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Abstract

Medical residency is associated with long working
hours, demanding schedules, and high stress levels,
which can lead to burnout among resident physicians.
Although wearable and machine learning-based
interventions can be useful in predicting potential
burnout, existing models fail to clinically explain their
predictions, thereby undermining the trustworthiness
of the research findings and rendering the intervention
apparently useless to residents. This paper develops,
EMBRACE, Explainable Multitask Burnout pRediction
using AdaptivE deep learning, that employs a novel
framework for predicting burnout that is clinically
explainable. At first, we develop, a wearable sensor
based improved workplace activity and stress detection
algorithm, using deep multi-task learning. Next, we
present a novel Adaptive Multi-Task Learning (MTL)
framework built on top of our activity and stress
detection algorithm, to automatically detect burnout.
Additionally, this model also completes the resident
burnout survey automatically such a way that it can
clinically estimate the same burnout level i.e., clinically
explainable and trustworthy estimation. We evaluated
the efficacy and explainability of EMBRACE using a
real-time data collected from 28 resident physicians
(2-7 days each) with appropriate IRB approval (IRB#
2021-017).

resident burnout, mutlitask learning,
explainable artificial intelligence
Keywords:

1. Introduction

Workplace stress is a pervasive issue that affects
individuals across various professions and industries. It
encompasses the psychological, emotional, and physical

strain experienced by employees due to demanding
work conditions, excessive workload, and challenging
interpersonal dynamics. Recent statistics highlight the
magnitude of the workplace stress problem, with studies
indicating that a 80% of employees reported feeling
stressed at work sometimes and 60% of absenteeism
was associated with stress in some ways in that survey
[30]. This alarming trend raises concerns about the
impact of workplace stress on individuals’ well-being,
job satisfaction, and overall quality of life.

Recognizing the detrimental effects of workplace
stress, researchers and clinicians have developed
clinically validated tools to assess and detect stress
levels in workers [31]. These tools typically
involve questionnaires and surveys that measure various
dimensions of stress, including task load, mental effort,
emotion, and perceived stress [32]. While these tools
provide valuable insights, they are often limited by their
reliance on self-reporting and retrospective assessments,
which can be subject to recall biases and may not
capture real-time stress experiences [33]. To address
these limitations and provide real-time monitoring
of workplace stress, wearables and machine learning
techniques have emerged as promising solutions.
Wearable devices equipped with sensors can collect
physiological and behavioral data from individuals
throughout their workday, offering continuous and
objective measurements of stress-related indicators such
as heart rate variability, skin conductance, and physical
activity. Machine learning algorithms can then analyze
this data and predict stress levels in real-time [5].

Medical residency is undeniably one of the
most challenging and demanding workplace stress
situations that individuals can experience. Medical
residency is a highly challenging and demanding
period characterized by extended working hours and
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schedules [17]. The demanding work schedules and
long hours of residency, coupled with work-home
interference, create a highly stressful environment that
predisposes residents to burnout due to several stressors,
including sleep deprivation, conflicts with coworkers,
difficulty adapting to a new environment, heavy patient
responsibilities, lack of control over schedules, as well
as personal traits such as neuroticism or introversion
that increase the risk of burnout [1]. Burnout
can cause physical symptoms (headache, fatigue,
gastrointestinal distress, flu, and sleep and appetite
changes) and psychological symptoms (irritability,
reduced concentration), as well as behaviors like
procrastination, daydreaming, and substance use [2].
Additionally, it can lead to an increased risk of
depression, suicidal thoughts, and cardiovascular
problems [3]. Moreover, the COVID-19 pandemic has
exacerbated the long-standing issue of resident burnout
in the United States healthcare system, highlighting
the urgent need for interventions to support and
protect the well-being of these essential frontline
workers before it is too late [4]. The combined
use of advanced wearable sensor technologies and
Machine Learning (ML) algorithms can facilitate the
early identification of burnout, thereby providing an
opportunity to prevent its occurrence [5]. Despite
their potential benefits, wearable sensors and machine
learning-based predictions may suffer from a lack of
clinical explainability, potentially leading to mistrust
among clinicians and limiting their practical use in
real-time clinical settings [7].

This paper introduces a novel framework,
EMBRACE, for enhancing the prediction and
explanation of burnout in residents by utilizing a
clinically validated survey that is easily comprehensible
and reliable for clinicians. More specifically, our key
contributions are:

• In EMBRACE, we develop a wearable sensor
based improved Workplace Activities (WPAs)
and stress recognition framework using deep
multitask learning technique. Then, utilizing
that, we develop a novel explainable Multitask
Learning (MTL) framework to automatically
predict burnout and explain the prediction by
filling out a clinically validated and trustworthy
burnout detection survey tool.

• We validated the accuracy and explainability
of our proposed EMBRACE framework using a
real-time collected data from 28 internal medicine
residents (2-7 days each) in a natural hospital duty
settings with appropriate IRB approval (IRB#
2021-017).

2. Related Works

The use of machine learning (ML) techniques
in detecting burnout among resident physicians is a
relatively new area of research. While Ecological
Momentary Assessment (EMA) has shown effectiveness
in predicting burnout among residents [8], incorporating
ML methods has the potential to enhance prediction
performance [9]. However, real-time burnout prediction
necessitates continuous monitoring of health vitals and
ML techniques [10–12]. Recent systematic reviews
[11, 12] indicate that existing just-in-time burnout
prediction techniques utilize biomarkers such as skin
temperature, motion-based activities (accelerometers),
electrodermal fluctuations, and wristband-based blood
volume pulse. Various ML algorithms such as MLP,
RF, KNN, SVM, LR, CNN, FCN, Time-CNN, RESNET
MLP, CNN-LSTM, MLP-LSTM, Inceptiontime, and
others have been employed in these studies [11, 12].
However, a common limitation among these works is
the lack of clinical explainability, which has not been
adequately addressed in this research field [7, 11, 12].

Many researchers proposed different
Interpretable/Explainable AI (XAI) algorithms to
make complex AI prediction models explainable that
include the Additive Feature Attribution method and the
local interpretable model-agnostic explanations (LIME)
approach [18]. The shapley additive explanations
(SHAP) approach combines LIME with Shapely values
to provide explanations for black-box models [14].
Other methods include class activation mapping
(CAM) [19], DeepLIFT [20], and layer-wise relevance
propagation (LRP) [21] for interpreting convolutional
neural networks (CNNs). In healthcare, explainable
AI applications have been developed for interpreting
imaging studies and real-time predictions [22]. One
previous work proposed interpretable ML techniques
for stress prediction using wearables, but it only
provided a simplistic representation of top features
based on SHapley Additive exPlanations (SHAP),
which lacks clinical significance [13]. Adapa et. al.,
proposed [15] a supervised machine learning method
to predict burnout among resident physicians that takes
a bunch of surveys to understand different workplace
problems and activities related, and, based on that
longitudinal surveys on personal, physical, workplace
environmental and physiological status measures, and
performed supervised machine learning approach to
identify some highly correlated factors (emotional
exhaustion, depersonalization, race demographics etc.).
EMBRACE offers both efficient burnout prediction
as well as clinically validated survey filling out
method hypothesizing that clinical survey of burnout

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.24.23291864doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.24.23291864


estimation is explainable and trustworthy among
resident physicians.

3. EMBRACE Framework

EMBRACE framework consists of two core
components: algorithm for detecting workplace activity
and stress; and, adaptive algorithm for detecting
burnout level and explanation. Fig. 1 presents a
schematic diagram of our proposed framework.

3.1. Detecting Workplace Activity and Stress

A multitask deep learning framework for wearable
sensor-based activity and stress detection involves
training a single model to simultaneously perform
multiple tasks, specifically activity recognition and
stress level classification. The framework combines
both tasks into a single neural network architecture,
allowing shared representations to be learned and
leveraging the complementary information present in
the data.

3.1.1. Input Data The input data consists of
time-series sensor readings from wearable devices,
denoted as X ∈ RT×N , where T represents the length
of the time series and N is the number of sensor
channels.

3.1.2. Activity Recognition Task Activity
recognition aims to predict the activity type based
on sensor data. The predicted activity labels are
denoted as Yact ∈ 0, 1Cact , where Cact represents the
number of activity classes. The output layer for activity
recognition is defined as:

Oact = softmax(Wact ×H + bact) (1)

where H represents the shared hidden representations
obtained from the network, Wact is the weight matrix,
and bact is the bias term specific to the activity
recognition task.

3.1.3. Stress Level Classification Task Stress level
classification aims to predict the stress level based on
sensor data. The predicted stress labels are denoted as
Ystress ∈ {0, 1}Cstress , where Cstress represents the
number of stress level classes. The output layer for
stress level classification is defined as:

Ostress = softmax(Wstress ×H + bstress) (2)

where H represents the shared hidden representations
obtained from the network, Wstress is the weight matrix,
and bstress is the bias term specific to the stress level
classification task.

3.1.4. Shared Representation Learning The
shared representation learning module learns
a representation that captures both activity and
stress-related patterns in the input data. This module
consists of a combination of one convolutional neural
networks (CNN) with 32 hidden nodes each and two
Long Short Term Memory (LSTM) layers with 64
hidden nodes each, to extract meaningful features
from the input time series. The final fused hidden
representation obtained from this module is denoted as
H .

3.1.5. Loss Function The multitask loss function
combines the losses from both tasks to jointly optimize
the model. The loss function is defined as a combination
of activity recognition loss (Lact) and stress level
classification loss (Lstress), weighted by respective
task-specific coefficients (α and β):

Loss = α× Lact + β × Lstress (3)

3.1.6. Learning The model is trained using
backpropagation and gradient descent optimization
techniques, minimizing the multitask loss function. The
shared representation learning module and task-specific
layers are updated jointly during training. By training
the multitask deep learning framework, the model
learns to extract relevant features from the wearable
sensor data and simultaneously perform activity
recognition and stress level classification tasks. This
joint learning approach enables the model to leverage
the shared representations and potentially improve the
performance of both tasks compared to training separate
models.

3.2. Burnout Prediction and Explanation

To build a multitask few-shot deep domain
adaptation framework based on the previous framework,
we will adapt it to the scenario where wearable sensor
data serves as input, the source domain involves
multitask stress and activity recognition, and the
target domain focuses on predicting the answers to
a multitask Mini-Z survey questionnaire [23] and
burnout prediction. The objective is to estimate the
overall burnout scale class based on the Mini-Z survey
questions’ answers. We describe this model as follows:

3.2.1. Preliminaries In this framework, we have
similar input data representation where the source
domain framework is the previously described multitask
deep learning architecture for stress and activity
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Figure 1. The schematic diagram of proposed framework

recognition tasks. The model architecture includes
shared representation learning, output layers for
activity recognition (Oact) and stress level classification
(Ostress), and corresponding labels Yact and Ystress.
In the target domain, the focus shifts to predicting the
answers to the multitask Mini-Z survey questionnaire.
The objective is to estimate the overall burnout scale
class based on the answers to the Mini-Z survey
questions. For each Mini-Z survey question, a
separate output layer is defined in the neural network
architecture. The output layer for predicting the answer
to question i is denoted as Oi = f(WiH + bi), where
H represents the shared hidden representations obtained
from the network, Wi is the weight matrix specific to
question i, bi is the bias term associated with question
i, and f is an appropriate activation function. The
estimated overall burnout scale class is derived from
the answers to the Mini-Z survey questions. This has
been achieved by defining a range of total Mini-Z survey
questions’ answers and mapping it to specific burnout
scale classes.

3.2.2. Multitask Adaptive Loss Function The
multitask loss function for the target domain includes
the task-specific loss for Mini-Z survey questions

prediction (LminiZ) and the overall burnout scale class
loss (Lburnout), weighted by respective task-specific
coefficients (γ and δ). The loss function is defined as:

Loss = γ · LminiZ + δ · Lburnout (4)

where Lburnout is the cross-entropy loss for the overall
burnout scale class estimation and LminiZ is the R2

loss metrics. R-squared is a goodness-of-fit measure
for regression models. This statistic indicates the
percentage of the variance in the dependent variable
that the independent variables explain collectively.
R-squared measures the strength of the relationship
between your model and the dependent variable on a
convenient 0 – 100% scale. R2 loss can be represented
as follows:

R2 = 1− MeanSquaredError

V ariance(y)
(5)

3.2.3. Few-shot Domain Adaptation Few-shot
domain adaptation aims to transfer knowledge from
the source domain to the target domain, even when
labeled data in the target domain is limited. We
modify Model-Agnostic Meta-Learning (MAML)
algorithm [24] according to our multitask source and
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Algorithm 1 Multitask Few-Shot Deep Domain
Adaptation with Model-Agnostic Meta-Learning
(MAML)

1: Initialization:
2: Initialize source model parameters Wsource.
3: Define source domain tasks Tsource as Tact and

Tstress.
4: Source Domain Training:
5: Train the model on the source domain tasks Tsource

using multitask deep learning.
6: Update source model parameters Wsource using

gradient descent.
7: Few-Shot Adaptation:
8: Select a few labeled samples ltarget from the target

domain tasks Ttarget, specifically Tsurvey answers

and Tburnout.
9: Define a new task ttarget in the target domain with

the labeled samples ltarget.
10: Clone the source model and initialize cloned model

parameters Wtarget with source model parameters
Wsource.

11: for each target domain task ttarget do
12: Inner Loop Training:
13: Perform a few gradient update steps on the cloned

model Wtarget using labeled samples ltarget
from the target domain task ttarget.

14: Compute task-specific loss Ltarget and update
cloned model parameters Wtarget using gradient
descent.

15: Outer Loop Update:
16: Compute gradient of task-specific loss Ltarget

with respect to initial parameters Wsource of the
source model.

17: Update initial parameters Wsource of the source
model using the gradient.

18: end for
19: Evaluation:
20: Evaluate the adapted model on target domain tasks

Ttarget by predicting Mini-Z survey questionnaire
answers.

21: Estimate the overall burnout scale class based on
predicted answers.

target problem, which allows the model to quickly
adapt to new tasks using a few labeled samples. The
modified MAML algorithm includes initialization of
model parameters and source domain training. Then,
the few-shot domain adaptation includes selecting few
target samples with labels to define new target task with
cloned source model’s parameters. Then, for each target
domain task, we perform a few gradient update steps
on target parameters using few samples and compute

target task specific loss in the inner loop; and compute
gradient of task-specific target loss with respect to
source parameters and update it. Finally, we evaluate
the adapted target task model using Mini-Z survey
answers-based prediction 1.

4. Experimental Evaluation

This section describes our experimental evaluation
on EMBRACE framework.

4.1. Datasets

We have utilized one existing datasets as source
for developing our stress and activity recognition
and performance, and collected our own dataset
for developing Multitask Few Shot Deep Domain
Adaptation with MAML model.

D1 (SWELL-KW Dataset): We utilized
SWELL-KW dataset [25] as source that contains sensor
data (accelerometer, heart rate, galvanik skin response),
activity labels and four clinical tool estimated stress
assessment ground truth. The dataset was collect from
25 people (3 hours each) performed workplace activities
under manual stressors such as email interruptions
and time pressure. The data has been annotated with
activities (via recorded videos), subjective experience
on task load, mental effort, emotion and perceived
stress was assessed with validated questionnaires
(NASA-TLX [26], RSME [27], SAM and PSS [29]) as
ground truths.

D2 (Burnout Dataset): With the appropriate
Institutional Review Board (IRB) approval (IRB#
2021-017), we recruited 28 internal medicine resident
physicians (avg. age 27.5 with std 3.5) from a
renown teaching-based medical center from different
year (PGY1, PGY2, PGY3). Each participant was
asked to wear Empatica E4 watch from the beginning
of their daily duty until the end of the day. To
assess clinical burnout among resident physicians, we
utilized Mini-Z Burnout Survey [23]. The Mini-Z (2.0)
burnout assessment comprises a set of 10 questions that
utilize 5-point Likert scales, along with an additional
open-ended question. These items aim to evaluate three
key outcomes, namely burnout, stress, and satisfaction,
while also exploring seven factors that contribute to
burnout. These factors encompass work control, work
chaos, teamwork, alignment of values with leadership,
documentation time pressure, EMR (Electronic Medical
Record) use pressure, and EMR proficiency. There are
three different burnout scales are estimated from these
10 answers:

1. Joyful measure: Add all points from the 10 items
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for a total score, range 10–40 points. A score
≥20 is considered representative of a joyful work
environment

2. Satisfaction scale: Add all points from Q1, Q2,
Q3, Q4, range 4–25 points. A score ≥20 is
considered a highly supportive environment.

3. Stress scale: Add all points from Q5, Q6, Q7, Q8,
range 4–25 points. A score ≥20 is considered
a low stress environment with reasonable EMR
pressures.

A text notification of online MiniZ burnout survey
[23] form was sent to their cell phone at 7PM everyday
that must be submitted by midnight. The Empatica E4
data as well as submitted MiniZ burnout survey data are
stored in a secured HIPAA compliant server with proper
de-identification. We performed this Mini-Z survey
evaluation before the collection had started to calculate
participants’ baseline burnout profile.

4.2. Tasks Definitions

There are two tasks involved in the source dataset
(D1), Task 1 (Tact): 5-class activity recognition (writing
reports, making presentations, reading e-mail, searching
for information and others) and Task 2 (Tstress):
3-class stress level recognition (neutral, interruption
and Time pressure). On the other hand, there are
four tasks involved in the target dataset, D2, Task
1 (Tsurvey answers): 10-class regression problem to
fill-out survey questions and, Task 2 (Tburnout1): 2-class
overall measure (joyful work environment or not),
Task 3 (Tburnout2): 2-class satisfaction scale (highly
supportive work environment or not), and, Task 4
(Tburnout3): stress scale (low stress environment with
reasonable EMR pressure or not). In Fig. 1, we presents
three burnout tasks ( Task 2, Task 3 and Task 4) into a
single domain.

4.3. Implementation

Our proposed model was implemented using
Python’s Keras library with the TensorFlow backend.
For the regression task, denoted as Tsurveyanswers, we
employed the RMSE loss function. In contrast, for the
classification tasks, which encompassed the remaining
tasks, we utilized categorical cross-entropy loss. These
loss functions were employed while jointly training the
few-shot MAML algorithm.

The optimization of our system was performed using
the Adam optimization function with a learning rate
of 1 × 10−3. The selection of the optimized learning
rate and the weighting parameter β (set to 0.25) was

achieved through hyperparameter tuning. The learning
model of our framework was executed on a server
equipped with a cluster of three Nvidia GTX GeForce
Titan X GPUs and an Intel Xeon CPU (2.00GHz)
processor, along with 12 gigabytes of RAM.

For training the multitask stress and workplace
activity recognition framework, we utilized the D1
dataset (SWELL-KW Dataset) as input. This dataset
included readings from wearable sensors such as
accelerometers, heart rate monitors, and galvanic skin
response sensors. The framework was trained to address
two tasks. To adapt the shared module of the target
adaptive multitask explainable burnout prediction, we
employed the trained weights for initialization (domain
adaptation). Subsequently, we replaced the inputs in
our collected dataset, D2, with readings from wearable
sensors such as accelerometers, heart rate monitors,
and electrodermal activity sensors. Additionally, we
modified the output layer to accommodate the four
aforementioned task problems.

4.4. Prediction Performance Evaluation

The conventional 10-fold cross validation approach
is not suitable for sequential data. Therefore, to train
and assess the performance of our proposed EMBRACE
framework, we adopt a different approach. We
partition the entire sequential dataset into two halves.
Subsequently, we randomly select a sequence of data
from the first half as the training sample, and another
random sequence from the second half as the testing
sample. This process is repeated ten times to generate
ten distinct pairs of training and testing data sequences.

To evaluate the performance of our algorithm,
we utilize balanced accuracy, precision, recall, and
F1 measure as metrics. These metrics provide
a comprehensive assessment of the algorithm’s
effectiveness. Additionally, we calculate the standard
deviation of all these metrics to evaluate the presence of
overfitting.

Table 1 and Table 2 present detailed performance
results of the multitask activity and stress detection
algorithm implemented in the EMBRACE framework on
the source dataset, D1 (SWELL-KW dataset).

Table 1 displays the overall accuracy, precision,
recall, and F-1 measure for workplace activity
recognition, which achieve values of 91%, 93%, 91%,
and 93% respectively. These results are accompanied
by reasonably low standard deviations, indicating no
evidence of overfitting. Notably, the classification of
writing reports achieves a significantly higher accuracy
of 97% compared to other tasks.

Table 2 reports the overall accuracy, precision, recall,
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and F-1 measure for stress level recognition, with values
of 94%, 94%, 94%, and 95% respectively. Similar to
the activity recognition results, the standard deviations
are reasonably low, suggesting no overfitting. It is
worth highlighting that the classification of neutral stress
levels demonstrates an impressive accuracy of 99%,
outperforming the other stress level classifications.

Table 1. Workplace activities (writing reports,

making presentations, reading e-mail, searching for

information and other random works) accuracy

performance of source dataset, D1, on EMBRACE

framework
Activities Accuracy Precision Recall F1

measure
Writing 97.5±.02 95.1±.02 97.5±.02 97.8±.01
Present 92.4±.1 92.6±.15 92.4±.1 93.7±.1
E-mail 85.3±1.1 86.3±.9 85.3±1.1 87.8±.8
Searching 89.4±1.2 90.8±0.6 89.4±1.2 90.3±1.3
Others 85.3±1.1 87.8±1.4 85.3±1.1 88.1±1.5
Overall 91.6±0.9 93.1±0.5 91.6±0.9 93.9±0.2

Table 2. Stress level (neutral, interruptions and

time-pressure) accuracy performance of source

dataset, D1, on EMBRACE framework
Stress
Levels

Accuracy Precision Recall F1
measure

Neutral 99.5±.00 98.2±.01 99.5±.00 99.1±.01
Interrupt 94.1±.07 95.4±.01 94.1±.07 96.3±.06
Time 91.2±.09 92.7±.09 91.2±.09 92.8±.08
Overall 94.7±.02 94.7±.02 94.7±.02 95.1±.01

Table 3 and Table 4 present the R-squared
measure for survey questionnaire completion and
the burnout prediction accuracy performance of the
adaptive multitask burnout prediction and explanation
framework, referred to as EMBRACE.

The results demonstrate significant overall accuracy,
precision, recall, and F-1 measures of 87%, 88%, 87%,
and 88% respectively. Although certain questionnaires
(Q1, Q2, and Q3) show exceptionally poor R-squared
measures, the final accuracy of stress level prediction
(as shown in Table 4) is not significantly affected due
to the efficient design of our adaptive multitask learning
framework.

The overall accuracy, precision, recall, and F-1
measures for stress level prediction are 94%, 94%,
94%, and 95% respectively. Furthermore, both Table
3 and Table 4 reveal reasonably low standard deviations,
indicating a lack of strong evidence for overfitting in our
models.

Table 3. Mini-Z survey questionnaire specific answer

regression mean squared error (MSE) on our collected

dataset, D2, using adaptive multitask learning part of

EMBRACE framework
Questions Accuracy Precision Recall F1

measure
Q1 78.5±.9 79.5±.9 78.9±.8 80.6±.9
Q2 75.8±.7 77.4±.8 75.3±.9 76.4±.9
Q3 69.5±1.9 70.6±1.1 70.5±1.2 71.6±1.0
Q4 84.6±.9 87.8±0.7 84.6±0.9 86.5±0.9
Q5 97.5±.01 98.2±.01 97.5±.01 98.3±.01
Q6 96.3±.01 95.9±.02 96.3±.01 97.1±.02
Q7 93.6±.02 94.8±.03 93.6±.02 93.6±.01
Q8 90.5±.3 88.5±1.1 90.4±.2 91.3±.8
Q9 86.5±.9 87.1±1.2 85.9±.5 88.8±.9
Q10 90.2±1.0 89.4±1.1 90.2±1.0 91.5±.8
Overall 87.7±0.5 88.3±0.8 87.6±0.4 88.8±0.7

Table 4. Three kind of burnout measures (Joyful

measure, Satisfaction scale and Stress scale), D2,

using adaptive multitask learning part of EMBRACE

framework
Stress
Levels

Accuracy Precision Recall F1
measure

Neutral 99.5±.00 98.2±.01 99.5±.00 99.1±.01
Interrupt 94.1±.07 95.4±.01 94.1±.07 96.3±.06
Time 91.2±.09 92.7±.09 91.2±.09 92.8±.08
Overall 94.7±.02 94.7±.02 94.7±.02 95.1±.01

4.5. Discussion

To enhance the clarity of our findings, we applied
the multitask workplace activity and stress detection
algorithm to our collected dataset, referred to as
D2. In order to gain deeper insights, we conducted
correlation analysis among various predicted variables,
including workplace activities, stress levels, the Mini-Z
questionnaire responses, and burnout measures. The
correlation analysis results are depicted in Figure 2,
where darker colors indicate lower correlation values.

The questionnaires used in the analysis include the
following items: Q1: Overall, I am satisfied with
my current job; Q2: Using your own definition of
”burnout,” please circle one of the answers below; Q3:
My professional values are well aligned with those of
my department leaders; Q4: The degree to which my
care team works efficiently together; Q5: I feel a great
deal of stress because of my job; Q6: The amount of
time I spend on the electronic medical record (EMR) at
home; Q7: Sufficiency of time for documentation is; Q8:
Which number best describes the atmosphere in your
primary work area?; Q9: My control over my workload
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is; and Q10: The EMR adds to the frustration of my day.
Our analysis reveals several notable findings. Firstly,

it is evident that highly interruptive and time-pressured
work activities exhibit strong correlations with most of
the questionnaires and stress levels. This suggests that
an increase in interruptions and time pressures in the
workplace is associated with higher levels of stress and
negative responses on the questionnaires. However, we
also observed a positive correlation between a neutral
(stress-free) state and job satisfaction, as well as a
pleasant workplace environment.

Furthermore, when examining specific workplace
activities, we found that writing notes demonstrated a
strong correlation with stress levels. This indicates that
an increase in the frequency of writing notes during
work is associated with higher levels of stress among
residents. Additionally, writing notes showed high
correlations with questionnaire items Q5 and Q6, both
of which are related to documentation and electronic
medical record (EMR) writing.

Lastly, it is worth noting that presentation activities
in the workplace exhibited a high correlation with
a joyful work environment, suggesting that engaging
in presentations contributes to a positive and pleasant
atmosphere.

5. Conclusion and Future Work

This paper introduces a novel approach to estimate
and explain burnout measures using adaptive multitask
learning. The estimation is conducted by administering
burnout surveys, and the results are further explained
through correlation analysis between our proposed
workplace activity recognition and stress measures,
along with our predictive model parameters. Although
our framework achieves notable accuracy, we were
unable to compare it with existing frameworks as there
were no similar frameworks available in the current
state-of-the-art literature. Furthermore, we did not
conduct a satisfaction study on explainability, which
would require longitudinal data from a significantly
larger number of participants. Our framework is the
first of its kind to offer an explanation of wearable-based
burnout measures, thus introducing a new dimension in
the field of explainable machine learning.
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