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Abstract 

There are 78 loci associated with Parkinson’s disease (PD) in the most recent genome-wide 

association study (GWAS), yet the specific genes driving these associations are mostly unknown. 

Herein, we aimed to nominate the top candidate gene from each PD locus, and identify variants 

and pathways potentially involved in PD. We trained a machine learning model to predict PD-

associated genes from GWAS loci using genomic, transcriptomic, and epigenomic data from 

brain tissues and dopaminergic neurons. We nominated candidate genes in each locus, identified 

novel pathways potentially involved in PD, such as the inositol phosphate biosynthetic pathway 

(INPP5F, IP6K2, ITPKB, PPIP5K2). Specific common coding variants in SPNS1 and MLX may 

be involved in PD, and burden tests of rare variants further support that CNIP3, LSM7, NUCKS1 

and the polyol/inositol phosphate biosynthetic pathway are associated with PD. Functional 

studies are needed to further analyze the involvements of these genes and pathways in PD.  
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Introduction 

Genome-wide association studies (GWAS) have nominated many variants associated with 

complex traits. In Parkinson’s disease (PD), the most recent GWAS revealed 90 independent risk 

variants across 78 genomic loci. 1 Although many single-nucleotide polymorphisms (SNPs) are 

in novel genomic loci, well-established PD genes discovered many years ago, such as LRRK2, 

PINK1, DJ-1, SNCA, GBA1, PRKN and MAPT (Supplementary Table 1) still account for the vast 

majority of research on Parkinson’s disease.  

Several disadvantages of GWAS limit additional functional analyses. First, above 90% of 

all GWAS significant SNPs are in noncoding regions.2 These SNPs are often passenger variants 

due to complex linkage disequilibrium (LD). Second, the causal gene associated with the causal 

SNPs remains unclear in most GWAS loci.3 To overcome these challenges, downstream GWAS 

analyses were established with the aim of identifying causal genes within GWAS loci. This 

involves techniques such as fine-mapping and colocalization methods to nominate causal SNPs, 

as well as transcriptome-wide association studies to nominate gene-trait associations.4-6 These 

models use LD structure, and gene expression panels to discover causal SNPs/genes. While these 

methods may propose causal variants and genes, additional biological evidence is generally 

required to pair causal variants with causal genes. Using multi-omic analyses, one can integrate a 

diverse range of comprehensive cellular and biological datasets such as genomic, transcriptomic 

and epigenetic datasets and use platforms such as Open Targets Genetics 

(https://genetics.opentargets.org/) to perform systematic analyses of gene prioritization across all 

publicly available GWASs.7 Although powerful, Open Targets Genetics lacks disease-specific 

tissues relevant to PD such as dopaminergic neurons and microglia. Using a similar approach, we 

may discover additional pathways and genetic targets involved in PD. 
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In this study, we leveraged PD-relevant transcriptomic, epigenomic and other datasets in 

our gradient boosting model (Figure 1). We trained this model on well-established PD genes to 

nominate causal genes from PD GWAS loci. 

 

Results 

Machine learning model nominates PD-associated genes in each PD locus 

To train our machine learning model, we used seven well-established PD-associated genes from 

the PD GWAS (GBA1, LRRK2, SNCA, GCH1, MAPT, TMEM175, VPS13C) as positive labels, 

and the remaining genes from the same loci (n=205) were used as negative labels (i.e. genes that 

are unlikely to be involved in PD). We trained an XGBoost regression model to identify the best 

predictive features. Then, based the best predictive features, we assigned a probability score that 

indicated the likelihood that the gene was driving the association at each locus (Supplementary 

Table 2). We then nominated the top-scoring genes in each locus (Supplementary Table 2, Figure 

2). Two genes, MAPT and TOX3, were nominated twice in neighboring loci that harbor them, 

bringing the total number of genes nominated in this model to 76 genes in 78 loci. 48 of the 76 

genes (63%) had a probability score higher than 0.75. Of note, five genes (NEK1, FDFT1, PSD, 

BAG3 and SLC2A13) that were ranked second in their respective loci also had a probability 

score >0.75. However, the nominated genes in their loci (CLCN3, CTSB, GBF1, INPP5F and 

LRRK2, respectively) all had probability scores >0.94. In seven other loci, the top nominated 

genes had an especially low probability score (<0.3), including RBMS3, HIST1H2BL, TRIM40, 

EHMT2, RPS12, MICU3 and ITGA8. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2023. ; https://doi.org/10.1101/2023.06.20.23291658doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.20.23291658
http://creativecommons.org/licenses/by-nd/4.0/


Gene expression in specific subtypes of PD-associated dopaminergic neuron is an 

important feature predicting PD-relevant genes 

Next, we used Shapley Additive exPlanations (SHAP) values to determine which features of the 

model contributed most to the prediction.8,9 SHAP values provide, for each gene, the relative 

contribution of each feature to the selection of that gene. The most important features for the 

scoring of each gene are shown in Figure 3A. As expected, distance-related features, such as 

distance from the top-associated SNP in the locus to the transcription start site or distance to the 

beginning of the gene, were the most important features in our model.7 The next most important 

feature was the Variant Effect Predictor (VEP) value, followed by additional distance 

measures.10 Interestingly, the next most important features were mRNA expression values within 

specific dopaminergic neuron subtypes. These different dopaminergic neuron subtypes are 

defined by the expression of the genes GFRA2 and AGTR1 from single nuclear sequencing of 

postmortem tissue. The latter is a specific subtype of dopaminergic neurons shown by Kamath et 

al. to be selectively degenerated in brains of PD patients.11 The remaining features include 

expression in other dopaminergic neuron subpopulation by Kamath et al, expression quantitative 

trait loci (eQTLs) and others expression features. Epigenetic features were not predictive in our 

model. As shown in Figure 3B, all nominated genes had at least one of the distance features 

contributing to their selection. On top of the known contribution of missense variants in GBA1, 

LRRK2 and GCH1, we nominated missense SNPs that contributed to the score of two candidate 

genes: SPNS1 (p.L512M, rs7140) and MLX (p.Q139R, rs665268). SPNS1 and MLX have not 

been previously implicated in PD, and the important features identifying these genes as the top 

candidate for their respective GWAS loci are shown in Figure 4. 
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Differential gene expression of genes from the inositol phosphate biosynthetic pathway and 

MLX1 in PD 

To further establish the importance of the nominated genes in PD, we examined whether they are 

differentially expressed in PD patients compared to controls, using expression data from single 

nuclear RNAseq (scRNA) from Kamath et al11 and single nuclear and bulk RNAseq datasets 

from FOUNDIN-PD.12 Out of the top nominated genes, INPP5F (average log fold 

change[FC]�=�−7.22, p�=�2.90e-31) and MLX (average log FC�=�-1.80, p�=�2.23e-4) 

were associated with PD in the data from Kamath et al (Supplementary Table 3).11 In 

FOUNDIN-PD12, after excluding prodromal cases, we found differential expression of across 

many genes including INPP5F (average log FC =�0.070, p�=�1.89e-19) and IP6K2 (average 

log FC�=�−0.076, p�=�1.35e-35) in scRNA data (n=80) from dopaminergic neurons by 

comparing PD and control (Supplementary Table 4). Results from the bulk RNAseq analysis 

(n=92) can be found in Supplementary Table 5.  

Structural analysis of SPNS1 and MLX 

Since nonsynonymous variants in SPNS1 and MLX were identified as major contributors to their 

selection as the nominated genes in their loci, we aimed to examine the potential consequences 

of these variants by performing in silico structural analyses of the protein encoded by these genes. 

SPNS1 encodes a transporter for phospholipids at the lysosome membrane.13 It mediates the 

efflux of lysophosphatidylcholine and lysophosphatidylethanolamine out of the lysosome. The 

SNP rs7140 is located in the 3’-untranslated region (UTR) of the canonical splice variant 1 

transcript, which produces the 528 a.a. isoform that has been investigated functionally13 (Uniprot 

#Q9H2V7). This canonical isoform has also been observed in numerous proteomics datasets in 

gpmDB (https://gpmdb.thegpm.org/index.html). However, six other potential isoforms generated 
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by alternative splicing have been predicted, including a 538 a.a. fragment with an alternative C-

terminus where as the rs7140 SNP is located within the coding region (Uniprot #H3BR82). The 

rs7140 variant results in the p.L512M mutation in this isoform. To investigate the impact of this 

mutation on the function of this SNPS1 isoform, we inspected the 3D structure model generated 

by AlphaFold.14 Leu512 is located in the unstructured C-terminus of this membrane-bound 

protein, on the lumenal side of the lysosomal membrane (Figure 5A). The role of the C-terminus 

in this isoform of SPNS1 remains unclear, and thus the impact of the p.L512M mutation is 

unknown. 

The Max-like protein (MLX) is at the heart of a transcriptional network pathway involved in 

energy metabolism and cell signalling.15,16 It interacts with at least 6 other related proteins 

including the MAD family of transcriptional repressors and the Mondo family of transcriptional 

activators. These proteins contain basic/helix-loop-helix/leucine zipper (bHLHZ) domains that 

form heterodimers and interact with DNA carrying the CACGTG E-box motif. To understand 

the impact of the p.Q223R MLX mutation (rs665268) on its activity, we modeled the structure of 

MLX heterodimers with both the MAD and Mondo families using AlphaFold. MLX dimerizes 

with MAD1,16 and thus we superposed its bHLHZ domain on the MAD1-MAX-DNA complex 

crystal structure17 to generate the ternary complex model. The model shows that Gln223 in MLX 

is at the end of the dimerization “zipper” helix (Figure 5B). The mutation p.Q223R induces the 

formation of a salt bridge with Glu139 in MAD1, which could strengthen the interaction between 

MAD1 and MAX . This could then downregulate the interaction of MAD1 with MAX through 

competition, and thus affect the extent of the transcriptional repression. Glu139 is not conserved 

in other MAD-related proteins such as MXI1 and MAD3/4. Furthermore, the model of MLX 

interacting with MLXIP, a protein of the Mondo family also known as MondoA,18 shows that the 
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mutation may negatively affect the formation of this heterodimer by introducing a charge next to 

a hydrophobic sidechain (Figure 5C). The nuclear localization of Mondo proteins is dependent 

on their interaction with MLX,15 and thus the mutation may down regulate activation by the 

Mondo family while strengthening repression via MAD1. 

Gene enrichment analysis of nominated genes show the inositol phosphate biosynthetic 

pathway as a novel pathway involved in Parkinson’s disease. 

We further examined whether the nominated genes highlighted specific pathways and 

mechanisms associated with PD. We performed a pathway enrichment analysis by examining 

over-representation of the top nominated genes in biological processes and cellular components 

using the top genes in each locus. Among the biological processes passing the false discovery 

rate (FDR) correction, the inositol phosphate biosynthetic process (GO:0032958) and polyol 

biosynthetic process (GO:0046173) were strongly enriched (Figure 6A). Inositol is associated 

with 4 candidate genes, namely ITPKB, IP6K2, PPIP5K2, and INPP5F. The features most 

important for nomination of ITPKB, IP6K2, PPIP5K2 and INPP5F as PD associated genes by 

our ML model are shown in Figure 4. Cellular components were also identified in the gene 

enrichment analysis (Figure 6B).  

Pathway specific polygenic risk score of the inositol phosphate biosynthetic pathway is 

associated with Parkinson’s disease.  

To further study the association between the putative novel PD pathways and PD status, 

pathway-specific polygenic risk scores (PRS) were calculated for the above-mentioned gene sets. 

The association between these PRS and PD was examined in six PD cohorts, followed by a 

meta-analysis as detailed in the Methods section. One outlier cohort was excluded due to 
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heterogeneity. The pathway specific PRS were first calculated using all the genes in that pathway. 

Then, to further validate that the specific pathway is indeed important in PD, we excluded the 

genes nominated by our machine learning pathway and re-calculated the PRS. By removing 

these genes with GWAS significant signals, we could examine the residual effect of the 

remaining of the pathway. The inositol phosphate biosynthetic pathway was associated with PD 

even after excluding the genes nominated in our analysis (OR 1.06, 95% CI 1.03-1.09, p=7.01E-

05), as well as other related pathways (Table 1).  

Rare variants in KCNIP3 and LSM7 and in the polyol/inositol biosynthetic pathway are 

associated with Parkinson’s disease. 

To further establish the potential role of the nominated genes in PD, we performed rare variant 

burden tests in all the genes nominated by our model. As expected, genes that are known to 

harbor rare PD coding mutations including GBA1, LRRK2 and GCH1 were associated with PD 

(Table 2, Supplementary Table 6). Three additional genes, including two genes that have not 

been previously implicated in PD (KCNIP3 and LSM7) showed burden of rare variants after FDR 

correction for multiple comparisons. We then examined the genes from pathway enrichment 

analysis and found that rare variants in the polyol/inositol biosynthetic pathway were also 

associated with PD (SKAT-O, p=1.58E-04), further supporting its role in PD.  

 

Discussion 

In this study, we nominated genes that potentially drive the associations with PD for each of the 

78 PD GWAS loci, using multi-omic data and machine learning. Our nominated genes include 

many genes that have not been studied in the context of PD. Additionally, we identified two 
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novel genes with rare variants (KCNIP3 and LSM7) as well as genes with GWAS significant 

coding variants such as SPNS1 and MLX that could be further studied. Furthermore, our gene 

enrichment, pathway specific PRS and rare variant analyses strongly support an involvement of 

the inositol phosphate biosynthetic pathway in PD.  

Four genes nominated by our machine learning model belong to the inositol phosphate 

biosynthetic pathway: ITPKB, IP6K2 and PPIP5K2 and SNCA,19 showing a strong enrichment of 

this pathway. In addition, INPP5F is another gene nominated by our analysis that is involved in 

inositol processing through a parallel pathway.20 Our results demonstrate that the inositol 

pathway-PRS, even when excluding the previously mentioned genes, is still associated with PD. 

Taken together, our findings support the importance of the inositol phosphate pathway in PD.  

Based on the evidence from the candidate inositol genes and previous work on inositol, 

inositol could potentially be a therapeutic target for PD. In 1999, a clinical trial on inositol was 

conducted on nine PD patients.21 The treatment with inositol compared with placebo did not 

improve clinical outcomes. However, we cannot rule out inositol and inositol phosphates as 

potential therapeutic targets as only nine patients were recruited for this trial. 

ITPKB encodes for a ubiquitous kinase that phosphorylates inositol 1,4,5-trisphosphate 

(IP3) to inositol 1,3,4,5 tetrakisphosphate (IP4) using a Ca2+/Calmodulin-dependent mechanism. 

IP3 is a secondary messenger that stimulates calcium release from the endoplasmic reticulum 

(ER). In primary neurons, ITPKB knockdown/overexpression was shown to increase/reduce 

levels of a-synuclein aggregation.22 Additionally, ITPKB knockdown in neurons also leads to the 

accumulation of calcium in mitochondria. This accumulation can impair the process of 

autophagy, which is crucial for maintaining mitochondrial health. In neuroblastoma cell, ITPKB 
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mRNA levels were also shown to be correlated with SNCA expression in the cortex and IPTKB 

protein levels were increased in wild a-synuclein, A53T and A30P mutants.23 Meanwhile, IP6K2 

and PPIP5K2 interacts with the same substrates. IP6K2 converts inositol hexakisphosphate (IP6) 

to 5-diphosphoinositol pentakisphosphate (5-IP7) or 1-diphosphoinositol pentakisphosphate (1-

IP7) to bis-diphosphoinositol tetrakisphosphate (1,5-IP8) while PPIP5K2 convert 5-IP7 to 1,5-

IP8 and IP6 to 1-IP7. 24 In mice, IP6K2 was implicated in cell death, apoptosis and 

neuroprotection.25 One study proposed that IP6K2 regulates mitophagy via the Parkin/PINK1 

pathway, but further evidence would be required to confirm this hypothesis.25 PPIP5K2 has not 

been previously implicated in PD. It was associated with hearing loss and colorectal 

carcinoma.26,27 Finally, INPP5F is involved with a different inositol pathway, it encodes Sac2, 

which converts phosphoinositides such as PI(4,5)P2 to phosphatidylinositol during 

endocytosis.28  

Inositol phosphate has been suggested to be involved in obesity, insulin resistance and 

energy metabolism.29 In postmortem brain tissues, [3H]Inositol 1,4,5-trisphosphate binding sites 

were found to be reduced in certain brain regions of PD patients such as the caudate nucleus, 

putamen, and pallidum.30 Additionally, IP6 was shown to be associated with PD. IP6 has a 

neuroprotective effect on dopaminergic cells by preventing 6-OHDA-induced apoptosis.31 IP6 

inhibits the activity of β-secretase 1 (BACE1), an enzyme that cleaves amyloid-β precursor 

protein into toxic Aβ peptides.32 Paraquet-induced neurodegeneration in Drosophila was 

suggested to increase the levels of inositol phosphates metabolites.33 Previous studies have also 

suggested that different stereoisomers of inositol such as scyllo-inositol can inhibit the 

aggregation of a-synuclein34 or decrease of myoinositol concentration in PD patients.35,36 
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Recent studies on inositol investigated the role of SYNJ1, an autosomal recessive form of 

early-onset parkinsonism.37 SYNJ1 is a lipid phosphatase of phosphatidylinositol-3,4,5-

trisphosphate (PIP3).38 SYNJ1 knockout cell models were associated with an increase of a-

synuclein and PIP3 levels. PIP3 dysregulation was suggested to promote a-synuclein aggregation, 

which increase the risk of PD. Together with our data, there is strong evidence for the 

involvement of the inositol phosphate biosynthetic pathway in PD, and this pathway should be 

further studied using both basic science and translational approaches. 

Outside of the inositol pathway, SPNS1 and MLX were found to be the top causal gene in 

their respective loci with putative causal missense SNPs: rs7140 and rs665268. Rs7140 

corresponds to p.Leu563Val on the SPNS1 transcript variant X1. We found that SPNS1 

expression is lower in the SOX6_ATGR1 dopaminergic neuron subpopulation in PD compared 

to controls. This subcluster was previously highlighted to be the most susceptible to 

neurodegeneration in PD.11 SPNS1 encodes a sphingolipid transmembrane transporter in the 

lysosome. The autophagy-lysosomal pathway has been well-established to be crucial in PD 

pathogenesis, especially the lysosomal sphingolipid metabolism pathway, which includes well 

established PD-associated genes including GBA1, GALC, SMPD1 and others.39,40 SPNS1 

deficiency results in lipid accumulation in the lysosome and impaired lysosomal function.13 

The second nominated gene in which we identified rare variants, MLX, encodes a Max-

like protein X which belongs to a family of transcription factors regulating glucose metabolism. 

Rs665268 is a missense variant (p.Gln139Arg) that was found to be associated with Takayasu’s 

arteritis, an autoimmune systemic vasculitis.41 MLX was also reported to be associated with age 

at onset of Alzheimer’s disease in females.42 This variant was suggested to affect two important 

PD pathways by increasing oxidative stress and suppressing autophagy in immune cells.41,42 
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SPNS1 and MLX have not been previously implicated in PD. These findings indicate that these 

genes could play a role in PD and should be further studied. 

Although we have identified candidate genes and new rare mutations, there are several 

limitations to this study. The GWAS on which this analysis is based on is only of European 

populations. Therefore, our results are potentially restricted to Europeans. In addition, the 

training set for the machine learning model is limited to a small set of known or highly likely PD 

genes with the assumption of one causal gene per locus. The study also lacked samples for a 

testing set due to the small number of well-established PD genes. Since these limitations may 

introduce some bias, we used different strategies such as controlling for an imbalanced dataset 

and choosing balanced accuracy as an evaluation function to maximize the performance of the 

model. Although the distance between variants and genes holds significant predictive power in 

the model, it is crucial to acknowledge that not all top genes can be accurately predicted solely 

based on distance. Out of the 78 genes analyzed, 13 were not the closest genes in terms of 

distance from the gene to the top GWAS SNPs, and 25 were not the closest genes based on 

distance to the transcription start site. Lastly, the meta-analysis of rare variants can also be 

somewhat biased due to case/control imbalance. Larger GWAS and functional studies will be 

required to validate our findings. 

Our results nominate multiple genes that have not been thoroughly studied in PD and 

provide foundation for future functional studies of these genes. As larger PD GWASs will 

nominate more SNPs and loci, prioritizing causal genes will be crucial to understand the 

underlying biological mechanisms and disease pathophysiology through additional studies. 

Future gene prioritization studies will also be able to leverage larger datasets with more positive 

labels as new PD genes get discovered, and therefore increase the accuracy of the predictions. 
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Methods 

General design of the study 

Our objective was to nominate the most probable genes to be involved in PD from each GWAS 

locus based on the most recent PD GWAS (see Figure 1 for the study protocol).1 To do so, we 

first defined all the genes and SNPs that are within these loci (see below) and used to a machine 

learning approach to nominate the top genes in each locus. Based on the previous literature and 

consensus between authors, we identified seven genes from well-established loci associated with 

PD that can be considered the likeliest driving genes of their respective loci (GBA1, LRRK2, 

SNCA, GCH1, MAPT, TMEM175, VPS13C). We then acquired data for multiple features, 

including different distance measures from top SNPs, different QTLs, expression in relevant 

tissues and cell types and predictions of variant consequences (78 features out of 284 were used 

after removal of redundant features, Supplementary Table 7). Using the seven well-established 

PD genes, which were labeled as positive, and 212 genes in the same loci that received negative 

labels (i.e. not likely to drive the association with PD, since the PD-driving gene is already well-

established), we trained a machine learning model. This model enabled us to generate a 

prediction score for each gene within each locus, assessing their potential involvement in PD. 

The gene with the highest score in each locus is the nominated gene to be associated with PD. 

We then performed multiple post hoc analyses to further validate and explore our results: burden 

tests for rare variants in the top-scoring genes, pathway enrichment and pathway PRS analyses, 

differential expression analyses and structural analyses for candidate coding variants.  

Definition of loci and genes within each locus 
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Following the definition by Nalls et al,1 all loci were defined based on the 90 independent risk 

variants (Supplementary Table 2). Variants within 250 kb were merged into a single locus, which 

led to 78 loci. All protein coding genes within 1 Mb of the risk variants were included in the 

model. To exclude non-causal variants, echolocatoR was used as a comprehensive fine-mapping 

model.43 This method leverages Bayesian statistical and functional fine-mapping tools as well as 

epigenomic data to calculate the causal probability of SNPs in a locus.43 In our downstream 

analysis, we incorporated the SNPs nominated by echolocatoR into the credible gene sets 

generated by the same tool. Furthermore, we included the 90 independent SNPs obtained from 

the PD GWAS in our analysis.  

Feature preprocessing 

To leverage multi-omic data for the machine learning algorithm, we integrated a comprehensive 

list of datasets (Supplementary Table 7), which included SNP functional annotations, expression 

and splicing quantitative trait loci (QTL), scRNA, and chromatin interaction. Since distance was 

previously shown to be the most predictive feature in about 60-70% of GWAS loci, the distance 

from each SNP to each gene in the locus and the distance to the transcription start site were 

included in the model.44 To predict the severity of variant consequences, we used VEP10 and 

Polyphen-2.45 The SNP2GENE function on the FUMA platform was used to perform functional 

mapping of SNPs to eQTLs.46 In the FUMA settings, we chose the UKB release2b 10k European 

reference panel, a maximum distance of 1000kb from SNPs to gene, and included the MHC 

region. All other FUMA settings were kept as default. eQTL and 3D chromatin interaction 

mapping were performed using brain tissues, whole blood, FANTOM and GTEx datasets. Using 

scRNA datasets from Kamath et al,11 we included gene expression from all ten subpopulations of 
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dopaminergic neurons from postmortem brains of 7 PD and 8 control donors. A complete list of 

all datasets can be found in Supplementary Table 8.  

Neighborhood scores 

To integrate the concept of locus and LD in the model, we calculated the neighborhood scores 

for each feature by transforming the data relative to the best-scoring gene within each locus,7 

allowing the model to find the highest expressed genes across each locus. For example, if the 

feature is “maximum gene expression in blood”, the gene with the highest expression in each 

locus would have a score of one while the score of the remaining genes in the locus would be 

calculated following the expression of gene divided by the expression of highest expressed gene 

in the locus. Negative log transformation was applied so that the closest gene had the highest 

score. 

Machine learning model to prioritize genes 

We used XGBoost47 to train the machine learning model. We selected well-established genes 

from PD loci for the training dataset (GBA1, GCH1, LRRK2, MAPT, SNCA, TMEM175, 

VPS13C). These genes were labeled as positive labels, and the remaining genes from these same 

loci were labeled as negative labels. In total, the training set was composed of 212 genes (7 

positive labeled and 205 negative labeled). The scale_pos_weight parameter in XGBoost was set 

to the ratio of negative to positive labels to control for the imbalance. The training process 

involved two steps. Firstly, the model was trained to identify redundant features, eliminating any 

redundant or uninformative variables from the dataset. In the second step, the final training 

model was created using the selected features. This two-step approach helps optimize the 

training process and ensures that the model focuses on relevant and informative features to make 
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accurate predictions. We performed hyperparameter tuning and five-fold cross-validation on 

both models. Mean average precision was used as an evaluation function to maximize the correct 

positive predictions made. Of the 284 features, 78 features passed feature selection for the final 

training model. 

Functional enrichment analysis 

To examine whether specific pathways may be involved in PD, based on the genes nominated in 

each locus, we performed an over-representation analysis using WebGestalt (WEB-based GEne 

SeT AnaLysis Toolkit) on January 25, 2023.48 We included the top candidate gene from each 

locus, and examined enrichment in terms of biological processes and cellular components from 

the Gene Ontology data. The genome protein-coding list was used as the reference list and 

pathways were considered to be associated with PD if significant after FDR correction. 

Single-cell and bulk RNAseq analyses 

To examine whether genes nominated by the machine learning model may be differentially 

expressed in PD relevant models, we used publicly available single-cell and bulk RNAseq data 

from FOUNDIN-PD12 and Kamath et al.11 FOUNDIN-PD scRNA data includes 80 induced 

pluripotent stem cell (iPSC) lines collected after 65 days.12 We then performed differential gene 

expression analyses between PD cases and controls. For scRNA, we used the MAST49 package 

after adjusting for covariates such as age, sex and batch. For bulk RNAseq, we used DESeq250 

while adjusting for the same covariates. 

Pathway polygenic risk score analyses 

Pathway-specific PRS analysis can further support a role for specific pathways in PD.51 Using 

PRSet,52 pathway-specific polygenic risk scores (PRS) were calculated for pathways nominated 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2023. ; https://doi.org/10.1101/2023.06.20.23291658doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.20.23291658
http://creativecommons.org/licenses/by-nd/4.0/


by gene set analysis on 14,828 PD cases and 13,283 controls from seven cohorts (McGill, 

Parkinson's Progression Markers Initiative (PPMI), Vance (dbGap phs000394), International 

Parkinson's Disease Genomics Consortium (IPDGC) NeuroX dataset (dbGap phs000918.v1.p1), 

National Institute of Neurological Disorders and Stroke (NINDS) Genome-Wide genotyping in 

Parkinson's Disease (dbGap phs000089.v4.p2), NeuroGenetics Research Consortium (NGRC) 

(dbGap phs000196.v3.p1) and UK Biobank). The number of cases and control for each cohort is 

described in Supplementary Table 9. Participants were unrelated individuals of European 

ancestry and were not gender matched. Rare SNPs (minor allele frequency < 0.01) with p-value 

< 0.05 were excluded from the analysis. LD clumping was performed using r2=0.1 and 250kb 

distance. A permutation testing was performed with 10 000 label permutations to generate 

empirical p-value for each gene set after adjusting for a prevalence of 0.005, age at onset for 

cases, age at enrollment for control, sex, and the top 10 principal components. The Vance cohort 

was excluded from the meta-analysis due to significant heterogeneity. 

Rare variant burden analyses 

To examine whether there is an association between rare variants in the genes nominated by the 

machine learning model and PD, we used MetaSKAT53 to perform a meta-analyses of rare 

variants. We used whole exome sequencing (WES) available for 602 PD patients, 6,284 proxy 

patients and 140,207 controls from UK Biobank (n=147,093) and 2,600 PD patients, 3,677 

controls from Accelerating Medicines Partnership Parkinson's Disease (AMP-PD)54 datasets 

(n=6277). Additional selection criteria for UK Biobank and AMP PD were reported 

previously.55,56 We performed the analysis on several groups of rare variants (allele frequency < 

0.01): loss of function variants, nonsynonymous variants, potentially deleterious (CADD>20) 

variants and functional (including nonsynonymous, frame-shift, stop-gain, and splicing) variants. 
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Pathway-specific rare variant analysis was performed by combining PD genes from the pathways 

nominated previously. All analyses were adjusted for age at onset for cases, age at sample for 

control and sex.  

Structural analysis 

The atomic coordinates of SPNS1 (Uniprot #H3BR82) were retrieved from the AlphaFold server 

(https://alphafold.ebi.ac.uk/). The structures of MLX-MAD1 and MLX-MLXIP were generated 

using AlphaFold-Multimer version 3, as implemented in ColabFold.57,58 The ternary complex 

with a DNA duplex was generated by superposing the heterodimers on the crystal structure of 

the MAD1-MAX-DNA complex (PDB 1NLW). The figures were generated using PyMol v.2.4.0. 

Data availability 

The data used for this study can be accessed on: FUMA https://fuma.ctglab.nl/; Cuomo et al. 

2020; Bryois et al. 2021; PPMI ppmi-info.org; UK Biobank https://www.ukbiobank.ac.uk/, SMR 

https://yanglab.westlake.edu.cn/software/smr/; and Kamath et al 2021. 

Code availability 

The scripts used for this study can be found on GitHub: github.com/gan-orlab/gene_prio 
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Figure legends 

 

Figure 1: Workflow summary. 

This figure describes the analyses performed in this study.  

Figure 2: Probability score of the Parkinson’s disease GWAS candidate genes 

Manahattan plot showing the probability scores from the machine learning model for each locus 
in the Parkinson’s disease GWAS loci sorted in descending order. For each gene, the top non-
distance feature was used to color the data. 

Figure 3: Feature importance for the Parkinson’s disease GWAS gene prioritization model 

A) Bee-swarm plot of feature importance using SHAP values along with the distribution of genes 
based on feature value B) Heatmap of feature importance using SHAP value for the top 
candidate gene in each locus. The plot at the top represents the probability score of each gene. 
The bar plot on the right shows the relative importance of each feature. 

Figure 4: Waterfall plots for Parkinson’s disease GWAS candidate genes 

Importance of the top 10 features using SHAP values for different selected candidate genes. 
E[f(x)] is the base score for each gene which is calculated based on the average value of each 
features. f(x) is the final score after accounting for all features. 

Figure 5: Structural analysis of SPNS1 p.L512M and MLX p.Q223R 

A) Alphafold prediction of the structure of the lysophospholipid transporter SPNS1 (alternative 
isoform, Uniprot #H3BR82). The mutation p.L512M would take place in the lumen of the 
lysosome. B) AlphaFold model of the MAD1-MLX heterodimer superposed on the structure of 
the MAD1-MAX-DNA complex (PDB 1NLW). The inset is a zoom on the MLX p.Q223R 
mutation, displaying the effect that the mutation may have on the interaction with the MAD1 
protein. C) AlphaFold model of the MLXIP-MLX heterodimer superposed on the structure of the 
MAD1-MAX-DNA complex, as described above. Note that AlphaFold also predicts an 
interaction between the C-termini of MLXIP and MLX (but not MAD1 and MLX).  

Figure 6: Volcano plots of Gene Ontology biological processes and cellular components.  

Volcano plots of gene-set enrichment analysis using WebGestalt showing the log of the FDR 
versus the enrichment ratio. P-value are calculated using a hypergeometric test. All pathways 
that are significant after FDR correction were named. 
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Table 1: Meta-analyzes of pathway-specific polygenic risk scores 

Pathway-specific PRS OR 95% CI P Het P 

POLYOL_BIOSYNTHETIC_PROCESS 1.20 1.17-1.24 2.07E-42 1.91E-05 
INOSITOL_PHOSPHATE_BIOSYNTHETIC_PROCESS 1.15 1.12-1.18 2.36E-25 1.97E-02 
POLYOL_BIOSYNTHETIC_PROCESS_filtered 1.09 1.06-1.12 1.04E-09 1.12E-02 
INOSITOL_PHOSPHATE_BIOSYNTHETIC_PROCESS_filtered 1.06 1.03-1.09 1.31E-05 1.45E-01 
PRS: Polygenic risk score, OR: odds ratio, CI: confidence interval; P: p-value, Het: Heterogeneity, filtered: excluded 
Parkinson’s disease top gene, GOBP_INOSITOL_PHOSPHATE_BIOSYNTHETIC_PROCESS: GeneOntology 
inositol phosphate biosynthetic process (GO:0032958), GOBP_POLYOL_BIOSYNTHETIC_PROCESS: 
GeneOntology polyol biosynthetic process (GO:0046173).  
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Table 2: Meta-analysis of rare variant analysis of putative causal genes 

Set P FDR P 

GBA_Rarefunctional 2.04E-12 6.22E-10 

GBA_Rarenonsyn 3.38E-11 5.15E-09 

GBA_RareLOF 1.22E-06 1.24E-04 

GBA_RareCADD 2.32E-06 1.77E-04 

LSM7_RareLOF 3.69E-06 2.25E-04 

KCNIP3_RareLOF 1.12E-05 5.69E-04 

GCH1_RareLOF 2.02E-05 8.80E-04 

LRRK2_RareCADD 6.07E-05 2.31E-03 

Polyol_Rarefunctional 1.59E-04 5.38E-03 

Polyol_Rarenonsyn 2.86E-04 8.74E-03 

NUCKS1_RareCADD 4.13E-04 1.14E-02 

Polyol_RareLOF 1.54E-03 3.91E-02 

SYT17_Rarenonsyn 4.61E-03 9.37E-02 

P2RY12_RareLOF 4.38E-03 9.37E-02 

CYLD_RareLOF 4.48E-03 9.37E-02 

SYT17_Rarefunctional 7.39E-03 1.38E-01 

LCORL_RareLOF 7.66E-03 1.38E-01 

CAMK2D_RareLOF 8.62E-03 1.46E-01 

FBRSL1_RareLOF 1.12E-02 1.80E-01 

CTSB_RareLOF 1.20E-02 1.82E-01 

KPNA1_RareCADD 1.35E-02 1.96E-01 

ASXL3_RareLOF 1.52E-02 2.10E-01 

KPNA1_RareLOF 1.76E-02 2.33E-01 

LRRK2_Rarefunctional 2.57E-02 3.14E-01 

MICU3_RareLOF 2.56E-02 3.14E-01 

VAMP4_Rarenonsyn 2.93E-02 3.43E-01 

MBNL2_RareCADD 3.04E-02 3.43E-01 

LRRK2_Rarenonsyn 3.28E-02 3.57E-01 

KPNA1_Rarefunctional 3.46E-02 3.64E-01 

LSM7_Rarefunctional 3.58E-02 3.64E-01 

HIP1R_Rarenonsyn 3.93E-02 3.87E-01 

KPNA1_Rarenonsyn 4.23E-02 3.91E-01 

HIP1R_Rarefunctional 4.22E-02 3.91E-01 

Set: variant set across genes/pathway, P: p-value, FDR P: false discovery rate p-value, Rarefunctional: 

rare functional variants, Rarenonsyn: rare nonsynonymous variants, RareLOF: rare loss-of-function 

variants, RareCADD: rare variants with CADD score above 15. 
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