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¥Data used in preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within 

the ADNI contributed to the design and implementation of ADNI and/or provided data but did 

not participate in analysis or writing of this report. A complete listing of ADNI investigators can 

be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.  

¥¥Data used in preparation of this article were generated by the Alzheimer’s Disease 

Metabolomics Consortium (ADMC), a part of the Accelerating Medicines Partnership for 

Alzheimer’s Disease (AMP-AD). A complete listing of ADMC investigators can be found at: 

https://sites.duke.edu/adnimetab/team/.  
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ABSTRACT 

Investigating the association of lipidome profiles with central Alzheimer’s disease (AD) 

biomarkers, including amyloid/tau/neurodegeneration (A/T/N), can provide a holistic view 

between the lipidome and AD. We performed cross-sectional and longitudinal association 

analysis of serum lipidome profiles with AD biomarkers in the Alzheimer’s Disease 

Neuroimaging Initiative cohort (N=1,395). We identified lipid species, classes, and network 

modules that were significantly associated with cross-sectional and longitudinal changes of 

A/T/N biomarkers for AD. Notably, we identified the lysoalkylphosphatidylcholine (LPC(O)) as 

associated with “A/N” biomarkers at baseline at lipid species, class, and module levels. Also, 

GM3 ganglioside showed significant association with baseline levels and longitudinal changes of 

the “N” biomarkers at species and class levels. Our study of circulating lipids and central AD 

biomarkers enabled identification of lipids that play potential roles in the cascade of AD 

pathogenesis. Our results suggest dysregulation of lipid metabolic pathways as precursors to AD 

development and progression. 
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INTRODUCTION 

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a cascade of 

pathological processes, from the accumulation of misfolded proteins such as β-amyloid (Aβ) and 

hyperphosphorylated tau (p-Tau) to the eventual development of neurodegeneration.1 Despite 

decades of research efforts, a significant portion of AD pathogenesis remains uncertain. To 

understand the complex nature of AD, multiple levels of omics characteristics of the disease 

have been investigated,2 lipidomics being one of them. Lipidomics is the systems-level analysis 

of lipids and factors that interact with lipids.3 The involvement of lipids in AD pathogenesis has 

been suggested in many previous studies. In particular, alterations of phospholipid, plasmalogens, 

ceramide, ganglioside, and sulfatide levels in the brain have been observed.4-10 Also, several 

recent studies have demonstrated alterations of blood lipidome profiles in AD.11-15 Furthermore, 

in a recent lipidomics study using two large cohorts, a total of 218 lipid species were identified 

as associated with prevalent or incident AD.16  

Advances in AD biomarker research have led to the shift of AD diagnosis from clinical 

syndrome to biological process. AD-related biomarkers can be grouped into those of β-amyloid, 

hyperphosphorylated tau, and neurodegeneration (A/T/N).17 In this regard, the concept of an 

A/T/N classification system was included in the 2018 National Institute of Aging and 

Alzheimer’s Association Research Framework18 and has been widely used in AD research since 

then. A few existing studies examining the associations between A/T/N biomarkers for AD and 

blood lipidome have employed techniques that have limited resolution of lipid species19-21 and 

have focused primarily on cross-sectional associations.  

Here, we investigated associations of circulating lipidome with cross-sectional and 

longitudinal central A/T/N biomarkers for AD using a recently developed lipidomics platform 
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covering 749 lipid species across 46 classes that focuses on lipid and lipid-like compounds 

utilizing chromatographic separation and quantitation. We examined the main effect and 

interactions of sex and APOE ε4 carrier status on circulating lipids at the lipid species and lipid 

class levels. Finally, we identified network modules of correlated lipids and performed 

association analyses between the modules and cross-sectional and longitudinal A/T/N 

biomarkers for AD. 

 

METHODS 

1. Participants 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 

as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The 

primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer’s disease (AD). Inclusion and exclusion criteria, clinical 

and neuroimaging protocols, and other information about ADNI can be found at www.adni-

info.org. Demographic information, apolipoprotein E (APOE) and clinical information are 

available and were downloaded from the ADNI data repository (www.loni.usc.edu/ADNI/). 

Written informed consent was obtained according to the Declaration of Helsinki at the time of 

enrollment, and consent forms were approved by each participating sites’ Institutional Review 

Board. 

2. Amyloid/Tau/Neurodegeneration biomarkers for AD 
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Baseline and longitudinal CSF biomarker, FDG PET scan, and MRI scan data were 

downloaded from the LONI database (https://adni.loni.usc.edu/). For CSF biomarker data, we 

used the data set generated using the validated and highly automated Roche Elecsys 

electrochemiluminescence immunoassays.22 CSF p-tau values were additionally log-transformed. 

For FDG-PET phenotypes, we used an ROI-based measure of average uptake across the left and 

right temporal regions derived from preprocessed scans (co-registered, averaged, standardized 

image and voxel size, uniform resolution) and intensity-normalized using the pons/vermis region 

to obtain standard uptake value ratio means.23 T1-weighted brain MRI scans were downloaded 

from the ADNI database. As detailed in previous studies,24 FreeSurfer software was used to 

process T1-weighted brain MRI scans and extract region of interest (ROI)-based imaging 

phenotypes. We used a global cortical amyloid deposition measured from amyloid PET scans as 

biomarkers of β-amyloid (“A”). We used CSF phosphorylated tau (p-tau) levels as the biomarker 

of fibrillary tau (“T”). Both hippocampal volume and temporal lobar FDG uptake were used as a 

biomarker of neurodegeneration (“N”). 

 

3. Measurement of circulating lipid profiles 

We acquired lipidomic profiles (749 lipid species from 46 lipid classes, Supplementary Table 1.) 

of all plasma samples using our recently expanded, targeted lipidomic profiling strategy based on 

reverse phase liquid chromatography coupled to an Agilent 6495C QqQ mass spectrometer. In 

terms of the lipid extraction and LC-MS/MS methodology, we used scheduled multiple reaction 

monitoring (MRM), as previously described25, with the addition of approximately 200 novel 

lipid species from 17 lipid classes26. Further details about our latest lipid profiling methodology 

are described on our laboratory website (https://metabolomics.baker.edu.au/method/).  
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4. Statistical analysis 

We used linear regression models to examine the associations of individual lipids, lipid 

classes, and lipid modules with A/T/N biomarkers at baseline. For longitudinal analysis of A/T/N 

biomarkers, we used linear mixed effects models with a random intercept and slope. For class-

level analysis, we used the first principal component of each pre-defined class (Supplementary 

Table 1) to represent the class. The principal component was obtained using the psych R package. 

To detect network-based correlation modules in lipidome data, we used the WGCNA R package 

that utilizes the hierarchical clustering and dynamic tree cut algorithm. The biweight 

midcorrelation method was used to calculate the correlation between lipids with a soft-

thresholding power of 7. The minimum number of lipids within modules was set to 5. The levels 

of lipids in a module were represented by the module eigen value (ME), which is defined as the 

first principal component of the lipid matrix of the corresponding module. We examined the 

interactions of sex and APOE ε4 carrier status on circulating lipids, lipid classes and lipid 

molecules showing significant associations.  

All linear models and linear mixed effects models were adjusted for age, sex, the number 

of APOE �4 alleles, body mass index (BMI), fasting status, levels of clinical lipids (triglyceride, 

HDL cholesterol, total cholesterol), statin use, and omega-3 use. For association analysis with 

hippocampal volume, educational attainment, intracranial volume, and magnetic field strength 

were additionally included as covariates. Taking multiple testing into account, all p-values were 

adjusted using a false discovery rate (FDR) correction with the Benjamini-Hochberg procedure. 

For whole brain imaging analysis, the processed amyloid PET and FDG PET images 

were used to perform a voxel-wise statistical analysis of the effect of lipid network modules on 

brain amyloid-β deposition and brain glucose metabolism, respectively, across the whole brain 
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using SPM12 (www.fil.ion.ucl.ac.uk/spm/). For surface-based whole brain analysis, the SurfStat 

software package (www.math.mcgill.ca/keith/surfstat/) was used to perform a multivariable 

analysis of cortical thickness to examine the effect of lipid network modules on brain structural 

atrophy on a vertex-by-vertex basis using a general linear model (GLM) approach.27 We 

performed a multivariable regression analysis using the same covariates included in the linear 

models for cross-sectional analysis. For cortical thickness, MRI magnetic field strength and 

intracranial volume (ICV) were added as additional covariates. In the voxel-wise whole brain 

analysis, the significant statistical parameters were selected to correspond to a threshold of p < 

0.05 (FDR-corrected). In the surface-based whole brain analysis, an adjustment for multiple 

comparisons was performed using the random field theory correction method with p<0.05 

adjusted as the level for significance.28,29 

 

RESULTS 

1. Study sample 

A total of 1,395 individuals were included in the analysis. The characteristics of 

individuals used in the cross-sectional and longitudinal analysis are shown in Table 1. 

2. Cross-sectional association analysis between lipids and A/T/N biomarkers at baseline 

1) Individual lipid species associated with A/T/N biomarkers at baseline 

The results of cross-sectional analysis at baseline between lipid levels and A/T/N 

biomarkers for AD after FDR correction are shown in Fig. 1 (Supplementary Table 2). A total 

of nine lipids across four classes (sphingomyelin [SM], lysophosphatidylcholine [LPC], 

alkylphosphatidylethanolamine [PE(O)], and lysoalkylphosphatidylcholine [LPC(O)]) were 

identified as significantly associated with the “A” biomarker. Also, 36 lipids across 12 classes 
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(SM, PC, alkylphosphatidylcholine [PC(O)], alkenylphosphatidylcholine [PC(P)], LPC, 

phosphatidylethanolamine [PE], PE(O), alkenylphosphatidylethanolamines [PE(P)], 

phosphatidylinositol [PI], dehydrocholesteryl ester [DE], diacylglycerol [DG], and 

triacylglycerol [TG]) showed significant associations with the “T” biomarker. For the “N” 

biomarker, 94 lipids across 26 classes were significantly associated with hippocampal volume or 

brain glucose metabolism. The classes included Cer(d), trihexosylceramide [Hex3Cer], GM3 

gangliosides [GM3], sulfatide [SHexCer], SM, PC, PC(O), PC(P), LPC, LPC(O), 

lysoalkenylphosphatidylcholine [LPC(P)], PE(O), PE(P), LPE, PI, lysophosphatidylinositol 

[LPI], CE, dehydrodesmosteryl ester [deDE], dimethyl-cholesteryl ester [dimethyl-CE], free 

fatty acid [FFA], acylcarnitine [AC], hydroxylated acylcarnitine [AC-OH], DG, TG, 

alkyldiacylglycerol [TG(O)], and oxidized lipids. 

 We identified a significant interaction of APOE �4-carrier status with LPC(O-24:1) 

levels in association with the “A” biomarker after FDR correction (βinteraction(95% confidence 

interval[CI]) 0.134(0.065 – 0.202), pFDR = 0.034). LPC(O-24:1) showed a significant association 

with the “A” biomarker in the APOE �4-carrier group (βinteraction(95%CI) 0.242(0.133 – 0.352), 

pFDR = 0.007), but the association was not significant in the APOE �4 non-carriers 

(βinteraction(95%CI) 0.059(-0.045 – 0.164), pFDR = 0.924). However, we did not identify any 

significant interactions of sex with lipids in the association with A/T/N biomarkers. 

2) Lipid classes associated with A/T/N biomarkers at baseline 

In the class-level association analysis, six classes (Hex2Cer, LPC, LPC(O), LPC(P), LPE, 

and DE) were identified as significantly associated with the “A” biomarker (Fig. 2, 

Supplementary Table 3). For the “T” biomarker, none of the classes showed any significant 

associations at the class level. For the “N” biomarker, five classes (PE(P), deDE, methyl-DE, 
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dimethyl-CE, and TG(O)) were significantly associated with hippocampal volume, and three 

classes (GM3, LPC(O), and deDE) were associated with brain glucose metabolism. Although 

deDE level was significantly associated with N biomarkers, it needs to be noted that levels of 

deDE species were strongly associated with the use of acetylcholinesterase inhibitors, which are 

commonly used as treatment in patients with dementia. Lipid classes did not show any 

significant interactions with sex or APOE ε4-carrier status in the association with A/T/N 

biomarkers for AD. 

3) Lipid network modules associated with A/T/N biomarkers at baseline 

Lipid correlation network analysis identified 46 network modules, and the number of 

lipids in each module ranged from 5 to 62 (excluding the M0 module, which comprises 

unassigned lipids (Supplementary Table 4). Among these 46 modules, the M39 (lyso-ether 

lipids), M34 (PUFA-containing lysoglycerophospholipids dominant), M38 (glycosphingolipids 

(Hex2Cer)), and M3 (LPCs containing odd/branched chain fatty acid) modules were identified as 

significantly associated with the “A” biomarker, and the M21 (glycerophospholipids with 

omega-6 fatty acids) module showed a significant association with the “T” biomarker (Fig. 3, 

Supplementary Table 5). For the “N” biomarker, the M39 (lyso-ether lipids) module was 

significantly associated with brain glucose metabolism and five modules (M18 

(cholesteryl/dehydrocholesteryl esters), M16 (TG(O)s), M15 (ethanolamine ether lipids), M12 

(methyl sterol esters), M9 (SM dominant), and M8 (phosphatidylethanolamine plasmalogens 

containing arachidonic acid)) were significantly associated with hippocampal volume.  

The M39 (lyso-ether lipids) module displayed a significant interaction with APOE ε4-

carrier status in the association with the “A” biomarker after FDR correction (βinteraction(95%CI) 

0.203(0.077 – 0.328), pFDR = 0.006). The M39 (lyso-ether lipids) module was significantly 
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associated with the “A” biomarker in the APOE ε4-carrier group(βinteraction(95%CI) 0.242(0.130 – 

0.354), pFDR = 0.001), but the association was not significant in the APOE ε4-non-carrier group 

(βinteraction(95%CI) 0.038(-0.068 – 0.143), pFDR = 0.879). No significant interactions of sex with 

network modules were identified in the association with A/T/N biomarkers. 

 In addition, we performed detailed whole-brain association analysis to determine the 

effect of lipid correlation network modules on brain amyloid-β deposition and brain glucose 

metabolism on a voxel-wise level and brain structural atrophy on a vertex-wise level (Fig. 4). 

For amyloid-β deposition, we identified significant associations of four modules (M39 (lyso-

ether lipids), M34 (PUFA-containing lysoglycerophospholipids dominant), M38 (Hex2Cer), and 

M3 (LPCs containing odd/branched chain fatty acid)) with amyloid-β deposition (Fig 4A). 

Higher ME values of the four modules were significantly associated with increased amyloid-β 

deposition in a widespread pattern, especially in the bilateral frontal, parietal, and temporal lobes. 

For brain glucose metabolism, we identified significant associations for the M39 (lyso-ether 

lipids) module. Higher ME values of the M39 module were significantly associated with reduced 

brain glucose metabolism in a widespread pattern, especially in the bilateral frontal, parietal, and 

temporal lobes including the hippocampus (Fig 4B). For brain structural atrophy, the surface-

based whole brain analysis identified significant associations of five modules (M18 

(cholesteryl/dehydrocholesteryl esters), M16 (TG(O)s), M15 (ethanolamine ether lipids), M9 

(SM dominant), and M8 (phosphatidylethanolamine plasmalogens containing arachidonic acid)) 

with cortical thickness thinning (Fig 4C). Lower ME values of the M8, M9, and M15 modules 

were significantly associated with decreased cortical thickness in the bilateral temporal lobe 

including the entorhinal cortex. Lower ME values of the M16 module were significantly 

associated with decreased cortical thickness in a widespread pattern, especially in the bilateral 
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parietal and temporal lobes including the entorhinal cortex. In contrast, higher ME values of the 

M18 module were significantly associated with decreased cortical thickness in a widespread 

pattern, especially in the bilateral frontal, parietal and temporal lobes including the entorhinal 

cortex. 

3. Longitudinal association analysis between lipids at baseline and longitudinal changes of 

A/T/N biomarkers 

1) Individual lipid species associated with longitudinal changes of A/T/N biomarkers  

In the association analysis between baseline lipid levels and longitudinal changes of the 

“A” and “T” biomarkers, lipids showed no significant associations after FDR correction (Fig. 5, 

Supplementary Table 6). However, in terms of “N”biomarkers, 15 lipids across five classes 

(HexCer, dihexocylceramide [Hex2Cer], GM3, PC, LPC(O), PI, deDE, and AC) showed 

significant associations with longitudinal changes of hippocampal volume. In addition, a total of 

113 lipids across 22 classes (Cer(d), HexCer, Hex2Cer, Hex3Cer, GM1, GM3, SM, PC, PC(O), 

PC(P), LPC, LPC(O), PE(P), LPE, PI, CE, COH, DE, deDE, AC, AC-OH, and TG) were 

significantly associated with longitudinal changes of brain glucose metabolism. Of note, among 

113 lipids, 26 lipids were also significantly associated with brain glucose metabolism at baseline. 

The interactions of sex and APOE �4 carrier status with lipids were not significant in the 

association with longitudinal changes of the A/T/N biomarkers. 

2) Lipid classes associated with longitudinal changes of A/T/N biomarkers 

In the class-level longitudinal association analysis, none of the classes were significantly 

associated with the “A” and “T” biomarkers. However, three classes (GM3, LPC(O), and deDE) 

were significantly associated with longitudinal changes of hippocampal volume, and 12 classes 

(Hex3Cer, deDE, PC(O), GM3, GM1, CE, SM, LPC(O), COH, PIP1, PC, and AC) were 
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associated with longitudinal changes of brain glucose metabolism. (Fig. 6, Supplementary 

Table 7). The interactions of sex and APOE �4-carrier status with lipid classes were not 

significant in the association with longitudinal changes of the A/T/N biomarkers.  

3) Lipid network modules associated with longitudinal changes of A/T/N biomarkers 

There were no significant associations of lipid network modules with longitudinal 

changes of the “A” and “T” biomarkers, but 13 modules were significantly associated with 

longitudinal changes of the “N” biomarkers (Fig. 7, Supplementary Table 8). Three modules 

(M39 (lyso-ether lipids), M18 (cholesteryl/deshydrocholesteryl esters), and M11 

(polyunsaturated ACs)) were associated with longitudinal changes of hippocampal volume, and 

12 modules (M26 (ACs (partial oxidation)), M25 (ACs (peroxisome-related)), M44 (Cer(d)s), 

M18 (cholesteryl/deshydrocholesteryl esters), M42 (Complex sphingolipids), M46 (Very long 

chain sphingolipids), M23 (Atypical SMs), M38 (glycosphingolipids (HEX2CER)), M28 (odd-

numbered SMs), M4 (docosapentaenoic acid phospholipids (Omega-3)), M41(mixed), and M39 

(lyso-ether lipids)) were identified as significantly associated with longitudinal changes of brain 

glucose metabolism. For the 13 modules, higher ME values were associated with faster 

neurodegeneration. Of note, the M39 (lyso-ether lipids) module was significantly associated with 

the “N” and “A” biomarkers at baseline, and the M18 module was also significantly associated 

with the “N” biomarker at baseline. The interactions of sex and APOE �4 carrier status with 

network modules were not significant in association with longitudinal changes of the A/T/N 

biomarkers. 

 

DISCUSSIONS 
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Using an up-to-date lipidomics platform capable of separating a larger number of lipids 

compared to the platforms used in previous studies, we identified lipid species, lipid classes, and 

lipid correlation network modules as significantly associated with cross-sectional and 

longitudinal A/T/N biomarkers for AD. The investigation of the relationship between circulating 

lipids and central AD biomarkers enabled us to identify lipids having potential roles in the 

cascade of AD pathogenesis. Of note, we identified lipid species, lipid classes, and lipid network 

modules as associated with cross-sectional and longitudinal changes of multiple AD biomarkers, 

implying their substantial roles in AD pathogenesis and potential roles of lipid profiles as 

diagnostic and prognostic biomarkers for AD.  

 We identified the LPC(O) class as associated with baseline amyloid-β deposition (“A”) 

and neurodegeneration (“N”) at the individual lipid, lipid class, and lipid correlation network 

module levels. In particular, higher levels of LPC(O) species were associated with higher cortical 

Aβ deposition and lower glucose metabolism at baseline. Also, the LPC(O) lipids were 

significantly associated with longitudinal changes of the “N” biomarkers in all three levels. 

Similar to the cross-sectional association results, higher levels of LPC(O) were associated with 

more rapid progression of neurodegeneration. These findings are in line with previous studies 

reporting increases in brain and blood LPC(O) levels in AD patients,30,31and a recent study that 

showed the association between LPC(O) levels and CSF pTau/A42 ratio.32 The overall increase 

of LPC, LPC(O), LPC(P) in subjects with more severe amyloid biomarker in our baseline 

analysis indicates phospholipase A2 (PLA2) activation, since PLA2 hydrolyzes PC and PC ether 

species into LPC or LPC ether species. In fact, studies have shown that Aβ1-42 activates PLA2,33-

35 which can drive neuroinflammation and oxidative stress in the brain.36,37  
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 Another finding was that PE ethers (PE(O), PE(P)) were associated with baseline AD 

biomarkers in the species level, most of them being associated with more favorable (or less 

severe) A/T/N biomarker status. Also, in the class and module levels, PE(P) class and two 

modules related to PE ethers were associated with greater baseline hippocampal volume. 

However, no significant associations were identified between PE ethers and longitudinal changes 

of the A/T/N biomarkers in the class or module levels, and only two PE(P) species were 

associated with faster decline of brain glucose metabolism. PE(P) species (referred to as 

ethanolamine plasmalogens) are abundant in brain myelin38 and are known to be decreased in 

AD, showing negative association with disease severity and CSF Tau.39,40 Previous studies have 

shown that PE(P) species function as endogenous antioxidants through their vinyl ether bonds 

and protect cells against oxidative stress.41,42 The PE(P) species also affect biosynthesis and 

intracellular transport of cholesterol.43,44 The protective effect of PE(P) against AD may have 

been contributed by these actions, as oxidative stress and intracellular cholesterol trafficking are 

both known to have roles in AD.45,46 PE(O), also known as plasmanylethanolamine, is a 

precursor of PE(P).47 Of note, PE(O-18:0/22:6) showed a significant association with all three 

A/T/N biomarkers at baseline in our analysis. Unlike PE(P), biological functions of the PE(O) 

species are not well understood. However, a recent study showed that not only PE(P) but also 

PE(O) species were negatively associated with prevalent and incident AD.16 Our results are in 

line with this study and extend the associations to the AD biomarker level. 

It is notable that 20 lipid species across 7 classes out of all 57 species identified as 

significantly associated with “less severe” AD biomarker status at baseline contained 

docosahexaenoic acid (DHA). In particular, the associations of those DHA-containing lipids with 

the T/N biomarkers were prominent. This type of association cannot be detected at the class level 
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since DHA-containing species exist across the classes. At the module level, one of the modules 

(M45), in which most members contain DHA, showed marginally significant associations with 

lower CSF pTau (pFDR = 0.053) and larger hippocampal volume (pFDR = 0.054). DHA is mainly 

distributed throughout pyramidal cell-rich regions (cerebral cortex and hippocampus),48 and is 

involved in multiple pathways related to neuronal biology, from neuronal development to 

regulation of synaptic function, neuroprotection and modulation of apoptosis.49,50 Studies have 

shown that individuals with AD have low serum DHA levels, and higher red blood cell DHA is 

associated with lower risk of incident AD.51,52 In line with these studies, there are studies 

suggesting protective effect of DHA on incident AD or AD-related cognitive decline. 53-55 Our 

analysis results provide additional evidence of association between DHA and AD on the AD 

biomarker level. The negative association between DHA and AD biomarkers can be attributed to 

the anti-inflammatory action of DHA.56 Also, it has both a direct and indirect antioxidant effect, 

which can be a potential protective mechanism of DHA against AD-related damage.50,57   

There were other lipids showing significant associations with the “N” biomarkers. For 

instance, lipid species in the TG(O) and GM3 ganglioside classes were significantly associated 

with baseline “N” biomarkers at the lipid species and lipid class levels. TG(O) was negatively 

associated with neurodegeneration, while GM3 ganglioside was positively associated with 

neurodegeneration. TG(O) has been identified as having a protective effect on prevalent and 

incident AD in a recent multicohort study.16 Although the direct biological functions of TG(O) 

are not yet clearly known, TG(O)s are precursors of plasmalogens (PE(P), PC(P)) that play an 

important role as antioxidants (discussed above).58,40  From a cellular functional perspective, 

higher levels of peroxisome-derived ether lipids (PC(P), PE(P), PE(O), TG(O)) and related 

modules (M34, M39) being associated with less neurodegeneration may implicate the role of 
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peroxisomal function in neuroprotection. Peroxisomal alteration in neurodegenerative disease 

and AD have been suggested in previous studies,59,60 and peroxisome proliferator-activated 

receptor (PPAR) has been proposed as a potential treatment target and a link between diabetes 

and AD.61,62  

In addition to the significant results in baseline analysis, GM3 ganglioside showed 

significant association with longitudinal changes of the “N” biomarkers at the lipid species and 

class levels. In line with the cross-sectional analysis results, higher GM3 ganglioside levels were 

associated with more rapid progression of neurodegeneration. The GM3 ganglioside is the first 

ganglioside in the biosynthetic pathway of the major brain gangliosides. In a mouse model study, 

the reduction of GM3 ganglioside by inhibition of glucosylceramide synthase resulted in 

stabilized remote memory and lower soluble Aβ in the brain.63 A previous human study showed 

that increased levels of the GM3 ganglioside species were associated with incident or prevalent 

AD.8 Thus, our findings regarding these classes are in line with these reports, supporting the 

evidence for their potential roles in AD pathogenesis. 

Several limitations in the study should be mentioned. First, our findings are observational, 

and mechanistic studies are needed to identify causal relationships. Second, our findings need to 

be replicated in larger independent cohorts to consolidate the findings. Nevertheless, it is 

noteworthy that we identified lipids as significantly associated with cross-sectional and 

longitudinal changes of the A/T/N biomarkers in our comprehensive association analysis. 

In conclusion, our study investigating the relationship between circulating lipid profiles 

and central A/T/N biomarkers for AD has implicated several lipid species, lipid classes, and lipid 

correlation network modules as potential blood-based AD biomarkers that point to dysregulation 
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of specific lipid metabolic pathways as precursors to AD and linked to the progression of the 

disease. In particular, we identified lipids showing significant associations across multiple A/T/N 

biomarkers cross-sectionally and longitudinally, including LPC(O) and PE ether species. We 

also showed that the previously reported beneficial effects of DHA on AD are significant at the 

biomarker level. Lastly, our findings using AD endophenotypes strengthen evidence from 

previous studies that were performed using only an AD diagnosis by linking peripheral 

metabolic changes with brain metabolic and structural states.  
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Ta

ble 

1. 

Cli

nic

al characteristics 

PET positron emission tomography, CSF cerebrospinal fluid, FDG fluorodeoxyglycose, MRI magnetic resonance 
imaging, SD standard deviation, APOE Apolipoprotein E 

 

 All Amyloid 
PET 

CSF FDG PET MRI 

N 1395 743 1013 1060 1387 
Visit ≥ 2 (N(%)) - 691(93.0) 633(62.5) 739(69.7) 1386(99.9) 
Age, years (Mean(SD)) 73.62 (7.10) 72.35 (7.22) 73.11 (7.26) 73.16 (7.16) 73.60 (7.11) 
Sex, male (N(%)) 768 (55.1) 392 (52.8) 556 (54.9) 593 (55.9) 764 (55.1) 
Education, years (Mean(SD)) 15.99 (2.81) 16.30 (2.63) 16.09 (2.75) 16.11 (2.76) 15.99 (2.82) 
APOE �4 carrier (N(%)) 656 (47.0) 337 (45.4) 464 (45.8) 498 (47.0) 655 (47.2) 
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Figure 1.  Lipid species levels: association results of lipid species with A/T/N biomarkers at baseline. (A) The bar plots from the 
outermost to innermost circles showed association results between lipid species and A(Amyloid PET)/T(CSF 
pTau)/N1(MRI)/N2(FDG PET) biomarkers at baseline, respectively. The height of the bars represents the log-transformed FDR 
corrected p values. (B) The forest plots showed lipid species-wise cross-sectional association results arranged by lipid classes. Red 
colors represent that higher levels of the red colored lipid species were significantly associated with worse AD biomarkers, and blue 
colors represent that lower levels of the blue colored lipid species were significantly associated with worse AD biomarkers.
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Figure 2. Lipid class levels: association results of lipid classes with A/T/N biomarkers at 
baseline. The forest plots showed cross-sectional association results between lipid classes and 
A(Amyloid PET)/T(CSF pTau)/N1(MRI)/N2(FDG PET) biomarkers at baseline after FDR 
correction. Red colors represent that higher levels of the red colored lipid classes were 
significantly associated with worse AD biomarkers, and blue colors represent that lower levels of 
the blue colored lipid classes were significantly associated with worse AD biomarkers.
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Figure 3. Lipid network module levels: association results of lipid network modules with A/T/N biomarkers at baseline. (A) The table
showed association results between lipid network modules and A/T/N biomarkers at baseline. Asterisks indicate significant 
associations after FDR correction. Red colors indicate that higher ME values of the red-colored module were associated with worse 
AD biomarkers, and blue colors indicate that lower ME values of the blue-colored module were significantly associated with worse 
AD biomarkers. T statistic values were derived from linear regression analysis and positive T statistic values indicate that higher ME 
values are associated with worse AD biomarkers. (B) A Sankey diagram was used to visualize clustering of lipid species in the lipid 
network modules identified as significantly associated with cross-sectional or longitudinal changes of A/T/N biomarkers.   
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Figure 4. Detailed whole brain association analysis for lipid correlation network module levels: 
association results of network modules with neuroimaging (PET and MRI) biomarkers for AD at 
baseline for (A) brain amyloid deposition using Amyloid PET scans, (B) brain glucose 
metabolism using FDG PET scans, and (C) brain structural atrophy using MRI scans. In a voxel-
based whole brain analysis (A) and (B), colored regions represented significant associations 
(cluster wise threshold of FDR-corrected p < 0.05). In a surface-based whole brain analysis (C), 
statistical maps were thresholded using a random field theory for a multiple testing adjustment to 
a corrected significance level of 0.05. The p-value for clusters indicates significant p values with 
the lightest blue color.
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Figure 5.  Lipid species levels: association results of lipids with longitudinal change rates of A/T/N biomarkers for AD. (A) The bar 
plots from the outermost to innermost circles showed longitudinal association results between lipid species and longitudinal change 
rates of A(Amyloid PET)/T(CSF pTau)/N1(MRI)/N2(FDG PET) biomarkers, respectively. The height of the bars represents the log-
transformed FDR corrected p values. (B) The forest plots showed lipid species-wise longitudinal association results arranged by lipid 
classes. Red colors represent that higher levels of the red colored lipid species were significantly associated with worse progression of 
AD biomarkers.
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Figure 6. Lipid class levels: longitudinal association results of lipid classes with longitudinal 
change rates of A/T/N biomarkers. The forest plots showed longitudinal association results 
between lipid classes and longitudinal change rates of A(Amyloid PET)/T(CSF 
pTau)/N1(MRI)/N2(FDG PET) biomarkers after FDR correction. Red colors represent that 
higher levels of the red colored lipid classes were significantly associated with worse progression 
of AD biomarkers.
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Figure 7. Lipid network module levels: longitudinal association results of lipid network modules with longitudinal change rates of 
A/T/N biomarkers. (A) The table showed longitudinal association results between lipid network modules and longitudinal change 
rates of A/T/N biomarkers. Asterisks indicate significant associations after FDR correction. Red colors indicate that higher ME values 
of the red-colored module were associated with worse progression of AD biomarkers, and blue colors indicate that lower ME values 
of the blue-colored module were significantly associated with worse progression of AD biomarkers. T statistic values were derived 
from linear mixed effect analysis and positive T statistic values indicate that higher ME values are associated with worse progression 
of AD biomarkers. (B) A Sankey diagram was used to visualize clustering of lipid species in the lipid network modules identified as 
significantly associated with cross-sectional or longitudinal changes of A/T/N biomarkers.   
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