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Abstract

Objective: The challenge of irregular temporal data, which is
particularly prominent for medication use in the critically ill,
limits the performance of predictive models. The purpose of this
evaluation was to pilot test integrating synthetic data within an
existing dataset of complex medication data to improve machine
learning model prediction of fluid overload.

Materials and Methods: This retrospective cohort study eval-
uated patients admitted to an ICU > 72 hours. Four ma-
chine learning algorithms to predict fluid overload after 48-
72 hours of ICU admission were developed using the original
dataset. Then, two distinct synthetic data generation method-
ologies (synthetic minority over-sampling technique (SMOTE)
and conditional tabular generative adversarial network (CT-
GAN)) were used to create synthetic data. Finally, a stacking
ensemble technique designed to train a meta-learner was estab-
lished. Models underwent training in three scenarios of varying
qualities and quantities of datasets.

Results: Training machine learning algorithms on the com-
bined synthetic and original dataset overall increased the per-
formance of the predictive models compared to training on the
original dataset. The highest performing model was the meta-
model trained on the combined dataset with 0.83 AUROC while
it managed to significantly enhance the sensitivity across differ-
ent training scenarios.

Discussion: The integration of synthetically generated data is
the first time such methods have been applied to ICU medica-
tion data and offers a promising solution to enhance the per-
formance of machine learning models for fluid overload, which
may be translated to other ICU outcomes. A meta-learner was
able to make a trade-off between different performance metrics
and improve the ability to identify the minority class.
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Introduction

Medication regimens in the intensive care unit (ICU) are no-
toriously complex, and meaningful analysis poses a unique

challenge to clinicians at the bedside and Big Data scientists
alike [1-5]. A unique element of medication data includes the
degree of granularity necessary for appropriate interpretation
(e.g., drug name, dose, frequency, formulation, etc.) [6]. A
result of this complexity is that limited attempts have been
made to incorporate the entire medication regimen into pre-
diction modeling despite medication therapy’s essential role
in patient outcomes [7].

Some initial studies have shown promise, including im-
proved mortality prediction with the incorporation of medi-
cation data and machine learning [1] as well as the discovery
of novel pharmacophenotypes associated with patient out-
comes, particularly with the use of a novel common data
model to make medication data more machine-readable [6
8]. However, the efficacy of these advanced technologies is
contingent upon the availability and quality of data for model
training [9]. In many cases, progress is hindered by datasets
that are insufficient, imbalanced, and biased [10 11]. More-
over, the sensitive nature of health-related information cou-
pled with strict regulatory and security requirements compli-
cates the acquisition and usage of healthcare data for machine
learning model development [12]. Given the complexity of
medication data, alternative strategies to enrich datasets are
paramount to fully leverage artificial intelligence in this do-
main.

Synthetic data generation has emerged as a potential solu-
tion to bypass constraints associated with real-world health-
care data [13-15] but to date, the methodology has not been
applied to the ICU medication domain. New data are gener-
ated by replicating real-world data’s essential characteristics
while also adding variation, which can facilitate the devel-
opment of robust and reliable machine learning models [16
17]. The adoption of synthetic data in the healthcare domain
may alleviate limitations associated with protected health in-
formation and can help address data quality, completeness,
and representation issues by generating balanced and com-
prehensive datasets that reduce biases and improve the gen-
eralizability of machine learning models [18 19]. However,
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synthetic data generation methods for critically ill patients
and more specifically for evaluation of medication regimens
of intensive care unit (ICU) patients are still in the nascent
stages of development.

Given the complexity of ICU patient management, a specific
use case for predicting fluid overload was developed for ini-
tial synthetic data generation. Fluid overload is a common
though often unintentional consequence of caring for criti-
cally ill adults in the initial phase of their ICU stay. Despite
the clinical need for volume resuscitation or intravenous (IV)
medications that can lead to fluid overload, it is associated
with increased rates of ICU complications, including acute
kidney injury, use of invasive positive pressure ventilation,
and prolonged ICU stay [20-23]. As such, fluid management
is a clinically complex challenge. The ability to predict pa-
tients at risk of fluid overload and its sequelae has the po-
tential to improve the implementation of fluid stewardship
initiatives. To date, studies focused on predicting fluid over-
load using artificial intelligence-based approaches are limited
[24]. Sikora et al. [25] contrasted the efficacy of the logistic
regression model against traditional machine learning meth-
ods for fluid overload prediction. Although machine learning
models outperformed logistic regression, they struggled to
accurately predict positive cases of fluid overload (potentially
due to an imbalance of fluid overload events in the original
dataset). Despite these limitations, this study was the first to
take into account full medication regimen data in addition to
patient specific data to enhance predictive abilities.

The present study sought to build on this concept of in-
corporating comprehensive medication data as well as other
patient specific data to predict fluid overload within 48-72
hours post-ICU admission by applying synthetic data gen-
eration methods. The main contributions of this study in-
clude: (1) employment of two synthetic data generators (syn-
thetic minority over-sampling technique (SMOTE) and con-
ditional tabular generative adversarial network (CTGAN)) to
augment the available training data by mimicking real-world
data characteristics and oversampling positive fluid overload
cases to address the limitations posed by the quantity and
quality of the original dataset; (2) Developing a generaliz-
able and interpretable meta-learner to address the limitations
of other machine learning models when predicting positive
fluid overload cases.

Materials and methods

Dataset. De-identified data from the University of North
Carolina Health System electronic medical record (EMR)
data (Epic Systems, Verona, WI) housed in the Carolina Data
Warehouse (CDW) were extracted by a trained CDW data
analyst. In this process, a random list of 1,000 patients was
generated between October 2015 — October 2020. From here,
patients on their index ICU admission that had fluid balance
data for the first 72 hours available were included.

The protocol for this study was reviewed and approved by
the Institutional Review Board (IRB) of record at the Uni-
versity of Georgia (approval number: (PROJECT00002652);
approval date: October 2021). Due to the retrospective, ob-

servational design, waivers of informed consent and HIPAA
authorization were granted. The procedures followed in the
study were in accordance with the ethical standards of the
IRB and the Helsinki Declaration of 1975 [26]. Study report-
ing adheres to the STrengthening and reporting of OBserva-
tional data in the Epidemiology statement [27].

This was a retrospective, observational study of adults admit-
ted to the ICU assessing the primary outcome of fluid over-
load at 48-72 hours (i.e., day 3) following ICU admission.
The definition of fluid overload was a positive fluid balance in
milliliters (mL) greater than or equal to 10% of the patient’s
admission body weight in kilograms (kg) [20 28]. Predictor
variables included four categories: 1) ICU baseline: age >
65 years, sex, admission to a medical ICU, primary admis-
sion diagnosis category (including cardiac, chronic kidney
disease, rhabdomyolysis, heart failure, cirrhosis, pulmonary
arterial hypertension, hepatic, pulmonary, pancreatitis, sep-
sis, trauma, other), and select co-morbidities of chronic kid-
ney disease or heart failure; 2) 24 hours after ICU admission:
APACHE II and SOFA score, use of supportive care devices
including renal replacement therapy and invasive mechanical
ventilation, serum laboratory values including albumin < 3
mg/dL, bicarbonate < 22 mEq/L or > 29 mEq/L, chloride >
110 mEqg/L, creatinine > 1.5 mg/dL, lactate > 2 mmol/L,
potassium > 5.5 mEq/L, sodium > 148 mEq/L or < 134
mEq/L, fluid balance, and presence of acute kidney injury
(as defined by need for renal replacement therapy or serum
creatinine greater than or equal two times baseline); 3) Med-
ications at 24 hours: MRC-ICU, vasopressor use in the first
24 hours, use of continuous medication infusions, and the
number of continuous medication infusions.

Model development workflow. The study’s workflow is
summarized in Figure 1, beginning with data collation and
concluding with the final prediction. The collated ICU data
initially went through a data processing stage. In this step,
any variables associated with missing proportions exceed-
ing 30% were omitted, except for the SOFA score. After-
ward, the multiple imputation by chained equations (MICE)
technique was used to handle complex missing data patterns
and different variable types, while considering the uncer-
tainty around imputed values [29]. Linear regression was
used for the imputation of continuous variables, including
SOFA, APACHE 1I, fluid balance (mL), and the amount of
fluid overload. Logistic regression was adopted during the
imputation process for binary variables while polytomous lo-
gistic regression was used for multi-level variables. Next, the
processed data was fed into a generator to produce synthetic
data. Simultaneously, the SMOTE technique was applied for
oversampling the processed dataset. These synthetically gen-
erated datasets were combined with the original dataset and
introduced to the discriminator. Of note, all of the syntheti-
cally generated data were used exclusively for training pur-
poses. Ultimately, the data passed through a discriminator,
which was a machine learning model to deliver the final pre-
diction for fluid overload in ICU patients.
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Fig. 1. The workflow of predicting fluid overload.

Synthetic data generation. The collected dataset was lim-
ited by an imbalance in the derived fluid overload labels with
only 10% of the cases being labeled as positive for fluid
overload. This skewness may create bias in the prospective
models trained on the dataset predisposing them to focus pri-
marily on the majority class while disregarding the minority
class. This inherent bias potentially leads to the deceptive
performance of the models: they might display high accuracy
rates, but their ability to identify the positive cases would be
considerably undermined. Given that the primary objective
of the classifiers under development is to effectively identify
patients with fluid overload, this limitation is notable.

In general, upper, lower, or hybrid sampling methods are the
most common approaches to bring balance into the classi-
fication datasets. SMOTE is a widely employed technique
for addressing the class imbalance in datasets and is partic-
ularly effective when the minority class instances are insuf-
ficient [30]. Instead of merely replicating the minority class
samples to augment their representation, SMOTE generates
synthetic instances based on the variable space similarities
between existing minority samples. This method promotes
diversity within the minority class helping to improve the
model’s ability to generalize and thereby potentially enhanc-
ing its performance in predicting minority class instances. In
this study, we assessed the potential influence of SMOTE-
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generated synthetic instances of positive fluid overload cases
on the predictive performance of machine learning models.
For this aim, synthetic instances were generated by select-
ing existing instances and creating new EMRs between these
instances and their nearest neighbors. This process was con-
tinued until generating 777 fluid overload positive cases to
balance the distribution of the labels within the dataset.

The second synthetic dataset was generated using a CTGAN
model with the exact size of the original dataset but a more
balanced distribution in terms of labels (44% positive cases).
The purpose of this dataset was to provide more data in the
training process to help machine learning algorithms deci-
pher inherent patterns in the data and elevate the balance be-
tween the binary class of negative and positive fluid over-
load cases. CTGAN employs a conditional variant of the
GAN model that allows for the generation of synthetic data
with certain specified characteristics. This conditional as-
pect makes the model able to produce data samples that ad-
here to specific conditions. CTGAN can learn the complex
and nonlinear interdependencies between different variables
in the data, can be highly effective in non-Gaussian distribu-
tions, and can manage both categorical and continuous vari-
ables and discrete and continuous distributions. The rationale
for CTGAN was to substantially enhance the volume and di-
versity of the training set by generating a balanced synthetic
dataset with regard to label distribution. The CTGAN model
was developed with previously proposed architecture [31].
This model created a dataset identical in terms of the num-
ber of features and instances as the original dataset yet main-
tained approximately the same distribution of positive and
negative labels. This enhanced dataset was then incorporated
with the original dataset for training the machine learning
models. By enriching the training data, this approach ideally
not only offers additional training samples for machine learn-
ing models but also increases the number of whole positive
fluid overload cases to enhance the generalization robustness
of the learning models.

Machine learning algorithms. Four different machine
learning approaches were employed to predict fluid overload
at the first 72 hours of ICU admission: logistic regression
(LR), support vector machine (SVM), XGBoost (XGB), and
random forest (RF). Using the original dataset, these models
did not demonstrate appropriate performance, particularly for
detecting positive cases (sensitivity) [25]. Thus, in addition
to the synthetic data generators, a meta-model was incorpo-
rated into the original study design to bolster the efficacy of
the predictive fluid overload model. This approach led to the
creation of a stacking ensemble model designed to train a
meta-learner for the prediction of fluid overload. The funda-
mental methodology is rooted in the concept of stacked gen-
eralization, which leverages the combined predictive power
of multiple models. It operates by generating individual pre-
dictions from an array of models. These predictions are then
consolidated by a meta-model, yielding a holistic final pre-
diction. The essence of this technique lies in the wisdom of
the crowd, where the amalgamation of multiple models often
results in an improved prediction. In the implementation ap-
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proach, we selected the SVM, XGB, and RF as the first-level
models. Each model lent its distinct predictive capabilities
to the ensemble with the aim of augmenting the overall per-
formance of the resultant prediction. We conducted a thor-
ough examination of various meta-models for fluid overload
prediction to assess their efficacy in integrating the first-level
models’ predictions. Choque fuzzy integral fusion, voting
classifier, Naive Bayse for different distributions, LR, RF,
and a three-layer multi-layer perceptron network were ana-
lyzed. The Gaussian Naive Bayse model was finally selected
as the meta-model.

To find the optimal hyperparameters for the machine learn-
ing models of the discriminator, we conducted a broad search
encompassing the most influential parameters across various
models. Supplemental Table 1 represents the hyperparame-
ters and their values that were analyzed using a grid search
strategy to identify the optimal hyperparameters. The area
under the receiver operating characteristic (AUROC) was
the target performance metric while applying 5-fold cross-
validation. Given the limited number of positive fluid over-
load cases, choosing accuracy as the target metric for opti-
mization can potentially be misleading. However, AUROC
encapsulates a more holistic view of the model’s classifica-
tion performance and is not biased by the imbalanced class
distribution. Hence, a model with a higher AUROC can lead
to a more proficient model in classifying fluid overload by
maintaining the balance between sensitivity and specificity
metrics. Furthermore, we implemented the backward elim-
ination method to identify the most influential variables to
predict the presence of fluid overload and subsequently build
a logistic regression based on them. Six variables (age, sex,
sepsis, SOFA, APACHE II, bicarbonate) were determined
based on their significance and the Wald test. Eventually,
the performance of the developed models was assessed using
AUROC, accuracy, sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV).

Results

Data characteristics. The distribution and similarities be-
tween two synthetically generated datasets and the original
dataset were investigated with several analyses. The Jensen-
Shannon divergence (JSD) was applied to gauge the simi-
larity between each synthetic dataset and the original one.
JSD, a method characterized by its finiteness, symmetry, and
smoothing, leverages the principle of information entropy
to quantify the divergence between two distributions. For
the dataset created using SMOTE, the JSD was 0.10, while
the JSD for the dataset produced by the CTGAN model
was higher at 0.68. This substantial discrepancy primarily
arises from the differing distributions between the synthetic
dataset associated with the CTGAN model and the origi-
nal dataset (most notably that the CTGAN model’s synthetic
dataset had a 43.9% prevalence of positive cases compared
to a 10.8% occurrence in the original dataset). The Bhat-
tacharyya Distance, a measure useful in comparing datasets
with non-normal distributions, further quantified the simi-
larity between the two datasets. The Bhattacharyya Dis-

tance was calculated based on the Bhattacharyya coefficient
to measure the amount of overlap between the two distribu-
tions. Generally, a smaller Bhattacharyya Distance denotes
a larger overlap, implying a higher similarity between the
distributions, whereas a larger distance indicates less over-
lap and more divergence. Mann-Whitney U test was also
applied. We then used the Benjamini-Hochberg (BH) proce-
dure to manage the false discovery rate [32]. This statistical
approach entailed arranging the p-values in ascending order,
assigning them respective ranks, and subsequently contrast-
ing each with a computed threshold. Supplemental Table 2
presents the distribution analysis derived from pairwise com-
parisons of the employed variables. It should be noted that
the label distributions of the datasets were entirely different,
and we did not set any clinically acceptable range for the syn-
thetically generated data and allowed the CTGAN model to
determine this independently.

Figure 2 presents a box plot illustrating the distribution of
APACHE II at 24 hours, the SOFA score at 24 hours, MRC-
ICU at 24 hours, and the fluid balance at 24 hours for both the
original and CTGAN’s synthetically generated data. These
four variables were previously determined to be the most in-
fluential on the machine learning models developed [25]. The
distributions of the SOFA score, MRC-ICU, and fluid balance
in both datasets were relatively similar whereas the APACHE
II score values tended to be higher for the synthetic dataset.
Given the differences in the label distributions between these
two datasets, APACHE II was deemed by the CTGAN model
as a significant variable in positive fluid overload cases.
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Fig. 2. Box plot of four influential variables to predict fluid overload for two different
datasets. a) Original dataset. b) CTGAN'’s dataset.

Figure 3 illustrates the t-distributed stochastic neighbor em-
bedding (t-SNE) algorithm visualization [33] of the original
and CTGAN synthetically generated datasets with the per-
plexity of 30. The t-SNE aims to find a projection of the
data into a lower-dimensional space that preserves the struc-
ture of the data to the greatest extent possible. Specifically,
the primary goal of t-SNE is to conserve the local structure
of the data, implying that points in close proximity within
the high-dimensional space are also situated closely within
the corresponding low-dimensional space. The t-SNE plot
for the original dataset, which exhibited a significant imbal-
ance in terms of label distribution, revealed that the data does
not segregate into distinct clusters. This pattern persisted in
CTGAN’s synthetically generated dataset, where data points
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were dispersed along a diagonal line. This observation in-
dicated that predicting fluid overload in ICU patients is an
intricate task.

(a) (b)

Fig. 3. The t-SNE plot of positive/negative fluid overload cases for different datasets.
a) Original dataset. b) CTGAN’s dataset.

Predictive models. Three distinct scenarios were consid-
ered in training and evaluating various machine learning
models: original data, oversampling the original data using
SMOTE, and integrating oversampled original data with CT-
GAN synthetically generated data. Because of the random-
ized nature of the imputation, machine learning models, and
synthetic data generation, we repeated the training and evalu-
ation of all the scenarios ten times and employed 5-fold cross-
validation. Table 1 summarizes the models’ performance un-
der the three scenarios. Findings from the prior study carried
out by Sikora et al. [25] have also been incorporated into the
table for comparison.

Focusing on the original data scenario, the LR model when
constructed on all variables outperformed both the SVM and
XGB models in terms of AUROC and sensitivity, scoring
0.80 and 0.19, respectively. While the RF model achieved
the highest AUROC of 0.81 and a sensitivity of 0.13, the pro-
posed meta-model succeeded in more than tripling the sen-
sitivity (0.48) while still maintaining the highest AUROC.
Turning to the SMOTE scenario, the SVM, XGB, and RF
models yielded AUROCS of 0.78, 0.79, and 0.81, and sen-
sitivities of 0.65, 0.26, and 0.26, respectively. The meta-
model adeptly managed a trade-off among various perfor-
mance metrics: it maintained the RF’s AUROC while ex-
hibiting enhanced capability in identifying positive cases,
achieving a sensitivity of 0.52. In the CTGAN scenario,
even though the LR model built on all variables and the SVM
achieved a higher sensitivity than XGB and RF (0.30 and 0.41
compared to 0.19 and 0.16 respectively), the latter models
represented a higher AUROC of 0.83. The developed meta-
model represented a superior performance by attaining 0.83
AUROC and 0.26 sensitivity.

Generally, the LR model exhibited a lower AUROC using
stepwise selected variables compared to the LR model built
on all variables across all the scenarios. The addition of a
synthetically generated dataset to the training scheme im-
proved the sensitivity of the LR models. Oversampling the
dataset using SMOTE enhanced both the AUROC and sen-
sitivity of the SVM, XGB, RF, and meta-model. This in-
crement continued for the AUROC, reaching a peak of 0.83
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for the meta-model when CTGAN’s synthetic data was added
and representing a more balanced trade-off among the other
performance metrics.

Figure 4 illustrates the AUROC curve including a 95% con-
fidence interval for the five developed models, which were
trained and validated using all the original and synthetically
generated datasets. The meta-model, RF, and XGB demon-
strated a similar curve pattern and higher AUROC. While the
SVM model yielded a higher AUROC than the LR model
built on all variables, the latter exhibited a higher true posi-
tive rate at lower false positive values. The LR model built on
stepwise selected variables showed a significant difference,
although maintaining a curve pattern fairly comparable to the
others.
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Fig. 4. ROC curves of different machine learning models trained on the Origi-
nal+SMOTE+CTGAN dataset.

Figure 5 shows the hierarchical SHapley Additive exPlana-
tions (SHAP) plot of the meta-model, elucidating the contri-
bution of each variable toward the final prediction [34]. The
output of the XGB model emerged as the most influential
variable for the developed meta-model using all datasets. Di-
agnosis of sepsis and rhabdomyolysis, along with the max-
imum amount of chloride, were ranked as the top three in-
fluential variables for the XGB and RF models in predict-
ing fluid overload. For the SVM model, on the other hand,
the APACHE II score, MRC-ICU score, and length of stay
were deemed the most impactful variables. Supplemental
Figures 1 and 2 illustrate the average absolute SHAP value
for the inputs of different models for the original dataset and
all datasets training scenarios.

Discussion

In the first study to employ conditional GANs to improve
irregular temporal modeling for ICU medication data, we
found that generating more training data in combination with
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Table 1. The performance metrics of various machine learning approaches and model development scenarios.

Input data | Model AUROC | Accuracy | Sensitivity | Specificity PPV NPV
LR: Stepwise selected | 0.78+0.03 | 0.91+0.01 | 0.13£0.04 | 0.99+0.00 | 0.73+0.18 | 0.91+0.01
B l& LR: All variables 0.80+0.03 | 0.90+0.01 | 0.19+0.05 | 0.98+0.01 | 0.52+0.12 | 0.91+0.01
% % SVM 0.75+0.04 | 0.90+0.01 | 0.03+0.03 | 1.00+0.00 | 0.00£0.00 | 0.90+0.01
:é) g XGBoost 0.79+£0.03 | 0.90£0.00 | 0.15+0.05 | 0.99+0.01 | 0.60+0.13 | 0.91+0.01
© Random Forest 0.81+0.03 | 0.90+0.01 | 0.13+0.04 | 0.99+0.00 | 0.67£0.16 | 0.91+0.01
Meta-Model 0.81£0.03 | 0.87+0.01 | 0.48+0.04 | 0.91+0.01 | 0.38+0.05 | 0.94+0.01
LR: Stepwise selected | 0.52+0.02 | 0.90+0.01 | 0.05+0.01 | 0.98+0.01 | 0.27£0.15 | 0.90+0.01
LR: All variables 0.77£0.02 | 0.85+0.01 | 0.41+0.03 | 0.90+0.01 | 0.32+0.03 | 0.93+0.00
% SVM 0.78+0.01 | 0.75£0.01 | 0.65+0.04 | 0.76x0.01 | 0.24+0.02 | 0.95+0.01
E XGBoost 0.79+0.04 | 0.88+0.01 | 0.26+0.04 | 0.96+0.01 | 0.42+0.04 | 0.92+0.01
Random Forest 0.81£0.02 | 0.90+0.01 | 0.26+0.05 | 0.97+0.00 | 0.47+0.06 | 0.92+0.00
Meta-Model 0.81+0.02 | 0.85+0.01 | 0.52+0.03 | 0.89+0.01 | 0.34+0.03 | 0.94+0.01
<ZL‘ LR: Stepwise selected | 0.72+0.03 | 0.79+0.01 | 0.45+£0.03 | 0.83£0.01 | 0.25+0.04 | 0.93+0.01
% LR: All variables 0.77+0.02 | 0.86+0.01 | 0.30+0.04 | 0.92+0.01 | 0.31+0.03 | 0.92+0.00
é SVM 0.79+0.02 | 0.82+0.01 | 0.41+0.03 | 0.87+0.02 | 0.56+0.04 | 0.92+0.00
% XGBoost 0.83+£0.02 | 0.90+0.00 | 0.19+0.05 | 0.98+0.00 | 0.56+0.08 | 0.91+.00
.gﬂ Random Forest 0.83+0.01 | 0.90+0.01 | 0.16+0.04 | 0.99+0.01 | 0.62+0.09 | 0.91+0.01
S Meta-Model 0.83+0.02 | 0.90+0.01 | 0.26+0.04 | 0.97+0.01 | 0.54+0.07 | 0.91+0.00

employing a meta-learner can increase the performance of
machine learning algorithms in predicting fluid overload in
ICU patients. This study demonstrates the potential of gener-
ating synthetic data for the advancement of machine learning
methods to predict imbalanced outcomes in critically ill pa-
tients. Predicting fluid overload is a demanding task given
that the associated data lends itself more towards not hav-
ing fluid overload than having it and incorporates patient-
specific and comprehensive medication data. As the applica-
tion of machine learning to address the challenge of manag-
ing ICU medication has received limited attention, this eval-
uation may have ultimate applications beyond fluid overload
prediction.

The developed meta-learner trained on the combination of
synthetically generated and original datasets was able to pre-
dict fluid overload at 72 hours with an AUROC of 0.83.
While identifying the presence of fluid overload is easy to
calculate (simply subtracting the ‘outs’ from the ‘ins’ on a
fluid balance flowsheet), predicting its presence such that it

could be prevented or its degree lessened through proactive
intervention is a clinically complex challenge that has been
the subject of far less study [4 20-23 28 35-37]. Given that
many critically ill patients require aggressive fluid resuscita-
tion (e.g., in the case of shock) or intravenous medications
with a larger volume burden (e.g., intravenous antibiotics), it
is unsurprising that fluid overload is a common ICU occur-
rence. However, its frequency can belie its relationship to
adverse ICU events including acute kidney injury, mechan-
ical ventilation, and prolonged length of stay and moreover
is potentially mistakenly viewed as ‘unavoidable’ in the con-
text of critical illness [20 38-40]. This assumption is wor-
thy of further investigation given that there are likely sev-
eral case scenarios within the four phases of volume opti-
mization (Resuscitation, Optimization, Stabilization, and dE-
resuscitation (ROSE Model). Indeed, while the express goal
of the resuscitation phase is to increase circulating volume,
the shift to optimization and stabilization requires a nuanced
approach that may support either reduced overall volume in-
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Fig. 5. SHAP plot of the meta-model and its first-tier machine learning algorithms trained on the Original+SMOTE+CTGAN dataset.

take (to limit future fluid overload) or even volume removal.
As such, there are likely several case scenarios: (1) a patient
requires volume resuscitation in the first 24 hours (or so) of
the ICU stay and the clinical scenario (e.g., end organ dys-
function, hemodynamic status, IV medication requirements)
makes fluid overload unavoidable, (2) a patient requires vol-
ume resuscitation but the clinical scenario allows for euv-
olemia to be more quickly achieved, (3) a patient did not
specifically require volume resuscitation but did require IV
medications that resulting in unavoidable fluid overload, or
(4) a patient did not specifically require volume resuscita-
tion but did require I'V medications that resulting in avoidable
fluid overload. The power of predictive algorithms specifi-
cally is within scenarios 2 and 4, where with alerts, a clinician
could potentially make changes to the patient’s regimen (e.g.,
adding a diuretic, concentrating I'V fluids) that can avoid fluid
overload and its potential sequelae. Prior to the advent of ma-
chine learning technology, this ability to parse nuanced clin-
ical scenarios was largely left to the expertise and intuition
of the bedside clinician; however, the possibility exists that a
machine learning-based algorithm could provide meaningful
predictions of fluid overload risk in addition to complication
(e.g., acute kidney injury) risk in conjunction with potential
interventions to help guide the clinician.

Despite the promising potential of machine learning algo-
rithms, one challenge that persists is the limited availabil-
ity of high-quality data for training models. Acquiring suf-
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ficient ICU patient and medication data is crucial for devel-
oping practical algorithms; however, collecting, organizing,
and structuring these data for fluid overload risk prediction
can be time-consuming and costly. Particularly, organizing
the granularity of medication data needed (timing, volume,
concentration, drug identity, clinical condition, etc.) is a con-
siderable task. Furthermore, the highly imbalanced nature of
the available data makes it increasingly challenging for an Al
model to discern patterns in cases of positive fluid overload.
Synthetic data can provide a valuable solution for addressing
the class imbalance in training machine learning models [15
19 41]. Generating synthetic instances of underrepresented
classes allows the model to learn more robustly, improving
its performance on minority classes and ultimately yielding
better generalization. This diversity enhances the model’s
understanding of the feature space, aiding it to capture com-
plex patterns more accurately. Synthetic data can also help
mitigate privacy concerns and ethical issues in healthcare,
as it does not involve using actual patient information [16].
Therefore, we investigated the impact of integrating synthet-
ically generated data in the training phase to assess the ef-
fectiveness of different machine learning models in predict-
ing fluid overload in ICU patients. We considered different
machine learning approaches and developed a meta-learner
as a second-tier learning model that aggregates the predic-
tions of multiple base learners. Overall, by adding more syn-
thetic data to the training phase, the performance of SVM,
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XGB, and RF was increased. The increase in the sensitiv-
ity of these models was higher when the SMOTE data were
added while other metrics generally improved by adding the
CTGAN dataset. The meta-model was able to make a bet-
ter trade-off between the performance metrics by increasing
both the sensitivity and AUROC across all training scenarios.
The dataset generated using CTGAN demonstrated a reason-
ably equitable label distribution. While the APACHE II score
in this dataset exhibited the most significant deviation in dis-
tribution compared to the original dataset, the SVM model,
which was superior in detecting positive fluid overload cases,
considered the APACHE II score as the most influential in-
put variable. The CTGAN model, however, generated other
important predictors, notably the MRC-ICU, with a distribu-
tion nearly identical to that of the original dataset. Thus, the
patterns uncovered using this model placed emphasis on the
relationship among the variables instead of generating a sin-
gularly accurate variable.

The interoperability and generalizability of developed ma-
chine learning models to enhance their understandability, ac-
countability, and robustness were emphasized throughout the
study. The complexity introduced by a multi-tiered model
can make the interpretation of the machine learning algorithm
more challenging. Therefore, we provided a hierarchical
SHAP plot for the meta-model to better comprehend how the
meta-learner assesses different models and the significance
of various variables for first-tier models (Figure 5). The anal-
yses of the interoperability of the meta-model revealed that
diagnosing sepsis for a patient had the highest influence on
the prediction of fluid overload (Supplemental Figures 1 and
2). Additionally, we augmented the generalizability of the
models by incorporating more synthetic data into the training
phase, replicating the entire workflow from data imputation
to model training ten times, performing cross-validation, con-
ducting an extensive hyperparameter search, and developing
a meta-learner.

This study has several limitations: as previously discussed,
the original dataset was relatively small in sample size and
bias may exist regarding which patients had fluid data avail-
able. While the predictors of fluid overload were chosen
based on previous evidence, it likely does not represent a
complete list of elements that could predict fluid overload.
Second, variables were chosen at the 24 hour time point,
which while useful for making decisions on the second or
third day of the ICU stay, likely fails to capture the highly
dynamic nature of ICU patient clinical courses. Finally, the
performance of the developed machine learning models is
expected to be influenced by the configuration and size of
the synthetically generated dataset. Modifying the hyperpa-
rameters or adjusting the quantity of synthetic data used for
training the machine learning models may lead to different
results. Despite these limitations, this methodology marks
the first time CGANs have been applied to unstructured ICU
medication data and may be transferable to other prediction
problems in the ICU domain, particularly those that involve
medication therapy.

Conclusion

This study showcased the potential for synthetic data gener-
ation in combination with meta-learner development applied
to ICU medication therapy to augment datasets generated
from ICU patients to improve prediction performance using
the scenario of fluid overload prediction. These methodolo-
gies may have utility in a variety of other ICU prediction
tasks.
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