptide.
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Table 3: Multivariable prediction models to differentiate IS from ICH within 24 hours 

S. No Predictor variables OR (95% CI) P-value 

Clinical model discrimination ability (AUC)/ c-statistic: 0.81 (0.76-0.86) 

1. Sex 2.12 (1.12-4.02) 0.02 

2. Hypertension 0.40 (0.23-0.70) 0.001 

3. Atrial Fibrillation 9.13 (2.01-41.57) 0.004 

4. Current Smoking 3.19 (1.70-5.96) <0.001 

5. NIHSS score at admission 0.87 (0.84-0.90) <0.001 

Biomarker model discrimination ability (AUC)/ c-statistic: 0.88 (0.84-0.92) 

1. GFAP (<16.54) 0.06 (0.03-0.16) <0.001 

2. MMP9 (<16.52) 0.16 (0.06-0.42) <0.001 

3. APO-C1 (>16.26) 6.56 (3.20-13.45) <0.001 

4. Haptoglobin (>17.21) 2.88 (1.26-6.58) 0.01 

5. APO-A1 (<21.92) 0.28 (0.09-0.81) 0.02 

6. UCH-L1 (<14.03) 0.35 (0.14-0.84) 0.02 

7. Serotransferrin (<21.02) 4.40 (1.30-14.85) 0.02 

8. ORM2 (<20.29) 0.38 (0.15-0.95) 0.04 

Combined model discrimination ability (AUC)/ c-statistic: 0.92 (0.89-0.95) 

1. Sex 1.82 (0.83-3.99) 0.13 

2. Hypertension 0.38 (0.19-0.76) 0.007 

3. Atrial Fibrillation 21.92 (3.17-151.35) 0.002 

4. Current Smoking 3.00 (1.37-6.55) 0.006 

5. NIHSS score at admission 0.87 (0.84-0.91) <0.001 

6. GFAP (<16.54) 0.04 (0.02-0.11) <0.001 

7. MMP9 (<16.52) 0.09 (0.03-0.28) <0.001 

8. APO-C1 (>16.26) 5.76 (2.66-12.47) <0.001 
Abbreviations: OR: Odds Ratio; CI: Confidence Interval; AUC: Area Under the Curve; NIHSS: National 

Institutes of Health Stroke Scale; GFAP: Glial Fibrillary Acidic Protein; MMP9: Matrix Metalloproteinase 9; 

APO: Apolipoprotein; ORM2: Orosomucoid 2 (Alpha-1-acid glycoprotein 2); UCH-L1: Ubiquitin C-

Terminal Hydrolase L1. 

Clinical model: Adjusted for age, sex, time taken to reach the hospital, hypertension, diabetes, atrial 

fibrillation, current smoking, mild alcohol consumption, family history of diabetes, family history of heart 

attack, NIHSS score at admission and TLC. Biomarker model: Adjusted for GFAP, UCH-L1, MMP2, MMP9, 

RBP4, MINPP1, APO-A1, APO-C1, APOH, ORM2, Haptoglobin, Serotransferrin, A2M, and IGFBP3. 

Combined model: Adjusted for sex, hypertension, atrial fibrillation, current smoking, NIHSS score at 

admission, GFAP, MMP9, and APO-C1.  
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Table 4: Comparison in the diagnostic performance of the three prediction models at different pre-test probabilities 

Prediction models Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

PPV  

(95% CI) 

(For IS) 

NPV  

(95% CI) 

(For ICH) 

LR+ LR- Post-test 

Probability 

for positive 

disease 

Post-test 

probability 

for negative 

disease 

Pre-test probability: 30% 

Clinical model 92% (86-96%) 49% (40-57%) 64% (57-

71%) 

86% (77-

92%) 

1.80 0.16 44% (40-

77%) 

6% (3-12%) 

Biomarker model 92% (86-96%) 65% (56-72%) 72% (65-

78%) 

89% (82-

94%) 

2.63 0.12 53% (48-

58%) 

5% (3-10%) 

Combined model 96% (91-98%) 69% (61-77%) 76% (69-

82%) 

94% (88-

98%) 

3.13 0.06 57% (52-

62%) 

3% (1-6%) 

Pre-test probability: 50% 

Clinical model 78% (70-84%) 72% (64-79%) 74% (66-

80%) 

77% (69-

83%) 

2.79 0.30 74% (68-

78%) 

24% (18-

30%) 

Biomarker model 77% (69-83%) 82% (75-88%) 81% (74-

87%) 

78% (71-

84%) 

4.28 0.28 81% (75-

86%) 

22% (17-

28%) 

Combined model 85% (79-91%) 81% (74-87%) 82% (75-

88%) 

85% (78-

90%) 

4.47 0.18 82% (76-

86%) 

16% (12-

21%) 

Pre-test probability: 70% 

Clinical model 45% (37-54%) 89% (83-94%) 81% (71-

89%) 

62% (55-

68%) 

4.09 0.62 91% (84-

95%) 

59% (56-

62%) 

Biomarker model 65% (57-73%) 91% (85-95%) 87% (80-

93%) 

72% (65-

79%) 

7.22 0.38 94% (90-

97%) 

47% (43-

52%) 

Combined model 73% (65-80%) 91% (86-95%) 89% (82-

94%) 

77% (70-

83%) 

8.11 0.30 95% (91-

97%) 

41% (36-

46%) 
Abbreviations: PPV: Positive Predicted Value; NPV: Negative Predictive Value; CI: Confidence Intervals; LR: Likelihood Ratio. 
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