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Abstract Primary Sjogren disease (pSD) is an autoimmune disease characterized by lym-
phoid infiltration of exocrine glands leading to dryness of the mucosal surfaces and by the
production of autoantibodies. The pathophysiology of pSD remains elusive and no treatment
with demonstrated efficacy is available yet. To better understand the biology underlying
pSD heterogeneity, we aimed at identifying Consensus gene Modules (CMs) that summa-
rize the high-dimensional transcriptomic data of whole blood samples in pSD patients. We
performed unsupervised gene classification on four data sets and identified thirteen CMs.
We annotated and interpreted each of these CMs as corresponding to cell type abundances
or biological functions by using gene set enrichment analyses and transcriptomic profiles
of sorted blood cell subsets. Correlation with independently measured cell type abundances
by flow cytometry confirmed these annotations. We used these CMs to reconcile previ-
ously proposed patient stratifications of pSD. Importantly, we showed that the expression
of modules representing lymphocytes and erythrocytes before treatment initiation is associ-
ated with response to hydroxychloroquine and leflunomide combination therapy in a clinical
trial. These consensus modules will help the identification and translation of blood-based
predictive biomarkers for the treatment of pSD.

Keywords Precision Medicine, Sjogren Disease, Unsupervised learning, Integrated analy-
sis.

Introduction

Primary Sjogren Disease (pSD) is a chronic, disabling inflammatory autoimmune disease charac-
terized by lymphoid infiltration of exocrine glands leading to dryness of the mucosal surfaces, such as
the mouth and eyes and by the production of specific auto-antibodies[l—3]. Long-term complications
include ocular and dental diseases, systemic involvement, organ damages and increased risk of lym-
phonorewitik pespries sepmior tiedites bacch thaf i sopadeh obaged isy adbe ediing abetvoarind) {3hFedanglifed ficafptdvacadult
population[6-9] and is the second most common systemic autoimmune disease[10]. It affects women
more often than men (9:1) and the peak frequency of the disease is around fifty years of age[!1].
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The advent of new technologies has provided a path towards the development of classification
criteria for autoimmune diseases that are based on molecular patterns representing disease mechanisms
and molecular pathways[12, 13]. By applying computational methodologies to clinical and multi-
omic datasets, several pSD disease taxonomies have recently been proposed. Indeed, Tarn et al.
proposed a symptom-based stratification of patients with pSD[14], while Soret et al.[15] and Trutschel
et al.[10] proposed a molecular classification of pSD based on whole blood transcriptomic profiles of
pSD patients. These classifications may provide useful clinical insights on disease subtypes of pSD
patients but remain limited in the characterization of the biology underlying the disease in each
patient subgroup. Indeed, pathogenesis of autoimmunity involves dysfunction of the entire immune
system, and many cellular or functional components, including neutrophils, dendritic cells (DCs),
macrophages, T and B cells, cytokine signaling pathways or autoantibodies[17, 18].

The clinical manifestations and biological disturbances associated with pSD are indeed highly het-
erogeneous among individuals which complicates its diagnosis. Mechanistically, the pathophysiology
of pSD remains elusive[19]. No targeted therapy is therefore currently approved and only symptomatic
treatments are offered[20, 21]. Precision Medicine approaches designed to better address the needs of
patients based on the specific biological mechanisms underlying their symptoms would greatly improve
the management of patients suffering from pSD.

The IMI 2 NECESSITY European consortium was launched in 2019 to identify a new composite
clinical endpoint, biomarkers for stratifying patients and predictive biomarkers of treatment response
for pSD, and test them in a prospective clinical trial. To achieve these goals, members of the NECES-
SITY consortium share clinically-annotated datasets, including whole blood transcriptomic datasets
of pSD patients. These transcriptomes allow the identification of biological heterogeneity across pSD
patients and its potential link with response to treatments, but were produced using diverse transcrip-
tomic technologies, making their combined analysis challenging.

In order to jointly analyze independent whole blood transcriptomic datasets of pSD patients, we
used a graph theoretical approach to unify four correlation networks into a consensus graph linking
positively correlated genes. By clustering this unified representation of multiple cohorts, we identi-
fied 13 consensus transcriptomic gene modules that summarize the pathophysiology of pSD at the
blood level. We annotated each of these modules for correspondence with cell types or molecular
pathways, and validated these biological interpretation with matching flow cytometry data or cy-
tokine measurements whenever available. We used these modules to better characterize and reconcile
previously-published pSD patient stratifications|[15, 16]. Importantly, we investigated clinical trial
data to decipher the impacts of treatments on the peripheral blood of patients and propose a model
predictive of the response to leflunomide-hydroxychloroquine combination therapy.

Results

Identification of thirteen consensus gene modules (CMs) from whole blood
transcriptomes of pSD patients

We analyzed four whole blood transcriptomic datasets from pSD patients. Three were provided by
the NECESSITY consortium: ASSESS[22] (n = 371), PreciseSADS[12] (n = 341) and UKPSSR][23]
(n = 144). We also included the publicly-available GSE84844[21] dataset (n = 30). Our goal was to
identify consistent signals across these four sources, and in particular consensus gene modules (CMs)
of coexpressed genes. Transcriptomic data sets are however high dimensional which can hamper
the correct identification of gene modules. Indeed, spurious correlations may appear due to the size
and noisiness of the data: 20,000 protein coding genes indeed correspond to 400 x 105 correlation
coefficients. To ensure that the CMs we identify were reproducible across a large range of blood
transcriptomic data sets (from distinct pSD cohorts), we used a dedicated analysis workflow summa-
rized in Figure 1A. We first converted each cohort’s gene expression matrix to an affinity matrix
(gene co-expression network). This affinity is non-linearly and monotonically linked to the observed
correlation between two genes and shrinks low correlation coefficients towards 0 (See Methods and
Wang et al.[25]). We applied Similarity Network Fusion (SNF)[25], a computational method designed
for the merging of multiple affinity matrices, generating a consensual representation of genes’ pairwise
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similarities in the blood of pSD patients across these four independent cohorts (Figure 1B). We
pruned the consensual affinity matrix to obtain a sparse weighted graph with edges corresponding to
highly co-expressed genes (Supplementary Figure 1). Finally, Louvain clustering[20] of the sparse
graph (see Methods) identified 13 CMs (Supplementary Table 1). We confirmed a posteriori that
these CMs are reproducible groups of highly co-expressed genes that are reproducible across the four
datasets (Figure 1C).

Biological interpretation of the CMs

The 13 CMs represent the main axes of heterogeneity of the blood transcriptome across pSD
patients and can therefore facilitate the interpretation of high dimensional transcriptomic data by
summarizing it using 13 dimensions. In order to biologically interpret these 13 axes of variation,
we annotated each of them as corresponding to cell types or biological functions by using gene set
enrichment analyses using gene sets from the Gene Ontology[27] and Altman et al.[23] databases
(Figure 2A, 2B), as well as their average expression in transcriptomic profiles of sorted blood cell
subsets[29] (Figure 2C).

CM1 was enriched in Interferon related as well as response to viruses pathways, and we inter-
preted it as representing type 1 IFN signaling. CM7 was enriched in cell cycle-related genes, and we
interpreted it as a transcriptomic signature of mitosis within blood cells.

Out of the 11 other modules, 9 represent different cell types. We found four modules corresponding
to lymphoid cells: CM4, CMb5 and CM11 were respectively enriched in pathways associated with T
cells, NK cells and B cells functions (Figure 2A, 2B) and that were overexpressed in the transcrip-
tome of the corresponding purified cell types (Figure 2C). CM8 was enriched in genes associated
with gene transcription and overexpressed across the transcriptomes of purified lymphocytes (T, B
and NK cells) and therefore represents a shared gene transcription signature across all lymphocytes
(Figure 2C). We found six modules (CM2, CM6, CM9, CM10, CM12, CM13) representing myeloid
cell subsets. CM2 was enriched in erythrocytes-annotated gene sets and CM10 in platelets-annotated
gene sets. Module CM6 was overexpressed in the transcriptome of eosinophils. CM9 and CM13 were
enriched in inflammation and neutrophil-related gene sets and overexpressed in the transcriptome
of purified granulocytes and neutrophils. CM13 was in addition enriched in genes from the I-xB
kinase/NF-xB signaling pathway, an inflammatory transcription factor expressed by neutrophils[30].
Finally, CM12 was enriched in gene sets related to monocytes and overexpressed in the transcriptome
of cells derived from monocytes.

Among the 13 CMs, CM3, which contains the highest number of genes (n=1247), was the least co-
expressed, had the lowest absolute expression levels (Supplementary Figure 2) module and showed
inconsistent characterization results (Figure 2A, 2B). We therefore did not take it into consideration
for further analysis. In summary, we interpreted CM1 as type 1 interferon (IFN) activation, CM2 as
representing the frequency of erythrocytes within the blood, CM3 as residual variance, CM4, CM5,
CMB6 as the frequencies of respectively T cells, NK cells and Eosinophils, CM7 as a signature of cell
proliferation, CM8, CM10, CM11 and CM12 as the frequencies of respectively lymphocytes, platelets,
B cells and monocytes, and CM9 and CM13 as representing neutrophils.

Validation of the biological interpretations of the CMs

To confirm the biological interpretations of the CMs representing cell types, we compared their
average expressions (Material and Methods) to the corresponding cellular frequencies measured
by flow cytometry in matching samples whenever available (Figure 3A). For functional modules,
we compared them to previously-published gene signatures (Figure 3B) or cytokines concentrations
(Figure 3C).

For all the cellular modules for which we had matching cytometry data, we observed a high and
significant correlation of the average module expression with the frequency among live single cells
measured by flow cytometry (Figure 3A). More precisely, we observed correlation coefficients of 0.71
between the CM4 module and the frequency of T cells, of 0.51 between the CM5 modules and NK cells,
of 0.39 between CM6 and eosinophils, 0.75 (respectively 0.64) between CM9 (respectively CM13) and
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neutrophils, 0.84 between CM11 and B cells, 0.67 between CM12 and monocytes, and 0.62 between
CMS8 and lymphocytes (all p-values < 2 x 10712).

For functional modules, we observed a strong correlation (Pearson’s r > 0.94) of the CM7 with
genes signatures corresponding to phases of the mitotic cycle identified with single cell RN A-sequencing
data[31]. The other functional module CM1 was highly correlated with the concentration of type 1
IFN (measured by SIMOA) in the blood (r = 0.65,p = 3.3 x 10~1) (Figure 3C). Collectively, these
analyses confirm the interpretation of the CMs derived from gene set enrichment analyses.

The consensus gene modules identify consistency and heterogeneity across pSD patient
stratifications

Three studies have proposed pSD patients stratifications according to molecular and clinical fea-
tures of the disease[l1—16]. Two methods were based on blood transcriptomic profiles of pSD patients
on two distinct cohorts[15, 16]. Both studies identified four clusters of patients hereafter referred to as
S1, S2, S3 and S4 (respectively T1, T2, T3 and T4) for the Soret (respectively Trutschel) classification.
These stratifications were established using unsupervised clustering methods. Algorithmic classifiers
to stratify new pSD cohorts according to these classification systems are however currently lacking,
and no direct comparison has been performed so far.

Briefly, from Soret et al., cluster S1 exhibited high levels of interferon (IFN) activity and an
increased frequency of B lymphocytes in the blood. Cluster S2 showed a similar expression profile to
that of healthy volunteers. Cluster S3 displayed a high IFN signature, along with a more prominent
involvement of B cell components compared to other clusters, including an increased frequency of
B cells in the blood. Lastly, cluster C4 was characterized by an inflammatory signature driven by
monocytes and neutrophils. Confirming the findings of et al.[15], our analysis confirmed the defining
characteristics of these patient clusters. We consistently observed an upregulation of the Interferon
module CM1 in S1 patients, the Neutrophils module CM9 in S4 patients, and the B cell module CM11
in S3 patients (Figure 4A). Our analysis further revealed that S3 is defined by a high abundance of
lymphocytes (B, T, and NK cells represented by the CM11, CM4, and CM5 modules, respectively)
associated with cell proliferation (CM7). Cluster S4 is characterized by a high abundance of platelets
(CM10), erythrocytes (CM2), and neutrophils (CM9 and CM13). S1 is distinguished by high activation
of type 1 IFN (CM1), while S2, described as normal-like by Soret et al., has fewer monocytes (CM12)
and more T cells (CM4) compared to the cohort’s averages.

In a separate study by Trutschel et al., four patient clusters were also identified. These clusters
were based on two modules: IFN-stimulated genes (ISGs) and the erythroid module (ERM). Cluster
T1 showed high expression of both these modules, while cluster T2 had low ISG expression but high
ERM expression. Cluster T3 had high ISG expression and low ERM expression, and cluster T4 had
low expression in both ISGs and ERM. We observed a high interferon signature (CM1) in clusters T1
and T3, with cluster T1 exhibiting a higher platelet presence compared to cluster T3 (Figure 4B).
Cluster T2 had a lower abundance of monocytes (CM12), while cluster T4 had a high neutrophil
signature (CM13). Cluster T1 had a high presence of erythrocytes, cluster T3 had fewer eosinophils
(CM6), and clusters T3 and T4 had a higher abundance of lymphocytes (CMS).

To formally study the correspondence between the Soret and Trutschel classification systems,
we computed Pearson correlation coefficients across centroids computed on mean-centered and unit
variance-scaled module expression scores. This comparison highlighted a very high concordance be-
tween cluster S2 and T2 (r = 0.9), good concordance between clusters S1 and T1 (r = 0.6), moderate
across clusters S3 and T3 (r = 0.4), and poor concordance across clusters S4 and T4 (r = 0) (Figure
4E). This analysis shows that there is a substantial overlap between the two classification systems,
especially in the identification of T2 patients.

It therefore appears that cluster S1 of the Soret classification corresponds to cluster T1 of the
Trutschel classification, marked by high type 1 IFN signaling (CM1) (Figure 4C, 4D). Cluster
S3 matches cluster T3, as identified by high type 1 IFN signaling (CM1) in the context of a lower
abundance of platelets (CM10) and erythrocytes (CM2). Cluster S2 matches cluster T2, with the
lowest type 1 IFN signature (CM1). Cluster S4 in resembles cluster T4, as both have the highest
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expression of the Neutrophil activation module (CM13), although other modules such as platelets
(CM10) and erythrocytes (CM2) had discordant expression levels across the two patient classification
systems. In general, there were no differences in the lymphoid modules (CM4, CM5 and CM11) across
Trutschel clusters.

Tarn et al. propose a stratification model based on patient-reported symptoms and identified four
clusters of patients: Low symptom burden (LSB), high symptom burden (HSB), dryness dominant
with fatigue (DDF), and pain dominant with fatigue (PDF). We were unable to see any significant
difference in the level of expression of any CM across the four subgroups of patients (Supplemen-
tary Figure 3). Consistently, we observed -in the PreciseSADS and ASSESS cohorts- weak cor-
relations of the CMs expression scores with the ESSDAI[32] and ESSPRI[33] disease activity scores
(Supplementary Figure 4). We however noted that unlike other components of the ESSDAI and
ESSPRI disease activity scores, the presence of autoantibodies (anti-SSA, anti-SSB, PFLC, IgG) was
positively-associated with the CM1 module representing type 1 IFN (Supplementary Figure 5).
These observations suggest that among pSD clinical manifestations, the presence of autoantibodies is
the most associated with a specific blood transcriptomic profile.

CMS8 and CM2 are associated with response to hydroxychloroquine and leflunomide
combination

Many clinical trials for Sjogren’s patients have shown poor results especially for response to treat-
ment[31-37] but, negative clinical trials can still provide valuable information about the efficacy of
a particular treatment and can help guide future research. However, positive trials provide a unique
opportunity to compare responder and non-responder patients’ characteristics. Within the IMI2 NE-
CESSITY, data from both positive and negative clinical trials are available for exploratory retrospec-
tive analyses. RepurpSS-1[35] is a placebo-controlled, double-blinded, phase 2A randomized clinical
trial that evaluated the combination therapy of hydroxychloroquine and leflunomide and is one of the
first positive clinical trials in pSD.

Firstly, we validated the co-expression of the genes within each CM on this cohort independent of
those used for the identification of the modules, highlighting the reproducibility and generalizability
of the CMs to independent pSD blood transcriptomic datasets (Supplementary Figure 7).

Secondly, we looked at the evolution of the expression of each module between treatment initiation
and completion. We observed that lefluonomide-hydroychloroquine combination led to a decrease in
the expression of CMs representing T cells, platelets and B cells, and an increase expression of the
CMs representing monocytes and neutrophils, thus suggesting that this treatment combination favored
the number of myeloid immune cells over lymphoid immune cells in the blood (Figure 5A). While
treatments received by patients before blood transcriptomic profiling were more heterogeneous in the
PreciseSADS cohort, we consistently observed an influence of the type of treatment received on the
expression level of the CMs (Supplementary Figure 6).

Finally, we examined whether the heterogeneity of the patients encompassed in the modules could
help identify responders in the RepurpSS-1 trial before treatment initiation. To do so, we focused
on the recently developed STAR clinical endpoint[39]. The CMS8 Lymphoid Lineage module was
significantly overexpressed in responders before treatment initiation (q = 0.013) (Figure 5B, 5C,
Supplementary Figure 8). Conversely, a trend for higher expression in non-responders of the
CM2 module representing erythrocytes was also found (q = 0.055). By combining CM2 and CMS,
we were able to perfectly separate responders and non-responders in this clinical trial (Figure 5D).
These analyses suggest that these cell populations could represent biomarkers predictive of therapeutic
efficacy of this treatment combination.

Discussion

Primary Sjogren’s disease (pSD) is a debilitating and clinically heterogeneous disease with no well-
established causal mechanism, nor approved targeted therapy. There is therefore an urgent need to
identify biomarkers able to inform treatment selection as well as to stratify patients in clinical trials
in the context of personalized medicine. High throughput transcriptomic profiling is an appealing
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technology for biomarker discovery as it allows the interrogation of tens of thousands of genes for
differential expression across groups of patients, such as responders and non-responders to a drug in
a clinical trial. The interpretation of transcriptomic profiles is however difficult, as groups of differen-
tially expressed genes may represent dysregulation of functional pathways or changes in the cellular
composition of samples, or both. In addition, the very high dimensionality of whole transcriptome
assays makes difficult distinguishing true and replicable biological signal from noise.

To overcome these difficulties in the interpretation of the transcriptome in the context of pSD,
we jointly analyzed four independent transcriptomic datasets profiling whole blood samples from pSD
patients. We used clustering methods to identify the main axes of variation across these four datasets.
As clustering algorithms are sensitive to noise, we implemented a method to perform a gene clustering
analysis on a joint representation of the pairwise gene correlations matrix across the four datasets,
rather than on each dataset separately. To do so, we recast the four observed matrices of pairwise gene
correlations as graphs and used the SNF[25] algorithm to obtain a consensus graph representation
of the gene correlation network across the four cohorts, on which we applied the Louvain graph
clustering algorithm. We importantly showed that the gene modules we identified are reproducible
across the four cohorts on which they were discovered (Figure 1C) as well as on an independent
cohort (Supplementary Figure 7). These modules therefore represent the main biological features
contained in the transcriptomic profile of the whole blood in pSD patients, therefore facilitating its
interpretation for translational research.

In order to make the CMs more biological meaningful, we interpreted them using distinct public
databases of pathways and blood cells transcriptomes[29]. This allowed us to identify both functional
modules (interferon signaling or cell proliferation) or modules reflecting the cellular composition of
the patients’ blood. Importantly, we observed highly significant correlations between the expression
of the gene modules and corresponding cellular frequencies or cytokine levels, thus validating these
computationally derived biological interpretations. In the recent years, so called transcriptomic de-
convolution methods have been proposed in order to infer cellular proportions from transcriptomic
measurements[10]. Most of these methods rely on a reference averaged transcriptomic profiles of cell
types, usually derived from purified cells from the blood of healthy donors and use genes that are
discriminative across cell populations in a given context, such as cancer[29]. In contrast, our approach
is driven by the observed variations in the blood of pSD patients across multiple cohorts, ensuring that
the gene signatures of the identified cell types are valid in this context. In addition, this data driven
approach allowed us to define gene modules indicative of rare cell populations such as eosinophils or
signatures of non-immune cell types such as erythrocytes or platelets which are not typically quantified
by deconvolution algorithms[11]. Moreover, we found functional modules (CM1 type 1 IFN and CM7
Cell Cycle) that do not correspond to variations in the frequencies of blood cell types. The consensus
gene modules described herein therefore could help understanding the complex pathophysiology of
pSD as they represent biologically meaningful, reproducible, and sensitive sources of heterogeneity in
the blood transcriptome of pSD patients.

The gene modules that we identified can serve as a building block for translational research in pSD,
by providing a concise list of potential biomarkers provided by whole blood transcriptomic profiling.
Multiple independent studies have recently focused on the stratification of the disease into discrete
patient subgroups, based on whole blood transcriptomic profiles[15, 16] or clinical characteristics[14].
These classifications systems may become relevant in future clinical trials, as new treatments may
benefit only to a restricted subset of patients. Our approach complements these classifications by
highlighting the functional and cellular composition differences across patient subgroups, as well as
highlighting the consensus and differences across classification systems. Our analyses notably suggest
that the patient subgroups in published transcriptomic-based patient stratification systems can be dis-
tinguished based on the measurement of three variables: the frequency of neutrophils in the peripheral
blood, the concentration of type 1 IFN, as well as the frequency of either erythrocytes or platelets
within the blood (Figure 4C, 4D). These observed differences across patient subgroups may provide
clinically actionable biomarkers for disease stratification in settings where whole blood transcriptomic
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profiling is impractical. Indeed, these key features of pSD drive disease heterogeneity and altogether
may be useful predictors of response.

Some medications are designed to target specific genes or proteins, altering their activities and
ultimately leading to changes in cellular behavior. Understanding the complex relationship between
medications and gene expression is an important area of research that includes Drug Repurposing
computational activities and may eventually lead to the definition of more effective treatment strate-
gies for a wide range of diseases and conditions. Our analyses showed that the CMs can be used to
understand the effect of drugs on the composition and functional orientation of the peripheral blood
(Figure 5, Supplementary Figure 7). We also confirmed, in two independent cohorts, the corre-
lation between the presence of anti-SSA and anti-SSB autoantibodies and the level of type 1 IFN in
the peripheral blood. The pathogenic role of the IFN pathway has been extensively described: type
I IFN signature is correlated with the development of systemic extra-glandular manifestations, and
a substantial production of autoantibodies and inflammatory cytokines[12]. Moreover, in the context
of systemic autoimmune manifestations, pSD patients may present with hematologic abnormalities
including anaemia, leukopenia (mainly neutropenia or lymphopenia), and thrombocytopenia[13, 11].
These three components are indeed evaluated in the haematological domain of the ESSDAT scale. As
these patient characteristics are recapitulated by our CMs, whole blood transcriptomic profiling thus
appears informative in the context of pSD translational research.

The CMs we identified indeed provide a succinct list of candidate blood-based biomarkers that
recapitulate whole transcriptome profiles in a biologically interpretable manner. These modules can
therefore be examined in exploratory and clinical research for their potential association with the
response to a treatment or to study drug mechanism of action. We exemplified this idea by retrospec-
tively analyzing data from the RepurpSS-1 phase Ila clinical trial[38] which evaluated a combination
of leflunomide and hydroxychloroquine for the treatment of pSD. Longitudinal whole blood tran-
scriptomic profiling allowed us to show that this combination led to a decreased expression of CMs
corresponding to T cells, platelets and B cells, and an increase in modules representing monocytes
and neutrophils. Our results therefore show that this combination of treatments influence the cellular
composition of the peripheral blood in pSD patients.

Importantly, we investigated the relationship between each CM expression levels before treatment
initiation and the observed clinical response upon completion of the clinical trial. Our results show
that responders to this treatment combination featured higher expression of the module representing
lymphocytes and a trend for lower expression of the module representing erythrocytes. These observa-
tions are consistent with the mechanism of action of leflunomide, an immunomodulatory drug known
to inhibit de novo synthesis of pyrimidine, preventing lymphocytes from expanding in inflammatory
context[15]. While the mechanism of hydroxychloroquine is less clear considering its initial use as
an antimalarial drug, this molecule has widely been used in rheumatic autoimmune diseases such as
systemic lupus erythematosus[16]. Studies have shown that hydroxychloroquine can contribute to
regulate inflammation by blocking Toll-like receptors (TLR) leading to type I IFN pathway inhibi-
tion[17]. Hydroxychloroquine has also demonstrated inhibitory effect on platelet activation[18], in
accordance with modulations seen on CM relating to platelets in the RepurpSS-1 clinical trial. Our
results suggest that clinical efficacy for this treatment combination may be restricted to patients with
high lymphoid frequency and low erythrocytes frequency, thus providing new hypotheses guiding the
treatment strategy of pSD patients and the design of future clinical trials.

Our work is therefore expected to facilitate translational and clinical research on primary Sjogren’s
disease by presenting a set of reproducible and annotated gene modules that capture the major vari-
ations in the blood transcriptome of patients, which will open up the path for identifying biomarkers
in clinical trials for this disease that is still poorly managed.
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Figures

Figure 1 A) Schematic summary of the work. pSD = primary Sjogren Disease B) Heatmap of
the consensus pairwise gene affinity computed by Similarity Network Fusion (SNF). Side annotations
represent gene modules.C) Heatmaps of Pearson’s correlation matrices of the four input datasets, with
genes grouped by their consensus gene modules.

Figure 2 A) For each module, the two most significantly-enriched pathways in the Chaussabel
database[28]. B) Most significantly-enriched pathways in the GO database[27] C) Average expression
of modules in transcriptomes of purified cells

Figure 3 A) Significant Pearson’s correlations between the average expression of the CMs and cell
types abundances measured by flow cytometry. Scatter plots of average CMs expression and matching
cellular frequencies. B) Scatter plots illustrating the average expression of CM7 versus averages of cell
cycle signatures C) Scatter plot of the average expression of CM1 type 1 IFN and dosage of type 1
IFN

Figure 4 CMs scores across patient subgroups of A) the Soret classification B) the Trutschel
classification. Average expression of the CM1 type 1 IFN, CM2 Erythrocytes, CM10 Platelets and
CM13 Neutrophils.2 CMs in the C) Soret classification and D) Trutschel classification. E) Correlation
across cluster centroids of the two stratification systems.
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Figure 5 A) Boxplots illustrating the evolution of the modules significantly differentially-expressed
at baseline (BL) versus Week 24 for treated patients B) Heatmap of baseline average gene expression
of the CMs. Patients are split by their responder status according to the STAR clinical endpoint.
Right side annotations indicate FDR corrected p-value (qvalue) C) Avegage expression of CM8 and
CM2 at baseline in responders versus non-responders D) Dotplot of average expression of the CM8
and CM2 modules, colored by response statuses.

Material and Methods
Data collection

Gene expression and associated clinical and biological data was obtained through tranSMART, the
NECESSITY consortium data sharing platform for the ASSESS (Assessment of Systemic complications
and Evolution in Sjogren’s Syndrome) cohort[22], PRECISESADS[12] and UKPSSR|[23] cohort. Data
from the fourth cohort was downloaded from the Gene Expression Omnibus repository, under the
accession number GSE84844[21].

Transcriptomic data pre-processing

The UKPSSR RNA-seq count data was transformed as in[141]. RNA-seq data from the PreciseSADS
cohort was normalized as in Soret et al.[15]. The ASSESS Affymetrix Clariom S microarray data were
normalized as in[10].

The GSE84844 Affymetrix Human Genome U133 Plus 2.0 Array data was pre-treated by filter-
ing out probesets indistinguishable from background noise. For that purpose, we modeled probe-
sets expression after applying a log2(z + 1) transformation by a two component Gaussian mixture
model[dempster maximum®1977] with the first peak corresponding to unexpressed genes, and the
second peak to expressed genes. We retrieved the parameters of the mixture distribution using the
function normalmizEM from the miztools R package. The 0.95'h quantile of the first component
of the distribution was used as a threshold. Probesets whose expression were below that thresh-
old in more than 95% of the samples were removed. Finally, the fRMA function from the fRMA R
Package[McCall'Bolstad Irizarry 1970] was used to normalize probesets intensities across samples.

Finally, to have comparable data sets, the intersection of the 80% most varying common genes
across all the data sets was selected (5443 genes).

Integrated affinity network

The construction of the integrated network involves two steps: First, gene affinity (affi) is com-
puted independently on each data set as follow : for each pair of genes (z,y), we consider the affinity
between x and y as af fiy,) = exp((1 — cor(z,y))/o) where cor is the Pearson correlation coef-
ficient and o = 3, as suggested by Wang et al.[25]. The four networks are then merged into an
integrated affinity network by using the Similarity Network Fusion (SNF) method[25], with 30 neigh-
bours per gene and 20 iterations. The SNF algorithm produces a weighted fully connected graph
with 5000? = 2.5 x 10% edges. Visual inspection of the distribution of the weights showed that their
distribution was bimodal, with a largely preponderant low weight peak [Supplementary Figure 1].
To convert the fully connetected output of the SNF algorithm to a sparse graph, we removed edges
below the 0.9775th quantile of the weights distribution (Supplementary Figure 1).

Consensus modules identification

Consensus gene modules were identified by applying the Louvain clustering algorithm[26] on the
fused and truncated graph of pairwise gene affinities. This method is based on a modularity optimiza-
tion algorithm that aims to partition genes into communities with high within-group affinity and low
between-group affinity. The modularity score of a community structure is calculated as the difference
between the weighted proportion of intra-community edges and the expected weighted proportion of
such edges if the edges were randomly distributed.
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Gene modules summarization

We used the mean expression the genes contained in a module to represent that module’s expression
as performed in Becht et al[29].

Gene set enrichment analysis

Enrichment analysis is performed by applying a Fisher-exact tests on the human blood-derived
transcriptomic modules of Altman et al.[28] as well as the Gene Ontology database[27]. P-values
were corrected using the Benjamini-Hochberg procedure to select pathways by controlling the false
discovery rate at a 0.05 level.

Mapping with purified and sorted immune cells

To identify modules representing the abundances of blood cell types, we used the GSE86362
dataset[29], which consists of 1936 gene expression profiles from immune cell populations, non-immune
non-malignant cell populations and non-hematopoietic cancer cell lines. For consistency with our
sample types, we only retained samples corresponding to blood cell populations (n = 1095).

Correlation between CMs and cell type abundances measured by Flow Cytometry

On the PreciseSADS cohort, proportions of relevant cell types using flow cytometry custom marker
panels were analyzed for samples where matched transcriptomic profiles and cytometry data were
available. Correlations were performed between summarized CM expression levels and log-frequencies
of the corresponding cell populations among live single cells, as previously described[29]. We corrected
the p-values by Benjamini-Hochberg (BH) procedure by controlling the False Discovery Rate (FDR)
at a 0.05 level.

Correlation between CMs and cytokines

On the PreciseSADS cohort, relevant cytokines were measured as in[12]. A log transformation was
applied on the concentrations. Finally, we computed correlations tests between the average expression
of the CMs and the cytokines levels we corrected the p-value by controlling the FDR at a 0.05 level
(BH procedure).

Application to clinical trial

RepurpSS-1 (registered under trial number EudraCT, 2014-003140-12) was a phase II a placebo-
controlled clinical trial testing a combination of Leflunomide and Hydroxychloroquine[35]. Gene ex-
pression and associated biological and clinical data for the RepurpSS-1 trial was obtained through the
NECESSITY consortium. Transcriptomes of samples with a RIN < 6 or DV200 > 70 were excluded,
resulting in the analysis of 16 patients. Pre-treatment and post-treatment (at week 24) CM expression
levels were compared using paired t-tests with Benjamini-Hochberg correction. Responder status was
determined based on the STAR clinical composite endpoint[39]. Patients with a STAR score of 5
or above were classified as responders. Difference in CM expression levels between responders and
non-responders were assessed using univariate t-tests with BH FDR correction.

Supplementary materials
Table 1. List of genes (SYMBOL) in each Concensus Modules (CMs)

Supplementary Figl. Histogram showing the distribution of weights in the SNF matrix. The x-axis
denotes the weight range (logged) and the y-axis represents the frequency of weights. A vertical red line
indicates the discretization threshold corresponding to the 0.975" quantile (for better visualization).

Supplementary Fig2. A)Average correlation of the 4 input datasets B) Average of average corre-
lation matrices C) Average gene expression levels for each CM in cohorts profiled by RNA-sequencing

Supplementary Fig3. CMs scores across patient subgroups of the Tarn classification in UKPSSR
cohort

Supplementary Figd. Pearson’s correlation between average CMs expression and ESSDAI and
ESSPRI scores in A) PRECISESADS and B) ASSESS cohorts
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Supplementary Figh. Pearson’s correlation between average CMs expression and autoantibodies
levels in A) PRECISESADS and B) ASSESS cohorts

Supplementary Fig6. A)T-test between average CMs expression and treatment. q = corrected p-
value B)CMs expression scores across patients stratified by treatments received. AM = Antimalarials,
STD = Steroids, IS = Immunosupressors C)Significant diffrences observed in treated versus untreated
patients.

Supplementary Fig7. Correlation matrix in REPURPSS-1 cohort, sorted by CMs.

Supplementary Fig9. Boxplots of average expression of the CMs at baseline versus after treatment
splitting patients by treatment and placebo.

Supplementary Fig8. Boxplots of average expression of the CMs versus response status.
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Fig.1. A) Schematic summary of the work. pSD = primary Sjogren Disease B) Heatmap of the consensus
pairwise gene affinity computed by Similarity Network Fusion (SNF). Side annotations represent gene modules.
C) Heatmaps of Pearson’s correlation matrices of the four input datasets, with genes grouped by their consensus

gene modules.
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Fig. 2. A) For each module, the two most significantly-enriched pathways in the Chaussabel database[?]. B)
Most significantly-enriched pathways in the GO database[?] C) Average expression of modules in transcriptomes
of purified cells
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Fig.3. A) Significant Pearson’s correlations between the average expression of the CMs and cell types abun-
dances measured by flow cytometry. Scatter plots of average CMs expression and matching cellular frequencies.
B) Scatter plots illustrating the average expression of CM7 versus averages of cell cycle signatures C) Scatter
plot of the average expression of CM1 IFN-« and dosage of IFN-«
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Fig. 4. CMs scores across patient subgroups of A) the Soret classification B) the Trutschel classification and
ANOVA tests for each clusters. Average expression of the CM1 IFN-a, CM2 Erythrocytes, CM10 Platelets and
CM13 Neutrophils.2 CMs in the C) Soret classification and D) Trutschel classification. E) Correlation across
cluster centroids of the two stratification systems.
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Fig.5. A) Boxplots illustrating the evolution of the modules significantly differentially-expressed at baseline
(BL) versus Week 24 for treated patients B) Heatmap of average gene expression of the CMs. Patients are split
by their responder status according to the STAR clinical endpoint C) Avegage expression of CM8 and CM2 at
baseline in responders versus non-responders D) Dotplot of average expression of the CM8 and CM2 modules,
colored by response statuses.
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