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Abstract17

Fundus images allow for non-invasive assessment of the retinal vasculature whose features provide impor-18

tant information on health. Using a fully automated image processing pipeline, we extracted 17 different19

morphological vascular phenotypes, including median vessels diameter, diameter variability, main tempo-20

ral angles, vascular density, central retinal equivalents, the number of bifurcations, and tortuosity, from21

over 130k fundus images of close to 72k UK Biobank subjects. We performed Genome-Wide Association22

Studies of these phenotypes. From this, we estimated their heritabilities, ranging between 5 and 25%, and23

genetic cross-phenotype correlations, which mostly mirrored the corresponding phenotypic correlations,24

but tended to be slightly larger. Projecting our genetic association signals onto genes and pathways25

revealed remarkably low overlap suggesting largely decoupled mechanisms modulating the different phe-26

notypes. Our disease phenotype associations confirmed some previously known findings and revealed27

many novel connections. Notably, diameter variability, especially for the veins, seems to have new and28

interesting associations with diseases, including heart attack, pulmonary embolism, and age of death.29

Mendelian Randomization analysis suggests a causal influence of blood pressure and body mass index30

on retinal vessel morphology, among other results. We validated key findings in two independent smaller31
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cohorts. Our analyses provide evidence that large-scale analysis of image-derived vascular phenotypes32

has sufficient power for obtaining functional, as well as some initial causal insights into the processes33

modulating the retinal vasculature.34

Keywords: GWAS, retina, CFI, IDPs, vasculature, genes, vascular diseases, heritability, MR.35
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Nonstandard Abbreviations and Acronyms36

BMI: Body mass index37

CFI: Color fundus image38

CNN: Convolutional neural network39

DBP: Diastolic blood pressure40

DL: Deep learning41

DVT: Deep vein thrombosis42

ED: Eye diseases43

FDR: False discovery rate44

HDL: High-density lipoprotein45

HbA1c: Glycated hemoglobin46

IDP: Image-derived phenotype47

IVW: Inverse variance weighted48

LDL: Low-density lipoprotein49

LDSR: Linkage disequilibrium score regression50

LOO: Leave-one-out51

LWNET: Little W-Net52

MR: Mendelian Randomisation53

OD: Optic disc54

PAD: Peripheral artery disease55

PC: Principal component56

PE: Pulmonary embolism57

PR: Pulse rate58

PWASI: Pulse wave arterial stiffness index59

QC: Quality control60

RS: Rotterdam Study61

SBP: Systolic blood pressure62

SNP: Single nucleotide polymorphism63

UKBB: UK Biobank64
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Introduction65

The retina provides a unique opportunity for imaging human vasculature. In particular, retinal color fundus66

images (CFIs) allow for noninvasive in-vivo assessment of the vascular system of the superficial inner layer67

of the retina. Such images have been acquired in several cohorts and there is a large body of research on68

automatic extraction of vascular properties and their associations with medically relevant information.69

It is well established that vascular properties obtained from retinal imaging not only enable the monitoring70

of ocular diseases such as diabetic retinopathy, macular degeneration, and glaucoma, but can also serve71

as a powerful screening tool for early detection of systemic diseases, including stroke [1–4], coronary heart72

disease [5, 6], peripheral artery diseases [7], hypertension [3, 4, 8–18], atherosclerosis [2, 3, 19], and myocardial73

infarction [20, 21]. Retinal abnormalities have also been associated with common comorbidities such as74

diabetes [8, 22–24] and obesity [25].75

The processing of CFIs typically can be divided into three steps. First, the image is processed at the level76

of pixels to identify which of them represents blood vessels (possibly distinguishing between arteries and77

veins), or other structures, like the optic disc (OD). In the second step this pixel-wise information is used78

to annotate the retina in terms of objects, such as vessel segments represented as a list of points along their79

midline, as well as the vessel widths along these points. Finally, the information from these objects is used to80

measure different vascular properties such as vessel diameter or tortuosity, number of bifurcations, as well as81

certain angles between major vessels. Some simple vascular phenotypes, such as vascular density or fractal82

dimension, can also be computed directly from the pixel-wise information.83

While there have been several studies analysing retinal vascular phenotypes [26–31], most of them focused84

on measuring just one or few retinal phenotypes, often in small image sets, and some required expert input85

rather than being fully automated [32–34]. Furthermore, the software used for vascular phenotyping is86

usually not openly accessible, with one very recent exception [35]. Together this precludes the establishment87

of a comprehensive and reproducible characterisation of large retinal image collections.88

Recently, Deep Learning (DL) approaches have gained popularity in retinal image analysis. The first con-89

tribution is at the level of pixel-wise annotation, where state-of-the-art segmentation can be achieved with90

Convolutional Neural Network (CNN) architectures. For example, the little W-Net (LWNET) annotates pix-91

els as being part of an artery or vein, outperforming classical segmentation approaches [36]. Such networks92

can also be used to annotate pixels belonging to the OD [37], vessel bifurcations [38], or other structures.93

The second contribution of deep CNNs is to learn latent variables providing efficient low-dimensional rep-94

resentations of retinal images [39, 40]. Such self-supervised, image-based phenotyping can generate novel95

phenotypes complementing explicit retinal features. Finally, DL approaches have been used to directly96

predict health-relevant phenotypes from retinal images [41, 42].97

Beyond their value for assessing ocular or systemic health, retinal phenotypes have also been used in98

Genome-Wide Association Studies (GWAS) to identify genetic variants modulating these phenotypes. How-99
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ever, previous GWAS have focused on a limited set of vascular properties, such as vessel diameter [43–100

46], tortuosity [47, 48], vascular density, fractal dimension [49], and certain deep latent variables [39] (see101

Suppl. Text “Comparison with previous GWAS”).102

In this study, we present the first joint analysis of 17 retinal vascular phenotypes, including novel features like103

temporal angles, number of bifurcations, or diameter variability, which have not been analyzed previously at a104

large scale. Leveraging data from the UK Biobank (UKBB), and employing our open-source fully automated105

analysis platform, we provide retinal vascular phenotyping for close to 72k subjects, after quality control106

(QC). For all phenotypes, we performed GWAS, heritability estimates, gene and pathway analyses, as well107

as associations with a broad set of systemic and ocular diseases. This allowed us to compare cross-phenotype108

correlations, both at the phenotypic and genotypic levels, study in detail which genes affect individual or109

multiple phenotypes, and identify potential causal relationships with diseases (see Fig. 1 depicting the overall110

methodology of our discovery study). We reproduced the phenotypic correlation structure in two independent111

smaller cohorts: the Rotterdam Study (RS, N=8.1k) and OphtalmoLaus (N=2.2k) participants. Analysis of112

RS data also provided consistent estimates for phenotypes heritabilities and genetic correlations, as well as113

replication of a large number of our genome-wide significant hits for the vast majority of phenotypes.114
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Data: UK Biobank 173 814 CFIs (84 813 subjects) 

Images QC: 130 361 CFIs (71 494 subjects) 
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Figure 1: a) Overview of discovery pipeline. Subjects’ basic and medical information, genotypes, and CFIs
were collected from the UKBB. Applying the Image QC method of [49] removed ∼ 25% of all CFIs. Pixel-
wise vessel segmentation and classification were performed using LWNET [36]. ARIA [50] was used to
identify vessel segment objects. A DL network was used to measure the position of the OD [37]. Based on
this primary information our bespoke algorithms measured vascular image-derived phenotypes (IDPs). IDPs
(z-scored and corrected for covariates) were associated with diseases through linear and logistic regressions,
and Cox models. GWAS was performed on all IDPs after rank-based inverse normal transformation (rb-
INT) and correction for covariates, and the resulting summary statistics were used to estimate heritabilities
and genetic correlations, to identify relevant genes and pathways, and to study the genetic association and
potential causal relationships between the IDPs and some of the disease phenotypes. b) Overview of IDP
measuring process. Top: original CFI from DRIVE dataset. Middle: Pixel-wise segmented vasculature with
artery-vein classification using LWNET [36]. Bottom: Vessel segment objects in terms of centerlines and
diameters were identified using ARIA [50], providing the starting point for measuring vascular IDPs (see
Suppl. Text “Methods for phenotype extraction” for details).
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Results115

Automated pipeline for phenotyping of the retinal vasculature116

To analyze the retinal vasculature, we developed an automated pipeline building on our previous work on117

retinal vessel tortuosity [47]. This pipeline enabled us to segment and annotate the retinal vasculature and118

OD from 130 361 color fundus images (CFIs) of 71 494 subjects after Quality Control (QC). We used a119

previously established method for computing a QC score [49], and removed images in the lowest quartile of120

this score. Applying a range of quality control thresholds, we observed that phenotype heritabilities tended to121

be higher, while disease incident rates were lower when applying more stringent thresholds, possibly because122

some diseases impact the vascular density which is a good proxy for image quality (see Suppl. Text “Quality123

control threshold effect on results” for details).124

We selected 17 representative image-derived phenotypes (IDPs) from a broader set of 36 phenotypes to125

characterize each image, including vascular densities, median tortuosities, central retinal equivalents, median126

diameters, diameter variabilities, and main temporal angles for arteries and veins. We also calculated the127

ratios between artery and vein values for the first four phenotypes, and we estimated the total number of128

vessel bifurcations. These IDPs were chosen based on their associations with diseases and the reliability of129

measurement. The distributions of these main IDPs are presented in Suppl. Text “Distribution of retinal130

vascular IDPs”, and their specific sample sizes in Suppl. Table “Sample size per IDP”. The broader set of131

36 IDPs can be found in Suppl. Text “Methods for phenotype extraction”.132

Correlation structure and heritabilities of retinal vascular IDPs133

To explore the relationships between our main IDPs, we calculated pair-wise phenotypic Pearson correlations,134

r
(p)
ij (upper right triangle in Fig. 2a). We observed that the same IDPs measured for arteries and veins tended135

to cluster together, in particular for the temporal angles, tortuosities, and vascular densities. Vascular136

densities were highly correlated with each other and the number of bifurcations, the strongest correlation137

observed. They also correlated with venous, but not arterial, tortuosity and anti-correlated with median138

diameters. The temporal angles exhibited low correlations to the other phenotypes. Finally, most artery-139

vein ratios were highly correlated with their corresponding arterial, and highly anti-correlated with their140

corresponding venous measures.141

To assess the genetic relationships between the IDPs, we estimated pair-wise genetic correlations, r
(g)
ij , using142

cross-trait Linkage Disequilibrium Score Regression (LDSR) [51] (lower left triangle in Fig. 2a). On average,143

genetic correlations were slightly higher than phenotypic correlations (standardized mean difference across144

the 136 pairs (ij) is d = 0.34, t(135)=6.53, p = 6.2 × 10−10). The largest difference occurred between the145

temporal angles. Overall there was a strong correspondence between genetic and phenotypic correlations,146

corr(r(g), r(p)) = 0.86, permutation p < 1 × 10−4 (see Suppl. Text “Correlation structure and heritabilities147

of extended list of retinal vascular IDPs” for the corresponding analysis for our broad set of 36 IDPs and148
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Suppl. Data “Phenotypic and genetic correlations, discovery and replications” for the phenotypic and genetic149

correlation values of the main IDPs).150

To gain deeper insights into the genetic control of retinal vascular morphology, we estimated the single151

nucleotide polymorphism (SNP) heritability, h2, for each IDP (Fig. 2b), using LDSR [52]. Our analy-152

sis revealed varying levels of heritability across our IDPs. Arterial tortuosity exhibited the highest her-153

itability, h2=0.25±0.02, followed by the tortuosity ratio, h2=0.20±0.02, and venous diameter variability,154

h2=0.18±0.02. In contrast, the median diameter measures, particularly arterial median diameter, showed155

the lowest heritability, h2=0.05±0.01 (see Suppl. Text “Manhattan and Quantile-Quantile plots” for Man-156

hattan and Quantile-Quantile plots from the GWAS of each IDP).157

(a) (b)

Figure 2: a) Phenotypic (upper-right orange triangle) and genetic (lower-left green triangle) correlations
between retinal vascular phenotypes, clustered by absolute phenotypic correlation distance, 1− |corr|. The
17 phenotypes are (A: artery, V: vein): main temporal angles (‘A/V temporal angle’), median tortuosities and
their ratio (‘A/V tortuosity’ and ‘ratio tortuosity’), central retinal equivalents and their ratio (‘A/V central
retinal eq’ and ‘ratio central retinal eq’), diameter variabilities (‘A/V std diameter’), vascular densities and
their ratio (‘A/V vascular density’ and ‘ratio vascular density’), median diameters and their ratio (‘A/V
median diameter’ and ‘ratio median diameter’), and the number of bifurcations (‘bifurcations’). Phenotypes
were corrected for age, sex, eye geometry, batch effects, and ethnicity before phenotypic clustering and
before GWAS (see Methods). b) Corresponding phenotype SNP heritabilities, h2, and their standard error,
estimated using LDSR [52].
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Gene and pathway level analysis of retinal vascular IDPs158

To identify the genes modulating specific vascular IDPs, we employed our PascalX analysis tool [53, 54].159

This tool aggregates SNP-wise association signals within gene windows and generates gene scores.160

The number of genes associated with IDPs (diagonal of Fig. 3a) ranged from 1 gene for the arterial median161

diameter to 252 genes for arterial tortuosity. We observed the highest number of genes for tortuosities,162

venous diameter variability, and venous central retinal equivalent. The off-diagonal elements in Fig. 3a show163

the number of common genes for each pair of IDPs. Generally, more correlated IDPs tended to share more164

genes. However, even among highly similar IDPs, a significant portion of genes were phenotype-specific, and165

some IDPs shared only a few or no genes.166

While no single gene was shared among all IDPs, two genes, LINC00461 and CTC-498M16.4, were asso-167

ciated with 9 of the 17 IDPs (Fig. 3b). Other genes associated with multiple IDPs included SIX6, FLT1,168

FUT1, HERC2, and PDE6G. The complete list of significant genes associated with each IDP is available as169

Suppl. Data “Significant genes per IDP”, and “IDP Gene scores (UKBB)”.170

Furthermore, we conducted pathway analysis using PascalX to identify gene sets, or “pathways”, that171

exhibited higher association signals for each IDP GWAS than expected by chance. Although no single172

pathway was shared among all IDPs, some of the most frequent pathways included ‘Fetal retina fibroblast’,173

and ‘Abnormal retinal morphology’ (Suppl. Text “Pathway analyses”). The complete list of significant174

pathways per IDP is available as Suppl. Data “Significant pathways per IDP”.175

To further investigate pleiotropic genes, we employed PascalX cross-GWAS analysis [54], a method that176

examines coherent effects across the SNPs associated with two phenotypes within a gene window. This177

approach has more power than just intersecting the gene sets of two individual phenotypes and also allows178

for distinguishing between coherent and anti-coherent effects. However, even in this more sensitive analysis,179

no single gene was shared between all pairs of phenotypes. The most pleiotropic genes largely overlapped180

with those identified by simple gene-scoring, yet they tended to be shared among more IDPs (Fig. 3c and181

Fig. 3d). See Suppl. Data “PascalX IDP-IDP cross gene scores” for a comprehensive list of genes. Generally,182

IDP pairs with positive LDSR genetic correlation shared more coherent gene signals, while those with183

negative LDSR genetic correlation had predominantly anti-coherent signals (see Suppl. Text “LDSR genetic184

correlation against PascalX”).185
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(a) IDP individual gene analysis: shared genes (b) IDP individual gene analysis: top genes

(c) IDP pairs gene analysis: shared genes (d) IDP pairs gene analysis: top genes

Figure 3: a) Number of genes associated with the different IDPs, obtained using PascalX gene-scoring [54].
The diagonal shows the number of genes significantly associated with each IDP. The lower triangle shows
the number of genes in the intersection between pairs of IDPs. b) 30 genes most frequently associated with
the IDPs. Dot sizes are inversely proportional to p-values. c) Number of genes showing coherent (top right)
or anti-coherent (bottom left) signal between pairs of IDPs, obtained using PascalX cross-scoring [54]. d) 30
genes most frequently found in the cross-phenotype analysis. Dot color represents pleiotropy, i.e. the number
of phenotype pairs showing (anti-)coherent signal for a given gene. Dot sizes are inversely proportional to
p-values. 10
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Phenotypic association with diseases and risk factors186

To evaluate the clinical relevance of retinal vascular morphology, we examined the phenotypic associations187

between the retinal vascular IDPs and various eye-related diseases, vascular diseases, and their associated188

risk factors. We employed linear regression for continuous diseases variables (that correspond to risk factors)189

(Fig. 4a), logistic regression for binary disease states (Fig. 4b), and Cox models for diagnoses with age-of-190

onset (Fig. 4c). All IDPs were standardized (z-scored) and adjusted for potential confounders.191

Amongst the risk factors, diastolic blood pressure (DBP) and systolic blood pressure (SBP) displayed similar192

associations with most IDPs. Smoking pack-years exhibited the strongest positive association with venous193

diameter variability, β = 0.12, while the strongest negative correlations were observed between blood pressure194

(BP) and arterial-related IDPs, particularly the central retinal equivalent, vascular density, and median195

diameter β ∈ [-0.18, -0.13] (Fig. 4a).196

For binary disease states, hypertension was positively associated with venous tortuosity and less with arterial197

tortuosity, while negatively associated with central retinal artery equivalent, and the ratios of central retinal198

equivalents and vascular densities, among others. Eye diseases such as amblyopia were negatively associated199

with the number of bifurcations and venous vascular density, β ≈ -0.16. Others like presbyopia, hyperme-200

tropia, and myopia showed smaller effects, β ∈ [-0.08, 0.06], but were still statistically significant. Retinal201

diabetes was negatively associated with the vascular densities and the number of bifurcations, β ∈ [-0.30,202

-0.25], while atherosclerosis was positively associated with venous diameter variability, β = 0.34 (Fig. 4b).203

The Cox model analysis for age-of-onset phenotypes included severe eye- and cardiovascular diseases, dia-204

betes, and age at death. Both vascular densities displayed consistent associations with the age of diagnosis205

for all eye-related diseases. Diabetes age-at-diagnosis shared similar associations with our vascular IDPs206

as retinal diabetes, but was also associated with venous tortuosity and central retinal arterial equivalent,207

among others. Heart attack was associated with larger median arterial diameter and central retinal arte-208

rial equivalent, as well as diameter variability in both vessel types. Importantly, earlier deaths were most209

strongly associated with increased venous diameter variability and less strongly with increased central venous210

retinal equivalent, increased venous temporal angles, decreased vascular density, and fewer bifurcations. In211

general, venous diameter variability was associated with almost all diseases, including the only associations212

with pulmonary embolism and stroke (Fig. 4c). For a complete table of the standardized effect sizes, hazard213

ratios and p-values, see Suppl. Data “IDPs phenotypic association with diseases”.214

While the vascular densities and the number of bifurcations were highly inter-correlated, their associations215

with diseases sometimes differed. For instance, SBP and hypertension were associated with arterial vascular216

density and the number of bifurcations but not with venous vascular density. An equivalent analysis of 17217

leading principal components (PCs) of our IDPs revealed no novel or stronger disease associations compared218

to the raw IDPs (see Suppl. Text “Principal Component Analysis”).219
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(a)

(b)

(c)

Figure 4: Phenotypic association of IDPs with risk factors and diseases. The x-axis shows IDPs and the
y-axis shows risk factors and diseases. The numbers in parentheses correspond to the number of subjects
with this information for which we were able to measure at least one of the 17 IDPs, for continuous diseases.
For binary disease states, it represents the number of subjects who were cases and had data for at least one
of the 17 IDPs. Linear (a) and logistic (b) regressions were used for continuous and binary disease states,
respectively. For age-of-death and other severe diseases with the age-of-onset information, Cox proportional
hazards regression was performed (c). In all models, phenotypes were corrected for age, sex, eye geometry,
batch effects, and ethnicity. The color indicates standardized effect sizes for linear and logistic regressions
or hazard ratios for Cox models. Asterisks indicate the level of statistical significance (∗ : p < 0.05/Ntests,
∗∗ : p < 0.001/Ntests, where Ntests = NIDPs × Ntraits, and Ntraits is the number of diseases or risk traits
considered in each panel). Labels: ‘PR’: Pulse rate, ‘PWASI’: Pulse wave arterial stiffness index, ‘HDL’:
High-density lipoprotein, ‘LDL’: Low-density lipoprotein, ‘HbA1c’: Glycated hemoglobin, ‘Alcohol’: Alcohol
intake frequency, ‘Smoking’: pack-years, ‘BMI’: Body mass index, ‘Diabetes-eye’: Diabetes related to the
eye, ‘DVT’: Deep vein thrombosis, ‘Other ED’: all types of severe eye diseases not included explicitly, ‘PE’:
Pulmonary embolism.
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Genetic associations with diseases and causality analysis220

To investigate the extent of common genetic architectures between the vascular IDPs and risk factors, we221

first used LDSR to estimate their genetic cross-correlations. Notably, we observed the strongest negative222

correlations (≈ −0.30) between BP measures and the ratios of the central retinal equivalents, and vascular223

densities. Body mass index (BMI) was correlated positively with median vein diameter (≈ 0.15), and its224

variation (≈ 0.18), and negatively with arterial vascular density and the number of bifurcations (Fig. 5a).225

HbA1c was also negatively correlated with the number of bifurcations, while HDL was negatively correlated226

with venous diameter variability, but only with marginal significance. For binary disease states, we found227

weaker associations; however, hypertension exhibited associations similar to those of blood pressure. For228

further details on binary disease states, see Suppl. Text “Genetics associations between vascular IDPs and229

binary diseases”.230

To compare the phenotypic and genetic associations between vascular IDPs and risk factors, we plotted the231

effect sizes of the phenotypic linear regressions against genetic correlations for each IDP/risk factor pair232

(Fig. 5b). The slopes of the best-fitting lines through the corresponding points were positive for all risk233

factors, except for LDL cholesterol.234

A strong genetic association between two phenotypes does not imply the existence of a causal link. To235

systematically assess potential causal relationships between vascular IDPs and risk factors, we performed236

bidirectional two-sample Mendelian Randomisation (MR) analyses [55, 56]. Causal estimates were derived237

from the inverse variance weighted method using the TwoSampleMR R package [57, 58]. We used false238

discovery rate (FDR) to correct for multiple testing and we also performed sensitivity analyses that confirmed239

the robustness of our results (see Methods and Suppl. Data “MR risk factors (IVW)” for complete results).240

Using risk factors as exposures, we observed evidence for causal effects on most of the IDPs, even after241

adjusting for multiple testing (see Fig. 5c). Notably, we found strong evidence for negative effects of DBP242

and SBP on many different vascular IDPs, including arterial (and ratio) central retinal equivalent, arterial243

(and ratio) median diameter, vascular density and bifurcations. Also, SBP had a positive effect on arterial244

and venous tortuosity. BMI had a positive effect on venous (and arterial) diameter variability and venous245

central retinal equivalent, while it showed a negative effect on ratio central equivalent, ratio vascular density246

and bifurcations. Furthermore, alcohol intake had a positive effect on arterial (but not venous) diameter247

variability, while HbA1c levels had a weak negative effect on arterial vascular density, bifurcations and arterial248

diameter variability. We also observed other potential causal effects, but only with marginal significance249

(puncorrected < 0.05). For example, PR had a positive effect on venous diameter variability and a negative250

effect on arterial temporal angle, while LDL levels had a positive effect on arterial tortuosity and ratio central251

equivalent.252

In contrast, using IDPs as exposures, only the causal effect of ratio central equivalent on BP (SBP and DPB)253

survived FDR correction. We also observed potential causal effects on risk factors for many other vascular254
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traits, but only with marginal significance (puncorrected < 0.05) (see Fig. 5d). For example, we identified255

arterial tortuosity and venous diameter variability as positive causal factors for BP, while the ratio of central256

equivalent had a negative effect on BP. Venous diameter variability (and venous median diameter) also had257

a negative effect on HDL levels, while arterial median diameter had a positive effect on PR. Significant258

causal effects were also found between vascular IDPs and binary disease states; see Suppl. Text “Mendelian259

Randomization analysis between vascular IDPs and binary diseases”.260
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Figure 5: a) Genetic correlation between IDPs and risk factors, computed using LDSR [52]. The color
indicates the genetic correlation coefficient and the asterisks indicate the level of statistical significance
(∗ : p < 0.05/Ntest, ∗∗ : p < 0.001/Ntest, being Ntest = NIDPs ×NLinearDiseases). b) Correlation between
phenotypic and genetic correlations of IDPs with risk factors. c) Causal effect estimates with risk factors
as exposures and IDPs as outcomes. d) Causal effect estimates with IDPs as exposures and risk factors
as outcomes. The color indicates the causal effect estimates based on the inverse variance-weighted MR
method. The level of statistical significance is indicated with a single asterisk for nominal significance without
correction for multiple testing (∗ : puncorrected < 0.05) and two asterisks for a FDR (∗∗ : pFDR < 0.05).

In order to identify genes that were jointly associated with IDPs and risk factors, we first computed simple261

intersections between the corresponding gene sets of such pairs (Fig. 6a). This revealed some sizable overlaps,262

in particular for vein diameter variability and central equivalent with BP measures, triglycerides, HbA1c,263
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and BMI. Applying PascalX cross-GWAS analysis [54], as previously for the pairs of two vascular IDPs,264

we were able to identify many new candidates for pleiotropic genes (Fig. 6b and 6c). We observed that265

the sets of coherent genes (Fig. 6b) tended to be largest for phenotype pairs whose sets of associated genes266

already had a sizable overlap, while we found large sets of anti-coherent genes (Fig. 6c) for some phenotype267

pairs whose associated genes had no or only little overlap, notably for DBP and the ratio of the central268

retinal equivalents, the ratio of the vascular densities and the median arterial diameter and its variability.269

Moreover, the ratio of central retinal equivalents shared multiple anti-coherent genes with BP and BMI270

(see Suppl. Data “PascalX IDP-disease cross gene scores” for a comprehensive list of genes). For a similar271

analysis for binary disease states, we found weaker associations; however, hypertension exhibited associations272

similar to those of blood pressure. For further details on binary disease states, see Suppl. Text “Genetics273

associations between vascular IDPs and binary diseases”.274

Shared pathways between the IDPs and diseases can be found in the Suppl. Text “Pathway analyses between275

vascular IDPs and diseases”.276
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(a)

(b)

(c)

Figure 6: a) Gene-scoring plain intersection showing genes in common between IDPs and risk factors. Each
cell shows the number of intersected genes in phenotype pairs. b) and c) Cross-phenotype coherence analysis
showing the number of coherent b) and anti-coherent c) genes between phenotype pairs. Summary statistics
for risk factors were obtained from http://www.nealelab.is/uk-biobank, and gene-level analyses were
computed using PascalX [54].

Replication analysis277

We had access to CFIs from two independent smaller cohorts, namely the Rotterdam Study (RS, N=8 142278

participants) and OphtalmoLaus (N=2 276 participants), from which we computed our 17 IDPs. While we279

used an identical analysis pipeline for OphtalmoLaus, a novel annotation software was developed for the RS280
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images, adapted to their specifics, notably including a dedicated and internally validated vessel segmentation281

tool (“VascX”, manuscript in preparation). Phenotypic correlations r
(p)
ij between IDPs obtained in the two282

replication cohorts were globally concordant with those from the UKBB data (ρ=0.86, p=7.5 × 10−42 for283

OphtalmoLaus and ρ=0.69, p=1.8× 10−20 for RS, see Fig. 7a). Notably, we replicated the high phenotypic284

correlation between vascular densities and the number of bifurcations and the low correlation between the285

temporal angles and the other IDPs. The main difference was that for RS data we observed a positive286

correlation between the variability in arterial diameter and vascular densities, while it was negative for287

UKBB and OphtalmoLaus (see Suppl. Text “IDPs phenotypic replication” for details), which may be due288

to the different vessel segmentation tool used for RS images. We also observed many consistent associations289

between IDPs and disease traits in the RS (when available, see Suppl. Text “IDPs phenotypic replication”290

for details).291

Because of its larger sample size we used exclusively RS data to attempt replication of our genetic associations292

results in the UKBB. Since RS consists of four sub-studies with different sample sizes (RS-I: 2 391, RS-II: 877293

RS-III: 2 811, and RS-IV: 2 063 participants) GWAS were performed independently for each of them, and294

then meta-analysed (see Suppl. Text “IDPs genetic replication” for the corresponding Manhattan and QQ-295

plots). Applying LDSR to estimate IDP SNP heritabilities and genetic cross-trait correlations, we observed296

overall consistency with the estimates from the UKBB data (ρ=0.74, p=0.001 for the former and ρ=0.45,297

p=5.63 × 10−12 for the latter, see Fig. 7b and c). Notably, in RS arterial tortuosity (h2=0.22±0.07), the298

tortuosity ratio (h2=0.20±0.06) and variability in venous diameter (h2=0.18±0.06) also had the highest299

heritability estimates. Plotting the effect sizes for significant SNPs in the UKBB against those of the300

RS (Fig. 7d) revealed highly significant correlations and concordance in direction for the vast majority301

of IDPs. We then sought to replicate individual genetic associations. To this end, we applied the well-302

established Benjamini-Hochberg procedure [59]. With a fixed FDR of 0.05, we replicated 86 SNPs out of303

195 across the four IDPs shown in Fig. 7e, and 232 SNPs out of 566 were replicated across the 17 main IDPs304

(see Suppl. Text “IDPs genetic replication”). The complete figure with all the 17 IDPs and the RS SNP305

heritabilities can be found in Suppl. Text “IDPs genetic replication”.306

Finally, to identify the genes modulating specific vascular IDPs in the replication cohort (RS), we employed307

our PascalX analysis tool [53, 54]. We applied the Benjamini-Hochberg procedure [59] for the genes. With a308

fixed FDR of 0.05, we replicated 93 genes out of 310 across the four IDPs shown in Fig. 7f. The complete set309

of RS gene scores can be found in the Suppl. Data “IDP Gene scores (RS)” and a table with genes associated310

with each RS IDP can be found in Suppl. Text “IDPs genetic replication”. For a more detailed explanation311

of the SNPs and genes replication using the Bonferroni threshold as discovery and the Benjamini-Hochberg312

procedure as replication, see Suppl. Data “SNPs replication: UKBB replicated in RS, and RS replicated in313

UKBB”, and “Genes replication: UKBB replicated in RS, and RS replicated in UKBB”.314
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(a) (b) (c)

(d)

(e)

(f)

Figure 7: a) Scatter plot of the phenotypic correlations between our 17 IDPs in the UKBB and in the
replication cohorts, OphtalmoLaus (left) and RS (right). IDPs were corrected for age, sex, eye geometry,
and ethnicity (see Methods). b) Correlation of SNP heritabilities, using LDSR, between our 17 IDPs in the
discovery (UKBB) and the replication cohort (RS). c) Scatter plot of the genetic correlations, using LDSR,
between our 17 IDPs in the discovery (UKBB) and the replication cohort (RS). Weighted-least square
regression was used to determine trendline and the significance of the association. To distinguish between
the different IDPs, the following color and shape legend was utilized: ‘S’ denoted tortuosity, ‘*’ for standard
deviations, ‘◁’ for temporal angles, the ‘≺’ for bifurcations, and ‘□’ for vascular density. While the red color
is used for arteries, blue for veins, and black for no specific vessel type. d) Correlation of effect sizes at the
SNP level in the discovery (UKBB) and the replication cohort (RS). e) Benjamini-Hochberg procedure on
discovery lead SNPs from the UKBB using the RS. FDR = 0.05 in red, FDR = 0.5 in orange, and observed
= expected line in black. The label “missing” indicates that these SNPs were not available in the replication
cohort. f) Benjamini-Hochberg procedure on genes discovered in the UKBB using the RS. The color code
is the same as in the previous subfigure. The complete figures can be found in Suppl. Text “IDPs genetic
replication”.
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Discussion315

In this study, we established an automated analysis pipeline to extract 17 retinal vascular phenotypes from316

CFIs and applied it to over 130k CFIs of close to 72k UKBB subjects. While some of these phenotypes had317

previously been studied individually, our work is the first to provide a common reference. Our phenotyping318

procedure, automated and open access, enabled us to study jointly a large panel of retinal vascular pheno-319

types, some of which (temporal angles, central equivalents, number of bifurcations) were assessed for the first320

time in a large cohort. We provided a comparison of the phenotypic with genotypic correlation structures321

of these IDPs. We estimated their heritabilities, and elucidated associated genes and pathways, allowing us322

to identify common and disjoint genetic architectures. We studied associations of our IDPs with a spectrum323

of diseases and risk factors providing evidence of their complementarity for indicating specific disease risks.324

For validation, we reproduced the phenotypic correlation structure in two independent cohorts, the RS and325

OpthalmoLaus, with 8.1k and 2.2k participants respectively, and validated numerous GWAS results in the326

RS. Importantly, the RS analysis pipeline was coded independently (to adapt to the specifics of their CFIs),327

such that these successful replication results provide strong evidence that our phenotyping is robust and not328

driven by cohort specific effects.329

The phenotypic correlations revealed distinct clusters of vascular IDPs. One cluster includes vascular arterial330

and venous density, previously linked to fractal dimension [49], and the number of bifurcations. Our results,331

both the discovery and replications, suggest that the number of bifurcations, which is challenging to identify,332

can be reliably estimated using vascular densities. Interestingly, diameter variabilities showed stronger333

correlations with central retinal equivalents (of the same vessel type) than with the median diameters,334

suggesting that larger vessels dominate diameter variability. Indeed, median diameters (especially for veins)335

are confounded by vascular density, which is probably due to CFIs with lower vascular density exhibiting336

less blood vessels of small caliber. The latter may be due to degeneration of the vasculature, but also to337

poorer image quality, in particular blurriness, which is impacted by corneal opacity. More work is needed to338

disentangle the different distributions to establish robust diameter measures for blood vessels not proximal339

to the OD. Finally, the temporal angles exhibited little correlation with other vascular IDPs, both in the340

discovery and replication cohorts, indicating that they may be influenced by non-vascular factors, such as341

eye anatomy.342

The genetic correlation between IDPs largely mirrored their phenotypic correlation, supporting Cheverud’s343

conjecture which states that phenotypic correlation can be used as a proxy for genetic correlation [60].344

However, in our study genetic correlations were slightly larger on average, indicating potential differential345

effects of environmental factors on correlated IDPs.346

We observed significant variation in heritability estimates among different vascular IDPs. Tortuosity and347

vascular density showed comparatively high heritability, consistent with some previous findings [47, 49]. A348

recent study [48] estimated heritability of retinal arteriolar tortuosity at 0.51 using UKBB data, substan-349
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tially higher than our 0.25 estimate. Our point estimate in the RS is 0.22±0.07, which is consistent with350

our estimate from UKBB data. We note that here we used median tortuosity across all vessel segments351

independent of their caliber and length, even though tortuosity may vary as a function of blood vessel length352

and diameter, calling for more refined or stratified measures.353

Notably, venous diameter variability also exhibited high heritability, which may be partially attributed to354

vascular beading, severe forms of which are known to be inherited [61]. Interestingly, the heritability of355

temporal angles was relatively low, likely reflecting sensitivity to environmental factors, as well as measure-356

ment noise and methodological variations, such as variability in the position of the OD across images, and357

variation due to refraction that may be insufficiently corrected by spherical and cylindrical power as our358

covariates. Future work could use heritability as a guide for developing more robust measures of these angles359

both in terms of the methodology for extracting them (see Suppl. Text “Methods for phenotype extraction”360

for our procedure) and implementing proper corrections for potential confounders. Finally, median vessel361

diameters obtained the smallest heritabilities, consistent with their known dependence on the environment,362

such as vasoconstriction induced by stress, and diseases, as well as the aforementioned confounding by image363

quality and age-dependent reduction in detectable small blood vessels.364

Gene analysis of individual IDPs replicated some previously identified gene associations with explicit vascular365

phenotypes, namely tortuosity [46–48], fractal dimension, vascular density [49], and vessel width [48], as well366

as DL vascular phenotypes representing the latent space of an autoencoder [39] (see Suppl. Text “Comparison367

with previous GWAS” for complete list). Diameter variability and central retinal equivalent, particularly for368

veins, received numerous gene associations, providing evidence for the genetic complexity of these phenotypes.369

Finally, the ratios of vascular measures, combining arterial and venous components, showed associations370

with genes not found in individual measures, indicating sensitivity to vessel-type specific effects. Generally,371

phenotypes with higher heritability tended to have more associated genes, with some exceptions like arterial372

diameter variability.373

No single gene was significantly associated with all the vascular IDPs. The most frequently observed gene374

was LINC00461, also known as visual cortex-expressed gene (VISC), an evolutionarily conserved long non-375

coding RNA that produces several alternatively spliced transcripts [62]. Other frequently observed genes are376

related to eye diseases (PDE6G has been linked to Retinitis Pigmentosa, and SIX6 to glaucoma, myopia,377

and retinal degeneration) or vascular processes (FLT1 linked to hypertension and heart disease). Also,378

HERC2 and OCA2, two neighboring genes related to pigmentation, were linked to multiple IDPs. OCA2 is379

involved in the production of melanosomes, and therefore directly contributes to the formation of pigments,380

while mutations in HERC2 have been found to modulate OCA2 expression [63]. We speculate that less381

eye pigmentation leads to reduced protection from damaging light, which could cause global changes on the382

retinal surface, including vascular morphology.383

Our study of phenotypic associations between vascular IDPs and disease-relevant phenotypes confirmed384

some previously known associations, such as the link between vessel diameter and hypertension, likely due385
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to alterations in vascular resistance and blood flow [3, 4, 64]. Interestingly our MR analysis provides sup-386

port for a low ratio of the central retinal equivalent being causal for high BP. This is consistent with a387

positive (but not significant) phenotypic and genetic correlation between central retinal venular equivalent388

and hypertension/BP. We also observed significant associations between IDPs capturing arterial vessel cal-389

iber and heart attack, consistent with previous findings [18, 43–45, 65, 66], and the previously observed390

link between tortuosity and cardiovascular risk factors [10, 67]. For a more complete discussion refer to391

Suppl. Text “Replication of previously identified associations of retinal vascular phenotypes with diseases”.392

Additionally, we found diameter variability in both vessel types to be positively associated with heart attack,393

possibly due to the formation of plaques that enlarge the vessel while reducing lumen diameter and negatively394

impacting blood flow. While atherosclerosis has a similar association profile across the vascular phenotypes,395

interestingly the association with venous diameter variability was the strongest and the only one passing396

statistical significance. This signal may be driven by artery-vein crossings and calls for further investigation.397

Type-2 diabetes is known to affect the microvascular circulation in the retina resulting in a range of structural398

changes unique to this tissue, such as neovascularization [68], which can affect vascular density [49] and399

arteriolar tortuosity [69], among others. We note that the association profile of our IDPs with HbA1c,400

which is used to diagnose type-2 diabetes [70], is similar, but typically a bit weaker in terms of effect size and401

significance than the latter, suggesting that our Cox model taking into account the age of onset of the disease402

endpoint has more power. Given that diabetes is a known risk factor for cardiovascular disease, including403

angina, this could explain why many associations between type-2 diabetes and IDPs related to vessel caliber404

are also observed for angina and heart attack.405

Age at death is the only trait, besides myopia, that is associated with the venous temporal angle. Moreover,406

age at death also shares some of the associations of specific diseases with our IDPs, such as a negative407

association with the number of bifurcations (in line with the results for hypertension and type-2 diabetes408

reported above), and positive associations with several vein-related phenotypes besides the temporal angle,409

including the diameter variability, the median diameter (in line with the results for stroke, type-2 diabetes,410

heart attack and atherosclerosis reported above). It seems plausible that the reduced lifespan for these411

common diseases explains the observed associations.412

MR analysis allowed assessment of potential causal directions for the links observed in the correlation analy-413

sis. Overall the effects of CVD risk factors on our vascular IDPs tend to be stronger and more significant than414

the reverse, underlining the usefulness of IDPs for early diagnosis of CVD. Consistent with previous findings,415

we found that individuals with genetically elevated BP tend to have lower retinal vascular density [49]. In416

addition, we found several other IDPs being affected, suggesting that vascular remodeling can be caused by417

elevated BP. Also, elevated BMI may cause higher variability in venous and arterial diameter, consistent418

with the finding that obesity may decrease venous return of blood from the lower extremities thereby in-419

creasing the risk of chronic venous insufficiency [71]. Amongst the strongest potential reverse causal effects420

is the aforementioned decrease in BP due to a higher ratio of the central retinal equivalent. Additionally, we421
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found that higher arterial tortuosity tends to increase BP, confirming previous findings [48]. Interestingly, we422

also found that vein diameter variability may also cause higher BP, which could be mediated by anatomical423

alterations such as venous beading. However, those findings were not significant after correcting for multiple424

testing. The recent paper by Jiang et al. [48] also reported a causal effect of arterial tortuosity on Coronary425

Heart Disease (CHD). We were able to confirm this causal link of arterial tortuosity on CHD, while no other426

retinal trait was found to be causal (see Suppl. Text “Mendelian Randomization analysis between vascular427

IDPs and binary diseases”).428

In the gene analysis, we observed that the pairs of diseases and IDPs with the highest positive correlations429

tended to have a greater number of shared genes, both in the intersection and coherence analyses (see430

Suppl. Text “LDSR genetic correlation against PascalX”). It is worth noting that this was not limited to431

pairs with high-significance values. Besides, we again observed that the patterns differed in the analysis432

of coherent and anti-coherent genes. For example, vein diameter variability and BMI had multiple genes433

associated coherently, implying that the genes modulating them acted in the same direction. Conversely,434

between BMI and the central equivalent ratio, the majority of genetic effects acted in the opposite direction.435

This is consistent with the previous finding that vein diameter variability and ratio central equivalent shared436

many anti-coherent genes.437

While our study pushes the boundaries of analysing retinal vascular phenotypes, it has several important438

limitations: First, limiting our study to data from the UKBB, RS, and OphtalmoLaus makes our findings439

specific to a population of mostly European ancestry. Second, there are some other potentially relevant440

vascular IDPs that we did not analyze, including branching angles, artery-vein crossings, and neovascular-441

ization. Third, our GWAS did not include the analysis of sex chromosomes or rare variants. The exclusion442

of these factors may have limited the scope of the study and prevented the identification of potential associ-443

ations between genetic variations and the development of certain diseases or phenotypes. Finally, summary444

statistics used for the genetic analysis of binary disease states were not obtained using GWAS with logistic445

regression, but linear regression, which can have an effect a sensitivity effect on their results (see methods:446

Genetic association with diseases).447

In summary, this study establishes a common framework for studying multiple vascular phenotypes of the448

retina. The explicit characterisation of retinal vasculatures will be useful both for clinical research further449

exploring their usefulness as biomarkers for systemic diseases, and fundamental research, where we provide450

an important alternative reference to implicit characterizations of the retina, such as the recent “Foundation451

model” for retinal images [40]. Our analysis of genes and pathways unveiled a strikingly limited intersection,452

indicating that the mechanisms governing these phenotypes are largely independent. Our findings regarding453

the association between disease phenotypes affirmed some established knowledge while uncovering numerous454

novel connections. Specifically, we observed a plethora of intriguing new links between diameter variability,455

particularly in veins, and various disease phenotypes such as age of mortality, pulmonary embolism, and456

myocardial infarction. While more work is needed to further validate and extend our findings, our analyses457
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provide evidence that we start to have sufficient power for obtaining functional, as well as some initial causal458

insights into the genetic and disease-related processes modulating the retinal vasculature.459

Methods460

UK Biobank data461

The UKBB is a population-based cohort of approximately 488k subjects with rich, longitudinal phenotypic462

data including a complete medical history, and a median 10-year follow-up [72, 73]. Standard retinal 45° CFIs463

were captured using a Topcon Triton 3D OCT 1000. 173 814 images from 84 813 individuals, were analyzed.464

Genotyping was performed on Axiom arrays for a total of 805 426 markers, from which approximately465

96 million genotypes were imputed. We used the subset of 15 599 830 SNPs that had been assigned a466

rsID. Baseline and disease information about the subjects whose images were analyzed can be found in467

Suppl. Text “Baseline characteristics”.468

Image segmentation and quality control469

Raw CFIs were segmented into pixel-wise segmentations of arteries and veins using the DL model LWNET [36],470

which had been trained on the publicly available DRIVE dataset. To detect the OD, a random set of 100471

CFIs of varying quality from the UKBB were first annotated, and the resulting ground truths were then472

used to retrain a standard U-Net previously trained to detect the OD in various public datasets [37]. Last,473

branch points of vessels and vessel-segment-wise and centerlines were extracted using skeletonization, and474

diameters were extracted using the distance transform, both provided in ARIA [50].475

A published QC method [49] to assess image quality in the UKBB was used, and the 75% highest-quality476

CFIs according to this method were retained for further analysis. In this method, the image quality of 1 000477

CFIs was quantified by professional graders, and a CNN was then trained to imitate the graders’ quality478

assessment. A significant negative correlation between image quality and age was observed, r=-0.21, but479

was not corrected. For more information refer to Suppl. Text “Image segmentation”. Additionally, to see480

how the threshold on the QC can affect the results refer to Suppl. Text “Quality control threshold effect on481

results”.482

Phenotyping483

Retinal vessel morphology was broadly phenotyped, drawing on a set of known relevant ophthalmological484

phenotypes, including a few that were previously undescribed, such as diameter variability. Due to the lack485

of consensus definitions and methods for their measurements, their implementation can vary. Therefore, we486

implemented different definitions and methods for most phenotypes, see Suppl. Text “Methods for phenotype487

extraction” and Suppl. Text “Correlation structure and heritability of extended list of retinal vascular IDPs”.488

In this study, we focused on 17 representative phenotypes with significant heritability and relevant disease489
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associations. These phenotypes were selected for independence, removing highly redundant phenotypes with490

similar definitions, but keeping some highly correlated phenotypes when they resulted from significantly491

different definitions. The mean between left and right eye measurements was taken whenever measurements492

from both eyes passed quality control, otherwise, the single eye measurement was used. Measurements493

from only the first measured time point were used whenever measurements from multiple time points were494

present. Cohen’s d, r(g)−r(p)√
SD(g)2+SD(p)2

2

, was used to quantify the mean difference between genetic and phenotypic495

correlations.496

We used two validation procedures: (1) visual inspection of random images in the UKBB to identify and497

refine potential confounders affecting certain phenotypes, and (2) the use of the DRIVE dataset as a proxy498

to assess performance in other datasets with similar characteristics, using ground truth on it for the number499

of bifurcations and temporal angles (Suppl. Text “Validation of IDPs”).500

Correction for covariates501

IDPs were corrected for sex, age, age-squared, sex-by-age, sex-by-age-squared, spherical power, spherical502

power-squared, cylindrical power, cylindrical power-squared, instance, assessment center, genotype mea-503

surement batch, and genomic PCs 1-20. Their associations with each phenotype have been visualized in504

Suppl. Text “Covariate effects”. For GWAS, raw phenotypes were transformed with the rank-based inverse505

normal transformation (rb-INT) before correction.506

Disease association507

The list of diseases analyzed includes vascular and eye-related diseases, risk factors, mortality, and other508

conditions previously found to be associated with the retina vascular system. The disease data were collected509

from the UKBB, and the official datafield identifier corresponding to each disease can be found in the510

Suppl. Text “Diseases list UKBB”, and in Suppl. Data “Diseases information”.511

Different regression models were employed based on the nature of the disease traits. For risk factors,512

ordinary least squares (OLS) linear regression was used to estimate standardized effects using the ‘statsmod-513

els.formula.api’ library in Python 3.8.13. For binary and categorical disease phenotypes, logistic regression514

was applied, using the logit function from the ‘statsmodels.formula.api’ library.515

Prior to conducting the regression analyses, a pre-processing step was performed to address potential con-516

founding effects. Covariates were regressed out of retinal IDPs and the obtained residuals were then used as517

regressors in the linear/logistic regression analyses. For Cox models, the covariates were added again to the518

models to adjust for potential non-linear effects.519

The regression models were fitted using the adjusted independent variables, the estimates of regression520

coefficients (betas), and their corresponding standard deviation (std), or odds ratios were obtained. To521

determine the significance of regression coefficients, p-values were computed and compared to predefined522
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alpha thresholds (0.05 and 0.001), divided by the total number of tests conducted (i.e., the number of523

independent variables multiplied by the number of diseases analyzed).524

In cases where time-to-event data was available and accurate diagnosis was feasible, multivariate Cox pro-525

portional hazards regression was utilized. This approach allowed us to estimate hazard ratios for diseases526

with time-to-event outcomes and reliable diagnoses. ‘coxph’ from the R packages ‘survival’ and ‘survminer’527

were used with default parameters.528

Genome-wide analyses529

GWAS for UKBB data was performed using BGENIE [73]. SNP-wise heritabilities and genetic correlations530

between IDPs were derived using LDSR [52]. Gene and pathway scores were computed using PascalX [54, 74].531

Both protein-coding genes and lincRNAs were scored using the novel, approximate “saddle” method, taking532

into account all SNPs within a 50kb window around each gene. All pathways available in MSigDB v7.2 were533

scored using PascalX’ ranking mode, fusing and rescoring any co-occurring genes less than 100kb apart.534

PascalX requires LD structure to accurately compute gene scores, which in our analyses was provided with535

the UK10K (hg19) reference panel. Gene-level cross-GWAS coherence test between IDP pairs and between536

IDPs and diseases or risk factors was computed using the PascalX cross-scoring zsum method, testing for537

both coherence and anti-coherence of GWAS signals. Variants with a minor allele frequency of at least 0.001538

were considered. Correction for bias due to sample overlap was done using the intercept from pairwise LDSR539

genetic correlation. The significance threshold was set at 0.05 divided by the number of tested genes. Top540

hits GWAS summary statistics can be found in Suppl. Data “GWAS top hits (UKBB) before pruning”.541

Genetic association with diseases542

For the genetic correlation between IDPs and diseases, the summary statistics of the diseases in LDSR format543

were obtained from the Neale lab (nealelab-ldsc-sumstat-files). LDSR was computed for the diseases and the544

IDPs. We limited ourselves to diseases that were categorized as ‘High confidence’ by the Neale lab (column545

‘Neale ldsr’ in Suppl. Data “Diseases information”).546

Regarding the genes shared between IDPs and diseases, we used the GWAS summary statistics for diseases547

(nealelab-sumstat-files). However, in this case, we applied some additional filters deleting rsid values that548

did not start with ‘rs’, p-values that were missing, and low confidence variants (Suppl. Data “Significant549

genes per diseases”).550

Binary disease states were included in the genetic analysis, however, their results require additional caution,551

since the GWAS summary statistics from the Neale lab used linear regression for all the disease phenotypes,552

which is not ideal for non-continuous response variables. It should be noted that the covariates used for the553

GWAS analysis of our IDPs and those used for the risk factors/diseases are almost, but not exactly, the554

same (age, sex, age-squared, age-by-sex, age-by-sex-squared, and first 20 PCs for risk factors/diseases).555
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Mendelian Randomisation556

To perform the bidirectional two-sample MR analyses we used the TwoSamplesMR package in R [57]. We557

first considered independent SNPs significantly (p < 5 × 10−8) associated with the exposure as genetic558

instruments, pruning SNPs with r2 > 0.001 to a lead SNP according to LD estimates from the UK10K559

reference panel [75]. In cases where the number of instruments was below 10, we relaxed the selection560

threshold for instruments to p < 10−6. In general, the number of instruments tended to be lower when using561

IDPs, rather than disease traits as exposures, which may be due, at least partially, to lower sample sizes. For562

this reason, when using IDPs as exposures we relaxed the selection threshold for instruments to p < 10−6.563

To assess instrument strength, we computed the F-statistic from the regression of the exposure on the564

instruments [76] defined as F =
R2 × (N − k − 1)

(1−R2)× k
, where R2 is the explained variance of the exposure by565

the instruments, N is the sample size of the GWAS for the exposure, and k is the number of instruments.566

For all the forward and reverse MR pairs, the F-statistics were > 50 suggesting that the selected SNPs were567

suitable instruments.568

Causal estimates were based on the inverse variance-weighted method (IVW) [58]. In particular, we used a569

fixed-effect model when having three or less instruments, and otherwise a random-effects model. To comple-570

ment and enhance the reliability of the results, we applied additional methods, namely MR-Egger, weighted571

median, and weighted mode [77, 78] MR. For all exposure-outcome pairs, the estimated causal effects were572

consistent in the direction across the four methods whenever significant. Differences in significance levels573

are likely because the power of these additional methods is smaller than that of the IVW method [79]574

(Suppl. Data “MR risk factors (all methods)”).575

Notably, MR-Egger intercepts of most of the associations were not significantly different from zero, suggesting576

that no significant pleiotropy was detected (Suppl. Data “MR risk factors (Egger intercept)”). Lastly, leave-577

one-out analyses showed that the estimates were not biased by any single SNP (Suppl. Data “MR risk factors578

(LOO)”). Overall, the sensitivity analyses confirmed the reliability of most of our putative causal effects in579

both directions.580

Since the number of UKBB subjects for which we extracted IDPs was much smaller than the number of581

UKBB subjects used to study disease phenotypes, our analysis can still be considered a two-sample MR582

setup, and potential bias due to sample overlap is expected to be small and in direction of the null [80, 81].583

Replication584

The RS is a prospective population-based cohort study of people living in Ommoord, a district of the city585

of Rotterdam [82]. The RS consists of four cohorts, all of which were used in this replication. Each cohort586

was followed for multiple rounds of follow-up examinations every 4 to 5 years. Most of the patient visits587

in the RS involved the capture of CFIs on both eyes. Due to the multi-decade span of the RS, multiple588

devices, capture conditions and fields (macula and disc centered) are present in the dataset. In the RS,589
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DNA extraction was performed using whole blood samples following standardized and previously described590

protocols [82]. Genotyping was performed using both the Infinium II HumanHap550(-Duo) (RS-I & RS-591

II) and 610-Quad Genotyping BeadChip (RS-I & RS-III; Illumina, San Diego, CA, USA). Imputation of592

markers was performed using the Haplotype Reference Consortium version 1.1 as the reference panel [83].593

The CoLaus study, initiated in 2003 in Lausanne, Switzerland, involves over 6 700 volunteers aged 35 to 75.594

OphtalmoLaus, a segment of CoLaus, delves into ocular health. OphtalmoLaus CFIs were acquired with595

Topcon 2000 or Topcon triton. The number of initial images was 6 503, corresponding to 2 276 participants.596

Phenotyping and cross-correlations597

In this study we made use of RS imaging from recent rounds (RS-I-4, RS-II-4, RS-III-1, RS-IV-1) due to the598

generally higher quality and number of these images, even though in some cases this meant less participants.599

We quality-controlled the images by automatically filtering out images where the OD was near or out of600

the bounds of the CFI. Both disc- and macula-centered images were included. After QC, the number of601

participants with usable images per RS cohort was 2 710 (RS-I), 1 169 (RS-II), 3 350 (RS-III), and 2 658602

(RS-IV). Most visits in the RS captured multiple CFIs per participant. The average number of usable CFIs603

per subject varied between 2.96 (RS-I) and 7.75 (RS-IV), including both eyes. A participant’s features were604

computed as the mean over all their images’ features.605

To accommodate the use of disc-centered images and the high variability in imaging conditions present in606

the RS, we made use of segmentation and feature extraction methods trained and tested on RS data. The607

17 phenotypes computed for the main study were implemented in a fundus analysis software used in-house608

following the original implementation.609

To compute the RS phenotypic cross-correlations in Fig. 7, IDPs were corrected for age, sex, eye geometry,610

imaging device (if multiple were used within the same cohort, dummy coded), and genomic PCs 1-10. Eye611

geometry was included as a combination of the spherical and cylindrical powers into one variable as spherical612

equivalent (spherical power + cylindrical power/2).613

For OphtalmoLaus, in the case of multiple images for the same participant, we kept the one with the highest614

QC score. The number of participants after removing the images that failed the segmentation or IDPs615

computation, and after QC, was N=1 715 participants. If both eyes survived this screening, we averaged out616

the phenotypes of the two eyes, while if only one eye survived then we considered the phenotypes of that617

eye. After that, we cross-referenced with the sample file and the final number of subjects was 1 435. We618

corrected for the following covariates: age, sex, age-by-sex, age-squared, cylindrical and spherical powers,619

spherical-squared, cylindrical-squared, and genomic PCs 1-10.620

GWAS621

As imputation and QC of the four RS-cohorts were done separately, we also performed the GWAS anal-622

yses separately and then meta-analyzed the results. For the initial GWAS analyses, we performed linear623
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regressions using Plink 2.0 [84]. The included covariates were the same as for the phenotypic correlation, i.e.624

age, sex, eye geometry, imaging device, and genomic PCs 1-10. We performed an inverse variance weighted625

fixed-effect meta-analysis, using METAL software [85]. P-values for the association results were calculated626

by using the z-statistic. The meta-analyzed significant hits were pruned using Plink 2.0. Variants were627

considered independent if they were at least 500 kb apart and had an R2 < 0.1. Top hits GWAS summary628

statistics in the RS can be found in Suppl. Data “GWAS top hits (RS) before pruning”.629

Data and code availability630

The genetic and phenotypic UKBB data are available upon application to the UKBB, https://www.631

ukbiobank.ac.uk. Similarly for the replication data, RS and OphtalmoLaus, data can be made available632

upon request to researchers through a data transfer agreement. GWAS summary statistics will be available633

on the GWAS Catalog following publication. Code will be made available in our public GitHub repository634

following publication: https://github.com/BergmannLab/retina-phenotypes.635
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Kavousi, Brenda C T Kieboom, Caroline C W Klaver, Robert J de Knegt, Annemarie I Luik, Tamar917

E C Nijsten, Robin P Peeters, Frank J A van Rooij, Bruno H Stricker, André G Uitterlinden, Meike W918
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